
Multiplication-Free Approximate Algorithms for

Compressed Domain Linear Operations on Images

Neri Merhav

Computer Systems Laboratory and HP-ISC�

Keywords: image processing, compressed-domain processing, downsampling, scaling,
translation, �ltering, convolution, image compression, discrete cosine transform.

Abstract

We propose a method for devising approximate multiplication-free algorithms for

compressed-domain linear operations on images, e.g., downsampling, translation, �lter-

ing, etc. We demonstrate that the approximate algorithms give output images that are

nearly perceptually equivalent to those of the exact processing, while the computational

complexity is signi�cantly reduced.

�Current address: Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, U.S.A. Email:

merhav@hpl.hp.com. Permanent address: HP Israel Science Center, Technion City, Haifa 32000, Israel. Email:

merhav@hp.technion.ac.il



1 Introduction

Compressed-domain processing of digital images and video streams is a problem area of
rapidly increasing interest in the last few years (see, e.g., [2], [8], [9], [10], [11], and references
therein). Most of the research e�orts thus far have been directed to exact algorithms, that
provide the precise desired processing. Relatively little attention, on the other hand, has
been devoted to the approach of devising approximate algorithms with signi�cantly reduced
computational complexity, and without, or almost without, sacri�cing quality.

One example that falls in the category of the approximate approach, in the context of linear
�ltering, is the work of Bhaskaran el al. [1], who proposed a method of image sharpening
by designing certain gain factors in the discrete cosine transform (DCT) domain. The main
idea in [1] is that multiplication of each DCT coe�cient by a constant, which roughly mimics
the operation of linear �ltering, can be implemented by modifying the de-quantization tables
associated with the compression standard (JPEG, MPEG, and others). Consequently, this
operation is computationally costless beyond the cost of the decompression itself. This idea
has been further consolidated and extended in [4], where a method has been proposed to
optimally design the DCT-domain gain factors, so as to best approximate the response of a
given convolution kernel. It has been shown in [4] that the operation of certain 2D �lters,
often used in image processing, can be well approximated by this approach. For other
useful �lters, on the other hand, this method does not provide satisfactory results. Another
example of a reported compressed-domain approximate algorithm is that of Natarajan and
Bhaskaran [7], who proposed to approximate the compressed-domain operation of spatial
domain downsampling, by quantizing each element of the matrices corresponding to this
linear transformation, to the nearest integer power of 2. By doing this, multiplication by
these matrices can be implemented by simple shifts and adds.

In this document, we combine the ideas of [1], [4], and [7], and further extend their scope
to general linear operations in the compressed domain. For the sake of simplicity, and to �x
ideas, consider the 1D case, where the 2D case will be obtained by just repeatedly applying
the following to each row and then to each column. Suppose that the exact output DCT
vector Y corresponding to some linear operation (e.g., downsampling, convolution, etc.) can
be represented by a weighted sum

Y =
X
i

AiXi; (1)

where fXig are DCT input vectors and fAig are certain �xed matrices. The approach
proposed herein is to approximate Y by

~Y = D2

X
i

ÂiD1Xi; (2)

where fÂig contain only 0, �1, �1
2
, �1

4
, and �1

8
as elements, and where D1 and D2 are

optimally-designed diagonal matrices, so as to best approximate fAig by fD2ÂiD1g in some
reasonable sense. By using this form, multiplication by D1 can be absorbed in the de-
quantization step (by appropriately modifying the de-quantization table), multiplication by
each Ai involves shifts and adds only, and �nally, multiplication by D2 can be made part
of the re-quantization step. Since the de-quantization and the re-quantization are assumed
to be performed anyhow, as ingredients of a partial decompression-recompression process,
the only additional calculations that must be performed explicitly are the shifts and adds

1



associated with each Âi. Therefore, the implementation of eq. (2) is virtually multiplication-
free.

We demonstrate the potential of this approach for three useful linear operations: downsam-
pling by a factor of 2 in each dimension, translation (by 4 pixels in each direction), and
convolution with the 5 � 5 uniformly weighted averaging kernel (which is not well-handled
by the method of [4]). In all these cases, the approximate schemes provides output images
that are perceptually equivalent, or almost equivalent (with PSNR = 35 � 45dB) to those
of their exact counterparts, but with computational burden signi�cantly reduced compared
to the exact DCT-domain method and the spatial domain method. For downsampling and
convolution, there is also a signi�cant improvement in quality (3.5-5dB for downsampling,

13-18dB for convolution) over the approach proposed in [7], where Âi is just Ai quantized
to the set f0;�1;�1

2
� 1

4
;�1

8
g and D1 = D2 = I. Therefore, the conclusion is that the

optimization of D1 and D2 is very recommended.

2 The Approximation Method

Many useful linear row-column operations on images can be represented in the form of a
weighted sum of input blocks. Consider an input image divided into a sequence of N �
N spatial domain blocks (matrices) x1; x2; :::, and an output image with the same block
structure y1; y2; :::, where

yt =
X
k

akxf(t;k)b
T
k ; (3)

fakg and fbkg are �xed N � N matrices,1 ff(t; k)g are integers depending on t and k,
and the superscript T denotes vector/matrix transposition. Common examples are those of
downsampling, where fakg and fbkg comprise the operations of anti-aliasing �ltering and
omission of every second sample, and �ltering where the rows of fakg and the columns of
fbkg are shifted versions of the convolution kernel (see also [2] for more details and other
examples.)

In the compressed (DCT) domain, the distributive property of the DCT operator w.r.t.
matrix multiplication, translates eq. (3) into

Yt =
X
k

AkXf(t;k)B
t
k; (4)

where Ak, Bk, Xl and Yl, are the 2D-DCT's of ak, bk, xl, and yl, respectively.

In order to simplify the description of our approximation approach, we con�ne attention to
the 1D case, where it should be kept in mind that the 2D processing is given by applying
the 1D operation for every row and every column. Thus, with a slight abuse of notation,
from now on, x1; x2; ::: and y1; y2; ::: will denote sequences of non-overlapping N -dimensional
column vectors of one-dimensional input and output signals, respectively, and X1; X2; ::: and
Y1; Y2; ::: will denote the respective sequences of 1D-DCT vectors. We shall assume the 1D
linear relation

yt =
X
k

akxf(t;k); (5)

1For compression standards like JPEG, MPEG, and H.261, N = 8.

2



and hence
Yt =

X
k

AkXf(t;k); (6)

where Ak is again the 2D-DCT of the N �N matrix ak.

We are interested in approximating each Ak by a product of three N �N matrices

~Ak = D2ÂkD1; (7)

where D1 and D2 are diagonal matrices that are independent of k, and the elements of each

Âk are all in the set S
�
= f0;�1;�1

2
� 1

4
;�1

8
g.

Since the (i; j)th element of ~Ak is ~Ak(i; j) = Âk(i; j)D1(i; i)D2(j; j), a reasonable (though

not necessarily optimal) choice of Âk, is given by quantizing the elements of Ak to the
above de�ned set S. The rationale behind this choice is two-fold: First, it guarantees that
optimization w.r.t. D1 and D2 would yield results that cannot be worse than those provided

by the approach of [7], where Âk is as above and D1 = D2 = I. Secondly, whenever possible,
we would like to avoid situations where the diagonal elements of D1 and D2 are extremely
far from unity since this might a�ect the quantization tables and hence also the compression
ratio in an unexpected way.

Given fAkg and the above choice of fÂkg, the next step will be to select D1 and D2 so that

f ~Akg would be as `close' as possible to fAkg in some sense. Let us assume that

Rkl = EXf(t;k)X
T
f(t;l) (8)

is independent of t, and let us de�ne the approximation criterion as

�2 = EjjY � ~Y jj2

= trE(Y � ~Y )(Y � ~Y )T

= trE[
X
k

(Ak � ~Ak)Xf(t;k)][
X
l

(Al � ~Al)Xf(t;l)]
T

=
X
k

X
l

tr
n
(Ak �D2ÂkD1)Rkl(Al �D2ÂlD1)

T
o
: (9)

To minimize the last expression w.r.t. D1 and D2, we shall assume, for the sake of simplicity,
a �rst order autoregressive model in the time domain. This means that the time domain
autocorrelation between the ith and the jth samples of the 1D input signal is given by

r(i; j) = �2�ji�jj; (10)

where �2 > 0 is a constant (whose value is immaterial for the purpose of optimizing D1 and
D2), and j�j � 1. The DCT-domain cross-correlation matrix Rkl is, of course, the 2D-DCT
of the respective time domain matrix rkl = Exf(t;k)x

T
f(t;l) created according to eq. (10).

We are not aware of a closed-form expression for the optimum matrices D�
1 and D�

2 that
minimize �2. Therefore, for a given hypothesized �, we have used the Nedler-Meade simplex

3



search algorithm for unconstrained optimization, which is implemented by the MATLAB
library function fmins. A technical comment to observe is that in the minimization of
�2 over the (2N)-dimensional space of the diagonal elements of D1 and D2, there is one
super
uous degree of freedom. This follows from the simple fact that if D1 is multiplied by

an arbitrary real � 6= 0 and D2 is divided by �, then f ~Akg and hence also �2 are una�ected.
Thus, without loss of optimality, we have �xed D1(1; 1) = 1 and optimized over the remaining
(2N � 1) variables. The initial guess for the Nedler-Meade procedure was always chosen as
D1 = D2 = I. The reasons for this choice are the same as those that were given above in

the context of the choice of fÂkg.

3 Applications and Implementation

We have applied the above described method to three di�erent examples of linear transfor-
mations on images: downsampling by a factor of 2 in each dimension, convolution with the
5 � 5 uniform weight averaging �lter, and image translation by 4 pixels north and 4 pixels
west. In this section, we provide the details of the implementation of each one of these
transformations, where in all of them, we have taken N = 8.

3.1 Downsampling

Downsampling by a factor of 2 in the 1D case, means that every two consecutive input vectors,
x2t�1 and x2t, t = 1; 2; :::, are mapped into one output vector given by yt = a1x2t�1 + a2x2t.
For the simple case where the antialiasing �lter performs uniformly weighted averaging of
every two successive samples, the matrices a1 and a2 are given by

a1 =
1

2

0
BBBBBBBBBBBBB@

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA
; a2 =

1

2

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1
CCCCCCCCCCCCCA
; (11)

their 2D-DCT's are given by

A1 =

0
BBBBBBBBBBBBB@

0:5000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000

0:4531 0:2039 �0:0345 0:0095 0:0000 �0:0064 0:0143 �0:0406
0:0000 0:4904 0:0000 0:0000 0:0000 0:0000 0:0000 �0:0975

�0:1591 0:3879 0:2371 �0:0406 0:0000 0:0271 �0:0982 �0:0772
0:0000 0:0000 0:4619 0:0000 0:0000 0:0000 �0:1913 0:0000

0:1063 �0:1728 0:3549 0:2039 0:0000 �0:1362 �0:1470 0:0344

0:0000 0:0000 0:0000 0:4157 0:0000 �0:2778 0:0000 0:0000

�0:0901 0:1362 �0:1734 0:3599 0:0000 �0:2405 0:0718 �0:0271

1
CCCCCCCCCCCCCA
;

4



and

A2 =

0
BBBBBBBBBBBBB@

0:5000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000

�0:4531 0:2039 0:0345 0:0095 0:0000 �0:0064 �0:0143 �0:0406
0:0000 �0:4904 0:0000 0:0000 0:0000 0:0000 0:0000 0:0975

0:1591 0:3879 �0:2371 �0:0406 0:0000 0:0271 0:0982 �0:0772
0:0000 0:0000 0:4619 0:0000 0:0000 0:0000 �0:1913 0:0000

�0:1063 �0:1728 �0:3549 0:2039 0:0000 �0:1362 0:1470 0:0344

0:0000 0:0000 0:0000 �0:4157 0:0000 0:2778 0:0000 0:0000

0:0901 0:1362 0:1734 0:3599 0:0000 �0:2405 �0:0718 �0:0271

1
CCCCCCCCCCCCCA
;

and �nally, the quantized versions of A1 and A2 are

Â1 =

0
BBBBBBBBBBBBB@

0:5 0 0 0 0 0 0 0

0:5 0:25 0 0 0 0 0 0

0 0:5 0 0 0 0 0 �0:125
�0:125 0:5 0:25 0 0 0 �0:125 �0:125

0 0 0:5 0 0 0 �0:25 0

0:125 �0:125 0:25 0:25 0 �0:125 �0:125 0

0 0 0 0:5 0 �0:25 0 0

�0:125 0:125 �0:125 0:25 0 �0:25 0:125 0

1
CCCCCCCCCCCCCA
;

and

Â2 =

0
BBBBBBBBBBBBB@

0:5 0 0 0 0 0 0 0

�0:5 0:25 0 0 0 0 0 0

0 �0:5 0 0 0 0 0 0:125

0:125 0:5 �0:25 0 0 0 0:125 �0:125
0 0 0:5 0 0 0 �0:25 0

�0:125 �0:125 �0:25 0:25 0 �0:125 0:125 0

0 0 0 �0:5 0 0:25 0 0

0:125 0:125 0:125 0:25 0 �0:25 �0:125 0

1
CCCCCCCCCCCCCA
:

Consider now the implementation the equation

U = Â1V + Â2W; (12)

where U , V , and W are 8-dimensional column vectors whose ith coordinates are denoted by

ui, vi and wi, i = 1; :::; 8, respectively. Since the corresponding elements of Â1 and Â2 di�er
at most by sign from each other (as can seen from elementary properties of the DCT), the
implementation of eq. (12) can be made relatively e�cient by applying the following steps:

u1 = (v1 + w1)=2 (13)

z1 = (v1 � w1)=2 (14)

z2 = (v2 + w2)=2 (15)

u2 = z1 + z2=2 (16)

u3 = [v2 � w2 + (w8 � v8)=4]=2 (17)

5



z3 = (v3 � w3)=4 (18)

z4 = (v7 � w7)=8 (19)

u4 = z2 + z3 � z4 � [z1 + (v8 + w8)=2]=4 (20)

u5 = [v3 + w3 � (v7 + w7)=2]=2 (21)

z5 = (v4 + w4)=4 (22)

z6 = (v6 + w6)=4 (23)

z7 = �z4 + (z1 � z2)=4 (24)

u6 = z3 + z5 + z7 � z6=2 (25)

u7 = [v4 � w4 + (w6 � v6)=2]=2 (26)

u8 = z5 � z6 � z7 � z3=2 (27)

These equations require altogether, 21 additions, 9 shift-and-adds, and 10 shifts. In the 2D
case, every four 8� 8 input blocks give one output block, by repeating the implementation
of eq. (12) for every column, and then for every row, that is, 16 times. Therefore, the overall
complexity in the 2D case is 336 additions, 144 shift-and-adds, and 160 shifts, i.e., a total of
640 basic operations per output block.

For comparison, the exact algorithm proposed in [3] requires 2824 operations and the spatial
domain method needs 4512 operations. The approximate algorithm reported in [7] takes 696
adds and 184 shift, that is, 880 operations. However, it should be kept in mind that the

matrices A1 and A2, and hence also Â1 and Â2 in [7] are somewhat di�erent than the above.

3.2 Convolution

Convolution, or �ltering, with a separable, noncausal, symmetric convolution kernel of max-
imum length 17, fh8; h7; :::; h1; h0; h1; :::; h7; h8g, can be represented by yt = a1xt�1 + a2xt +
aT1 xt+1, where a1 and a2 are Toeplitz matrices, with the ith row of a1 given by (i� 1) zeros
followed by (h8; :::; hi), and the ith row of a2 given by (hi�1; :::; h0; :::; h8�i), i = 1; :::; 8.

If, for example, h0 = h1 = h2 = 0:2, and h3 = h4 = � � � = h8 = 0, then the �lter simply
performs uniform averaging of 5 consecutive points. The 2D version of this �lter (that
averages all pixels in a 5 � 5 square around the current pixel) is useful in noise cleaning
applications. Throughout this subsection, we con�ne attention to this example.2 The DCT-
domain version of the input-output relation is given by Yt = A1Xt�1 + A2Xt + AT

1Xt+1,
where

A1 =

0
BBBBBBBBBBBBB@

0:0750 �0:0987 0:0789 �0:0519 0:0250 �0:0046 �0:0056 0:0058

0:0987 �0:1296 0:1025 �0:0658 0:0294 �0:0022 �0:0106 0:0096

0:0789 �0:1025 0:0780 �0:0453 0:0135 0:0090 �0:0177 0:0129

0:0519 �0:0658 0:0453 �0:0183 �0:0069 0:0231 �0:0262 0:0169

0:0250 �0:0294 0:0135 0:0069 �0:0250 0:0347 �0:0327 0:0196

0:0046 �0:0022 �0:0090 0:0231 �0:0347 0:0391 �0:0338 0:0196

�0:0056 0:0106 �0:0177 0:0262 �0:0327 0:0338 �0:0280 0:0159

�0:0058 0:0096 �0:0129 0:0169 �0:0196 0:0196 �0:0159 0:0089

1
CCCCCCCCCCCCCA
;

2While in principle, there are in�nitely many possible kernels and each one yields a di�erent approximate algorithm, in

practice, a rather limited variety of kernels are commonly used in image processing.

6



and

A2 =

0
BBBBBBBBBBBBB@

0:8500 0:0000 �0:1577 0:0000 �0:0500 0:0000 0:0112 0:0000

0:0000 0:5931 0:0000 �0:1315 0:0000 �0:0045 0:0000 0:0191

�0:1577 0:0000 0:3268 0:0000 �0:0271 0:0000 0:0354 0:0000

0:0000 �0:1315 0:0000 0:0335 0:0000 0:0462 0:0000 0:0338

�0:0500 0:0000 �0:0271 0:0000 �0:1500 0:0000 0:0653 0:0000

0:0000 �0:0045 0:0000 0:0462 0:0000 �0:1578 0:0000 0:0392

0:0112 0:0000 0:0354 0:0000 0:0653 0:0000 �0:0268 0:0000

0:0000 0:0191 0:0000 0:0338 0:0000 0:0392 0:0000 0:1312

1
CCCCCCCCCCCCCA
:

Thus, ~Yt = D2(Â1D1Xt�1 + Â2D1Xt + ÂT
1D1Xt+1)=2,

3 where

Â1 =

0
BBBBBBBBBBBBB@

0:125 �0:25 0:125 �0:125 0 0 0 0

0:25 �0:25 0:25 �0:125 0 0 0 0

0:125 �0:25 0:125 �0:125 0 0 0 0

0:125 �0:125 0:125 0 0 0 0 0

0 0 0 0 0 0:125 �0:125 0

0 0 0 0 �0:125 0:125 �0:125 0

0 0 0 0 �0:125 0:125 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA
; (28)

and

Â2 =

0
BBBBBBBBBBBBB@

2 0 �0:250 0 �0:125 0 0 0

0 1 0 �0:25 0 0 0 0

�0:25 0 0:5 0 0 0 0:125 0

0 �0:25 0 0:125 0 0 0 0:125

�0:125 0 0 0 �0:25 0 0:125 0

0 0 0 0:125 0 �0:25 0 0:125

0 0 0:125 0 0:125 0 0 0

0 0 0 0:125 0 0:125 0 0:125

1
CCCCCCCCCCCCCA
: (29)

Consider next, the implementation of the equation

U = Â1V + Â2W + ÂT
1 S; (30)

where similarly as U , V , and W , S is also an 8-dimensional column vector (s1; :::; s8). By

using the speci�c structures of Â1 and Â2, eq. (30) can be implemented as follows:

z1 = [s2 � v2 + (v1 + s1 + v3 + s3 + s4 � v4)=2]=4 (31)

u1 = w1 + w1 + z1 � (w3 + w5=2)=4 (32)

z2 = (v1 � s1 � v2 � s2 + v3 � s3)=4 (33)

u2 = z2 + w2 � [w4 + (v4 + s4)=2]=4 (34)

3Here, we have chosen to quantize 2A1 and 2A2 rather than A1 of A2 as the latter does not turn out to provide satisfactory

results.

7



u3 = z1 + [w3 � (w1 � w7=2)=2]=2 (35)

z3 = w4 + w8 (36)

u4 = [z2 � (w2 � z3=2)=2]=2 (37)

z4 = (v6 � s6)=8 (38)

u5 = z4 � [w5 + (w1 + v7 + s7 � w7)=2]=4 (39)

u6 = [�w6 + (z3 + s5 � v5 + v6 + s6 + s7 � v7)=2]=4 (40)

u7 = z4 + (w3 + w5 � v5 � s5)=8 (41)

u8 = (z3 + w6)=8: (42)

The implementation of this set of equations requires 31 additions, 14 shift-and-adds, and 6
shifts. Thus, when extended to the 2D case, this amounts to 496 additions, 224 shift-and-
adds, and 96 shifts, i.e., a total of 816 basic operations per output block. For comparison,
the spatial domain implementation of convolution with this speci�c �lter, and two fast exact
algorithms for convolution in the compressed domain, that were recently reported in [5] and
[6], all require more than 4000 operations.

3.3 Translation

Translation, or shifting, by k positions to the right (1 � k � 7), can be represented, in the
1D case, by yt = a1xt + a2xt+1, t = 1; 2; :::, where now a1 and a2 have the block structure

a1 =

 
0 Ik
0 0

!
; a2 =

 
0 0

I8�k 0

!
; (43)

and where In is the n� n identity matrix. If k = 4, for example, the 2D-DCT's of a1 and a2
are given by

Â1 =

0
BBBBBBBBBBBBB@

0:5000 �0:4531 0:0000 0:1591 0:0000 �0:1063 0:0000 0:0901

0:4531 �0:3266 �0:2079 0:3266 �0:0373 �0:1353 �0:0114 0:1353

0:0000 0:2079 �0:5000 0:3955 0:0000 �0:1762 0:0000 0:1389

�0:1591 0:3266 �0:3955 0:1353 0:2566 �0:3266 0:0488 0:1353

0:0000 0:0373 0:0000 �0:2566 0:5000 �0:3841 0:0000 0:1877

0:1063 �0:1353 0:1762 �0:3266 0:3841 �0:1353 �0:2452 0:3266

0:0000 0:0114 0:0000 �0:0488 0:0000 0:2452 �0:5000 0:4329

�0:0901 0:1353 �0:1389 0:1353 �0:1877 0:3266 �0:4329 0:3266

1
CCCCCCCCCCCCCA
;

and

Â2 =

0
BBBBBBBBBBBBB@

0:5000 0:4531 0:0000 �0:1591 0:0000 0:1063 0:0000 �0:0901
�0:4531 �0:3266 0:2079 0:3266 0:0373 �0:1353 0:0114 0:1353

0:0000 �0:2079 �0:5000 �0:3955 0:0000 0:1762 0:0000 �0:1389
0:1591 0:3266 0:3955 0:1353 �0:2566 �0:3266 �0:0488 0:1353

0:0000 �0:0373 0:0000 0:2566 0:5000 0:3841 0:0000 �0:1877
�0:1063 �0:1353 �0:1762 �0:3266 �0:3841 �0:1353 0:2452 0:3266

0:0000 �0:0114 0:0000 0:0488 0:0000 �0:2452 �0:5000 �0:4329
0:0901 0:1353 �0:1389 0:1353 0:1877 0:3266 0:4329 0:3266

1
CCCCCCCCCCCCCA
;

8



whose quantized versions are given by

Â1 =

0
BBBBBBBBBBBBB@

0:5 �0:5 0 0:125 0 �0:125 0 0:125

0:5 �0:25 �0:25 0:25 0 �0:125 0 0:125

0 0:25 �0:5 0:5 0 �0:125 0 0:125

�0:125 0:25 �0:5 0:125 0:25 �0:25 0 0:125

0 0 0 �0:25 0:5 �0:5 0 0:25

0:125 �0:125 0:125 �0:25 0:5 �0:125 �0:25 0:25

0 0 0 0 0 0:25 �0:5 0:5

�0:125 0:125 �0:125 0:125 �0:25 0:25 �0:5 0:25

1
CCCCCCCCCCCCCA
; (44)

and

Â2 =

0
BBBBBBBBBBBBB@

0:5 0:5 0 �0:125 0 0:125 0 �0:125
�0:5 �0:25 0:25 0:25 0 �0:125 0 0:125

0 �0:25 �0:5 �0:5 0 0:125 0 �0:125
0:125 0:25 0:5 0:125 �0:25 �0:25 0 0:125

0 0 0 0:25 0:5 0:5 0 �0:25
�0:125 �0:125 �0:125 �0:25 �0:5 �0:125 0:25 0:25

0 0 0 0 0 �0:25 �0:5 �0:5
0:125 0:125 0:125 0:125 0:25 0:25 0:5 0:25

1
CCCCCCCCCCCCCA
: (45)

Returning to the case of a general displacement parameter k, then here, as in the case of
downsampling and �ltering, one can also devise an e�cient implementation of the equation

U = Â1V + Â2W , by taking advantage of the structure of Â1 and Â2 for every possible
1 � k � 7. For the sake of brevity, we omit the details of the implementation and the
operation count associated with each value of k.

4 Experimental Results

We have examined the approximate compressed-domain algorithms developed in Section 3
for N = 8 and for the optimally-designed diagonal matrices D1 and D2 corresponding to
the �rst order autoregressive model, where the correlation coe�cient � takes on the values
0; 0:9; 0:95, and 0:99.

Each one of the algorithms was tested on several images and compared to the exact approach
(corresponding to multiplication by fAkg) and with the approximate approach corresponding
to D1 = D2 = I (as proposed in [7]), where the purpose of the latter comparison is to
assess the usefulness of the optimization over D1 and D2. In the exact approach, every
compressed DCT block was �rst de-quantized according to the recommended (default) JPEG
quantization table for luminance, and after processing according to fAkg, re-quantized using
the same table. In the approximate version of the algorithm, the (i; j)th element (i; j =
1; :::; 8) of this table was multiplied by D1(i; i)D1(j; j) in the de-quantization phase, and
divided by D2(i; i)D2(j; j) in the re-quantization phase, whereas the processing in between

was according to fÂkg.

Seven black-and-white images were used to test the algorithms: \Barbara", \Boats", \Ho-
tel", \Lena", \Gold", \Zelda", and \Einstein". The �rst six are quite commonly used

9



`natural' images, i.e., photographs of people, buildings, views, and so on. The latter is a
portrait drawing of Albert Einstein that contains also some scanned text.

For each one of these images, and for each version of the approximate algorithm (depending
on the value of � or on whether D1 = D2 = I), the PSNR (in dB) of the resulting processed
image w.r.t. that of the exact algorithm has been computed. The results for downsampling,
convolution, and translation are summarized in Tables 1, 2, and 3, respectively.

As can be seen, at least for the natural images, and particularly for downsampling and con-
volution, the optimization over D1 and D2 (for large �) provides considerable improvement
(3.5-5dB for downsampling, 13-18dB for convolution) compared to the case where D1 and D2

are assumed to be the identity matrix. The improvement achieved for the case of translation
is less dramatic (1-2dB). Thus, this optimization is very recommended for downsampling and
convolution but less important for translation. The best choice of � for most natural images
examined appears to be 0.95 for downsampling and translation, and 0.99 for convolution.
However, the results are relatively insensitive to the value of � in the range [0:95; 0:99], and
therefore, the exact choice of � therein is not critical. In all three transformations, the per-
formance achieved on the \Einstein" image was considerably inferior to these of the natural
images. One possible explanation to this fact is that the autoregressive model is not suitable
for this type of images, and therefore other models should be sought.

Besides the objective performance measure of PSNR, it turns out also that the approximate
method, for large �, gives output images that look signi�cantly cleaner and smoother than
those that correspond to D1 = D2 = I. Also, blockiness artifacts associated with the quan-
tization of fAkg are compensated and signi�cantly reduced when D1 and D2 are optimized.
This is demonstrated in Fig. 1 for the case of downsampling. As can be seen, the blocky
artifacts for D1 = D2 = I, that appear especially near Lena's shoulder, are considerably
smaller for � = 0:95.

5 Conclusion and Future Work

We have proposed a method for approximating linear operations on images in compressed do-
main using multiplication-free schemes and optimum modi�cation of the de-quantization/re-
quantization tables. We have demonstrated the performance for three examples of linear
transformations: downsampling, convolution, and translation. In the �rst two of these
transformations, the experimental results indicate that the ingredient of modifying the quan-
tization tables, both before and after processing, is of substantial importance for improving
quality.

A few future research directions are the following: (i) Examining the potential of this ap-
proach for other linear transformations, e.g., rotation, shearing, and other a�ne coordinate
transformations. (ii) Extending the scope to linear operations that are not row-column sep-
arable, e.g., convolution with a nonseparable kernel. This might be useful for compressed
domain motion estimation, where the current block serves as a matched (iii) Devising a more

rigorous method to select the intermidiate matrices fÂkg. (iv) Finding better models and
optimization criteria that are suitable for unnatural images such as \Einstein."

10



Image D1 = D2 = I � = 0:00 � = 0:90 � = 0:95 � = 0:99

Barbara 32.5 34.8 35.9 36.0 35.5

Boats 33.7 35.6 37.4 37.7 37.5

Einstein 29.1 31.2 30.9 30.5 29.9

Hotel 31.9 34.4 36.0 36.2 35.9

Lena 32.5 34.6 37.3 37.4 37.3

Gold 34.9 37.1 39.2 39.4 39.2

Zelda 36.0 37.7 40.1 40.6 40.5

Table 1: PSNR[dB] results for downsampling by a factor of 2.

Image D1 = D2 = I � = 0:00 � = 0:90 � = 0:95 � = 0:99

Barbara 25.5 31.1 39.3 40.3 40.3

Boats 26.9 33.5 40.0 41.2 41.3

Einstein 25.8 26.7 32.9 34.4 35.0

Hotel 23.8 30.9 37.7 39.2 39.6

Lena 24.4 31.5 38.8 40.4 40.9

Gold 24.2 31.1 38.7 41.1 42.5

Zelda 26.0 33.6 41.2 43.5 44.6

Table 2: PSNR[dB] results for convolution with the 5� 5 uniform averaging kernel.

Image D1 = D2 = I � = 0:00 � = 0:90 � = 0:95 � = 0:99

Barbara 31.5 27.6 32.2 32.3 32.2

Boats 33.7 28.5 34.7 35.0 35.0

Einstein 27.0 21.4 26.9 27.1 27.1

Hotel 31.4 25.9 32.2 32.5 32.5

Lena 32.7 26.9 34.0 34.5 34.5

Gold 35.1 26.4 35.4 36.6 36.6

Zelda 37.1 28.9 37.9 39.1 38.9

Table 3: PSNR[dB] results for translation by 4 pixels north and 4 pixels west.

11



            ����������������������������

Figure 1: \Lena" downsampled by 2: Top left - exact algorithm, top right - D1 = D2 = I, bottom

left - � = 0, bottom right - � = 0:95.

12



6 References

[1] V. Bhaskaran, G. Beretta, and K. Konstantinides, \Text and image sharpening of JPEG
compressed images in the frequency domain," HPL Technical Report, HPL-94-90, Oc-
tober 1994.

[2] S.-F. Chang and D. G. Messerschmitt, \Manipulation and compositing of MC-DCT
compressed video," IEEE J. Sel. Areas Comm., vol. 13, no. 1, pp. 1-11, January 1995.

[3] N. Merhav and V. Bhaskaran, \A transform domain approach to spatial domain image
scaling," HPL Technical Report, HPL-94-116, December 1994.

[4] N. Merhav and R. Kresch, \Approximate convolution using DCT coe�cient multipli-
ers," HPL Technical Report, HPL-95-141, December 1995.

[5] R. Kresch and N. Merhav, \Fast DCT domain �ltering using the DCT and the DST,"
HPL Technical Report, HPL-95-140, December 1995.

[6] R. Kresch and N. Merhav, \An implicit DST-based method for fast convolution in the
DCT domain," HPL Technical Report, HPL-96-68, May 1996.

[7] B. K. Natarajan and V. Bhaskaran, \A fast approximate algorithm for scaling down
digital images in the DCT domain," Proc. ICIP `95, 1995.

[8] B. C. Smith, \Fast software processing of motion JPEG video," Proc. ACM Multimedia,
1994.

[9] B. Shen and I. K. Sethi, \Inner-block operations on compressed images," ACM Multi-
media `95, November 1995.

[10] B. Shen and I. K. Sethi, \Scanline algorithms in compressed domain," preprint.

[11] F. Arman, A. Hsu, and M.-Y. Chiu, \Image processing on encoded video sequences,"
Multimedia Systems, vol. 1, 211-219, 1994.

13


