
124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Low-Power Digital Signal Processing Using
Approximate Adders

Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, Fellow, IEEE, and Kaushik Roy, Fellow, IEEE

Abstract—Low power is an imperative requirement for
portable multimedia devices employing various signal processing
algorithms and architectures. In most multimedia applications,
human beings can gather useful information from slightly erro-
neous outputs. Therefore, we do not need to produce exactly
correct numerical outputs. Previous research in this context
exploits error resiliency primarily through voltage overscaling,
utilizing algorithmic and architectural techniques to mitigate
the resulting errors. In this paper, we propose logic complexity
reduction at the transistor level as an alternative approach to
take advantage of the relaxation of numerical accuracy. We
demonstrate this concept by proposing various imprecise or
approximate full adder cells with reduced complexity at the
transistor level, and utilize them to design approximate multi-bit
adders. In addition to the inherent reduction in switched capaci-
tance, our techniques result in significantly shorter critical paths,
enabling voltage scaling. We design architectures for video and
image compression algorithms using the proposed approximate
arithmetic units and evaluate them to demonstrate the efficacy
of our approach. We also derive simple mathematical models
for error and power consumption of these approximate adders.
Furthermore, we demonstrate the utility of these approximate
adders in two digital signal processing architectures (discrete
cosine transform and finite impulse response filter) with specific
quality constraints. Simulation results indicate up to 69% power
savings using the proposed approximate adders, when compared
to existing implementations using accurate adders.

Index Terms—Approximate computing, low power, mirror
adder.

I. Introduction

D IGITAL SIGNAL processing (DSP) blocks form the
backbone of various multimedia applications used in

portable devices. Most of these DSP blocks implement image
and video processing algorithms, where the ultimate output is
either an image or a video for human consumption. Human
beings have limited perceptual abilities when interpreting an
image or a video. This allows the outputs of these algorithms
to be numerically approximate rather than accurate. This
relaxation on numerical exactness provides some freedom to
carry out imprecise or approximate computation. We can use

Manuscript received March 2, 2012; revised May 10, 2012, July 28, 2012;
accepted August 13, 2012. Date of current version December 19, 2012. This
paper was recommended by Associate Editor I. Bahar.

V. Gupta, A. Raghunathan, and K. Roy are with the Department of
Electrical and Computer Engineering, School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
gupta64@purdue.edu; raghunathan@purdue.edu; kaushik@purdue.edu).

D. Mohapatra is with Intel Corporation, Santa Clara, CA 95054 USA (e-
mail: debabrata.mohapatra@intel.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2217962

this freedom to come up with low-power designs at different
levels of design abstraction, namely, logic, architecture, and
algorithm.

The paradigm of approximate computing is specific to
select hardware implementations of DSP blocks. It is shown
in [1] that an embedded reduced instruction set computing
processor consumes 70% of the energy in supplying data
and instructions, and 6% of the energy while performing
arithmetic only. Therefore, using approximate arithmetic in
such a scenario will not provide much energy benefit when
considering the complete processor. Programmable proces-
sors are designed for general-purpose applications with no
application-specific specialization. Therefore, there may not
be many applications that will be able to tolerate errors due
to approximate computing. This also makes general-purpose
processors not suited for using approximate building blocks.
This issue has already been discussed in [13]. Therefore, in
this paper, we consider application-specific integrated circuit
implementations of error-resilient applications like image and
video compression. We target the most computationally in-
tensive blocks in these applications and build them using
approximate hardware to show substantial improvements in
power consumption with little loss in output quality.

Few works that focus on low-power design through approx-
imate computing at the algorithm and architecture levels in-
clude algorithmic noise tolerance (ANT) [3]–[6], significance-
driven computation (SDC) [7]–[9], and nonuniform voltage
overscaling (VOS) [10]. All these techniques are based on the
central concept of VOS, coupled with additional circuitry for
correcting or limiting the resulting errors. In [11], a fast but
“inaccurate” adder is proposed. It is based on the idea that
on average, the length of the longest sequence of propagate
signals is approximately log n, where n is the bitwidth of
the two integers to be added. An error-tolerant adder is
proposed in [12] that operates by splitting the input operands
into accurate and inaccurate parts. However, neither of these
techniques target logic complexity reduction. A power-efficient
multiplier architecture is proposed in [13] that uses a 2 × 2
inaccurate multiplier block resulting from Karnaugh map
simplification. This paper considers logic complexity reduction
using Karnaugh maps. Shin and Gupta [14] and Phillips et al.
[15] also proposed logic complexity reduction by Karnaugh
map simplification. Other works that focus on logic complexity
reduction at the gate level are [16]–[19]. Other approaches use
complexity reduction at the algorithm level to meet real-time
energy constraints [20], [21].

0278-0070/$31.00 c© 2012 IEEE



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 125

Previous works on logic complexity reduction have fo-
cused on algorithm, logic, and gate levels. We propose logic
complexity reduction at the transistor level. We apply this
to addition at the bit level by simplifying the mirror adder
(MA) circuit. We develop imprecise but simplified arithmetic
units, which provide an extra layer of power savings over
conventional low-power design techniques. This is attributed
to the reduced logic complexity of the proposed approximate
arithmetic units. Note that the approximate arithmetic units not
only have a reduced number of transistors, but care is taken to
ensure that the internal node capacitances are greatly reduced.
Complexity reduction leads to power reduction in two different
ways. First, an inherent reduction in switched capacitance
and leakage results from having smaller hardware. Second,
complexity reduction frequently leads to shorter critical paths,
facilitating voltage reduction without any timing-induced er-
rors. In summary, our work significantly differs from other
works (SDC, ANT, and nonuniform VOS) since we adopt a
different approach for exploiting error resiliency. Our aim is
to target low-power design using simplified and approximate
logic implementations. Since DSP blocks mainly consist of
adders and multipliers (which are, in turn, built using adders),
we propose several approximate adders, which can be used
effectively in such blocks.

A preliminary version of our work appeared in [22]. We
extend our paper in [22] by providing two more simplified
versions of the MA. Furthermore, we propose a measure of
the “quality” of a DSP block that uses approximate adders.
We also propose a methodology that can be used to harness
maximum power savings using approximate adders, subject to
a specific quality constraint. Our contributions in this paper
can be summarized as follows.

1) We propose logic complexity reduction at the transistor
level as an alternative approach to approximate comput-
ing for DSP applications.

2) We show how to simplify the logic complexity of a
conventional MA cell by reducing the number of tran-
sistors and internal node capacitances. Keeping this aim
in mind, we propose five different simplified versions of
the MA, ensuring minimal errors in the full adder (FA)
truth table.

3) We utilize the simplified versions of the FA cell to pro-
pose several imprecise or approximate multi-bit adders
that can be used as building blocks of DSP systems.
To maintain a reasonable output quality, we use ap-
proximate FA cells only in the least significant bits
(LSBs). We particularly focus on adder structures that
use FA cells as their basic building blocks. We have used
approximate carry save adders (CSAs) to design 4:2 and
8:2 compressors (Section III). We derive mathematical
expressions for the mean error in the output of an
approximate ripple carry adder (RCA) as a function of
the number of LSBs that are approximate.

4) VOS is a very popular technique to get large improve-
ments in power consumption. However, VOS will lead to
delay failures in the most significant bits (MSBs). This
might lead to large errors in corresponding outputs and
severely mess up the output quality of the application.

We use approximate FA cells only in the LSBs, while the
MSBs use accurate FA cells. Therefore, at isofrequency,
the errors introduced by VOS will be much higher,
when compared to proposed approximate adders. Since
truncation is a well-known technique to facilitate voltage
scaling, we have compared the performance of proposed
approximate adders with truncated adders. Our expres-
sions for mean error demonstrate the superiority of
proposed approximations over truncation. Higher order
compressors (using carry save trees) are also used to ac-
cumulate partial products in various tree multipliers [23].
So our approach is also useful for designing approximate
tree multipliers, which are extensively used in DSP
systems. In general, our approach may be applied to
any arithmetic circuit built with FAs.

5) We present designs for image and video compression
algorithms using the proposed approximate arithmetic
units and evaluate the approximate architectures in terms
of output quality and power dissipation.

6) We propose a mathematical definition of output quality
of a DSP block that uses approximate adders. We also
propose simple mathematical models for estimating the
degree of voltage scaling and power consumption of
these approximate adders. Based on these models, we
formulate a design problem that can be solved to get
maximum power savings, subject to a given quality
constraint.

7) Finally, we demonstrate the optimization methodology
with the help of two examples, discrete cosine transform
(DCT) and finite impulse response (FIR) filter.

The remainder of this paper is organized as follows. In
Section II, we propose and discuss various approximate FA
cells. In Section III, we demonstrate the benefits of using these
cells in image and video compression architectures. We derive
mathematical models for mean error and power consumption
of an approximate RCA in Section IV. In Section V, we
demonstrate the efficient use of approximate RCAs in two
DSP architectures, DCT and FIR filter. Finally, conclusions
are drawn in Section VI.

II. Approximate Adders

In this section, we discuss different methodologies for
designing approximate adders. We use RCAs and CSAs
throughout our subsequent discussions in all sections of this
paper. Since the MA [23] is one of the widely used economical
implementations of an FA [24], we use it as our basis for
proposing different approximations of an FA cell.

A. Approximation Strategies for the MA

In this section, we explain step-by-step procedures for
coming up with various approximate MA cells with fewer
transistors. Removal of some series connected transistors will
facilitate faster charging/discharging of node capacitances.
Moreover, complexity reduction by removal of transistors
also aids in reducing the αC term (switched capacitance) in
the dynamic power expression Pdynamic = αCV 2

DDf , where



126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 1. Conventional MA.

Fig. 2. MA approximation 1.

Fig. 3. MA approximation 2.

α is the switching activity or average number of switching
transitions per unit time and C is the load capacitance being
charged/discharged. This directly results in lower power dissi-
pation. Area reduction is also achieved by this process. Now,
let us discuss the conventional MA implementation followed
by the proposed approximations.

1) Conventional MA: Fig. 1 shows the transistor-level
schematic of a conventional MA [23], which is a popular way
of implementing an FA. It consists of a total of 24 transistors.
Since this implementation is not based on complementary

Fig. 4. MA approximation 3.

Fig. 5. MA approximation 4.

CMOS logic, it provides a good opportunity to design an
approximate version with removal of selected transistors.

2) Approximation 1: In order to get an approximate MA
with fewer transistors, we start to remove transistors from the
conventional schematic one by one. However, we cannot do
this in an arbitrary fashion. We need to make sure that any
input combination of A, B and Cin does not result in short
circuits or open circuits in the simplified schematic. Another
important criterion is that the resulting simplification should
introduce minimal errors in the FA truth table. A judicious
selection of transistors to be removed (ensuring no open or
short circuits) results in a schematic shown in Fig. 2, which we
call approximation 1. Clearly, this schematic has eight fewer
transistors compared to the conventional MA schematic. In
this case, there is one error in Cout and two errors in Sum,
as shown in Table I. A tick mark denotes a match with the
corresponding accurate output and a cross denotes an error.

3) Approximation 2: The truth table of an FA shows that
Sum= Cout

1 for six out of eight cases, except for the input
combinations A = 0, B = 0, Cin = 0 and A = 1, B = 1, Cin = 1.
Now, in the conventional MA, Cout is computed in the first
stage. Thus, an easy way to get a simplified schematic is to
set Sum= Cout. However, we introduce a buffer stage after Cout

(see Fig. 3) to implement the same functionality. The reason
for this can be explained as follows. If we set Sum= Cout as it is

1Henceforth, we denote the complement of a variable V by V .



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 127

TABLE I

Truth Table for Conventional FA and Approximations 1–4

Inputs Accurate Outputs Approximate Outputs

A B Cin Sum Cout Sum1 Cout1 Sum2 Cout2 Sum3 Cout3 Sum4 Cout4

0 0 0 0 0 0 ✓ 0 ✓ 1 × 0 ✓ 1 × 0 ✓ 0 ✓ 0 ✓
0 0 1 1 0 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓
0 1 0 1 0 0 × 1 × 1 ✓ 0 ✓ 0 × 1 × 0 × 0 ✓
0 1 1 0 1 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓ 1 × 0 ×
1 0 0 1 0 0 × 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 0 × 1 ×
1 0 1 0 1 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓
1 1 0 0 1 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓
1 1 1 1 1 1 ✓ 1 ✓ 0 × 1 ✓ 0 × 1 ✓ 1 ✓ 1 ✓

Fig. 6. Layouts of conventional and approximate MA cells.

in the conventional MA, the total capacitance at the Sum node
would be a combination of four source–drain diffusion and two
gate capacitances. This is a considerable increase compared
to the conventional case or approximation 1. Such a design
would lead to a delay penalty in cases where two or more
multi-bit approximate adders are connected in series, which is
very common in DSP applications. Fig. 3 shows the schematic
obtained using the above approach. We call this approximation
2. Here, Sum has only two errors, while Cout is correct for all
cases, as shown in Table I.

4) Approximation 3: Further simplification can be obtained
by combining approximations 1 and 2. Note that this intro-
duces one error in Cout and three errors in Sum, as shown in
Table I. The corresponding simplified schematic is shown in
Fig. 4.

5) Approximation 4: A close observation of the FA truth
table shows that Cout = A for six out of eight cases. Similarly,
Cout = B for six out of eight cases. Since A and B are
interchangeable, we consider Cout = A. Thus, we propose
a fourth approximation where we just use an inverter with
input A to calculate Cout and Sum is calculated similar to
approximation 1. This introduces two errors in Cout and
three errors in Sum, as shown in Table I. The corresponding
simplified schematic is shown in Fig. 5.

In all these approximations, Cout is calculated by using an
inverter with Cout as input.

6) Approximation 5: In approximation 4, we find that there
are three errors in Sum. We extend this approximation by
allowing one more error, i.e., four errors in Sum. We use the
approximation Cout = A, as in approximation 4. If we want to
make Sum independent of Cin, we have two choices, Sum= A

and Sum= B. Thus, we have two alternatives for approxima-

tion 5, namely, Sum= A, Cout = A and Sum= B, Cout = A,
which are shown in Table II. The table shows which entries
match with and differ from the corresponding accurate outputs
(shown by tick marks and crosses). If we observe choice 1,
we find that both Sum and Cout match with accurate outputs in
only two out of eight cases. In choice 2, Sum and Cout match
with accurate outputs in four out of eight cases. Therefore,
to minimize errors both in Sum and Cout, we go for choice
2 as approximation 5. Our main thrust here is to ensure that
for a particular input combination (A, B and Cin), ensuring
correctness in Sum also makes Cout correct. Now consider the
addition of two 20-b integers a[19 : 0] and b[19 : 0] using
an RCA. Suppose we use approximate FAs for 7 LSBs. Then,
Cin[7] = Cout[6]. Note that Cout[6] is approximate. Applying
this approximation to our present example, we find that carry
propagation from bit 0 to bit 6 is entirely eliminated. In
addition, the circuitry needed to calculate Cout[0] to Cout[5]
is also saved. To limit the output capacitance at Sum and Cout

nodes, we implement approximation 5: Sum= B, Cout = A

using buffers.
Layouts of conventional MA and different approximations

in IBM 90-nm technology are shown in Fig. 6. Layout area
for the conventional MA and different approximations are
compared in Table III. Approximation 5 uses only buffers.
The layout area of a single buffer is 6.77 μm2.

B. Voltage Scaling Using Approximate Adders

Let us discuss how the proposed approximations also help
in reducing the overall propagation delay in a typical design
involving several adder levels. The input capacitance of Cin

in a conventional MA consists of six gate capacitances (see
Fig. 1). In approximation 1, this value is reduced to five gate



128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

TABLE II

Choosing Approximation 5

Choice 1 Choice 2
Sum= A Cout = A Sum= B Cout = A

0 ✓ 0 ✓ 0 ✓ 0 ✓
0 × 0 ✓ 0 × 0 ✓
0 × 0 ✓ 1 ✓ 0 ✓
0 ✓ 0 × 1 × 0 ×
1 ✓ 1 × 0 × 1 ×
1 × 1 ✓ 0 ✓ 1 ✓
1 × 1 ✓ 1 × 1 ✓
1 ✓ 1 ✓ 1 ✓ 1 ✓

TABLE III

Layout Area of Approximate MA Cells

MA Cell Area (μm2)
Conventional 40.66
Approximation 1 29.31
Approximation 2 25.5
Approximation 3 22.56
Approximation 4 23.91

Fig. 7. Adder tree section.

capacitances. Approximation 4 has three such gate capaci-
tances, which further reduces to only two gate capacitances
in approximations 2 and 3. This results in faster charg-
ing/discharging of Cout nodes during carry propagation. Now
consider a section of a multilevel adder tree using RCAs as
shown in Fig. 7. The Sum bits of outputs e and f become input
bits A and B for output g. A reduction in input capacitances at
nodes A and B of adder level m results in a faster computation
of LSB Sum bits of adder level m−1. This decreases the total
critical path of the adder tree. The input capacitance at node
A consists of eight gate capacitances in the conventional case.
This is reduced to four gate capacitances in approximations 1,
2, and 4, and only two gate capacitances in approximation 3.
Similarly, the corresponding values for node B are 8, 5, 4, 3,
and 2 gate capacitances for the following cases: conventional,
approximations 1–4, respectively. Thus, a reduction in load
capacitances is the crux of the proposed approximations,
offering an appreciable reduction in propagation delay and
providing an opportunity for operating at a lower supply
voltage than the conventional case.

Since the proposed approximate FA cells have fewer tran-
sistors, this also results in area savings. Approximation 5
provides maximum area savings among all approximations.
In Section III, we use the approximate FA cells to design
architectures for image and video compression and highlight
the potential benefits.

III. Image and Video Compression Using

Approximate Arithmetic Units

In Section II, several approximate FA cells were introduced.
Using these approximate FA cells also introduces errors in the
truth table of an FA. When approximate FA cells are used
to design multi-bit adders, the outputs of these adders will
be erroneous. Multimedia DSP algorithms mostly consist of
additions and multiplications. Multiplications can be treated as
shifts and adds. Therefore, adders can be considered as basic
building blocks for these algorithms. Interestingly, most DSP
algorithms used in multimedia systems are characterized by
inherent error tolerance. Hence, occasional errors in interme-
diate outputs might not manifest as a substantial reduction in
the final output quality. We focus on two algorithms, namely,
image and video compression, and present the results of
using our approximate FA cells in these algorithms. We use
approximate FA cells only in the LSBs, thus ensuring that the
final output quality does not degrade too much.

A. Image Compression

The DCT and inverse discrete cosine transform (IDCT) are
integral components of a Joint Photographic Experts Group
(JPEG) image compression system [25]. One-dimensional
integer DCT y(k) for an eight-point sequence x(i) is given
by [26]

y(k) =
7∑

i=0

a(k, i)x(i), k = 0, 1, . . . , 7. (1)

Here, a(k, i) are cosine functions converted into equivalent
integers [8]. The integer outputs y(k) can then be right shifted
to get the actual DCT outputs. A similar expression can
be found for 1-D integer IDCT [9]. We alter the integer
coefficients a(k, i), k = 1, . . . , 7 so that the multiplication
a(k, i)x(i) is converted to two left shifts and an addition (using
an RCA). Since a(0, i) corresponds to the dc coefficient, which
is most important, we leave it unaltered. The multiplication
a(0, i)x(i) then corresponds to an addition of four terms. This
is done using a carry-save tree using a 4:2 compressor followed
by an RCA. Also, each integer DCT and IDCT output is the
sum of eight terms. Thus, these outputs are calculated using a
carry-save tree using an 8:2 compressor followed by an RCA.
Thus, the whole DCT–IDCT system now consists of RCAs and
CSAs. In our design, all RCAs and CSAs are approximate,
which use the approximate FA cells proposed earlier.

We consider three cases, where we use approximate FA cells
for 7–9 LSBs. FA cells corresponding to other bits in each case
are accurate. According to our experiments, using approximate
FA cells beyond the ninth LSB results in an appreciable quality
loss. So we consider only these three cases. In order to see
how truncation fares, we also show results where we truncate
7–9 LSBs instead of computing them approximately. The
design using accurate adders everywhere in DCT and IDCT
is considered to be the base case.

1) Output Quality: We measure the output quality of the
decoded image after IDCT using the well-known metric of
peak signal-to-noise ratio (PSNR). The output PSNR for the
base case is 31.16 dB. Fig. 8 shows the output images for the



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 129

Fig. 8. Output quality when 8 LSBs are approximated.

Fig. 9. Output quality for different techniques.

base case, truncation, and approximation 5. We can see severe
blockiness in the output images using truncation. This suggests
that truncation is a bad idea when more LSBs are approximate.
Fig. 9 shows the output quality for truncation and different
approximations when 7–9 LSBs are approximated. Truncation
leads to an appreciable decrease in PSNR for all cases. On
the other hand, using approximate FAs in the LSBs can make
up for the lost quality to a large extent, and also provide
substantial power savings. Power consumption for different
approximations is discussed in Section III-A2.

2) Power Consumption: As mentioned in Section II-B,
both DCT and IDCT blocks can be operated at a lower supply
voltage (compared to the base case) when using approximate
adders. Table IV shows the operating supply voltages for dif-
ferent approximations and truncation in IBM 90-nm technol-
ogy. The power consumption for DCT and IDCT blocks was
determined using nanosim [27] run with 12 288 vectors from
the standard image Lena in IBM 90-nm technology. Fig. 10
shows the total power savings for DCT and IDCT blocks
over the base case for different approximations and truncation.
Approximation 5 provides maximum power savings among all
approximations. It is interesting to note that it provides ≈ 60%
power savings when 9 LSBs are approximated, with a PSNR
of 25.46 dB. In the same scenario, truncation provides ≈ 61%
power savings, but the output quality is severely degraded with
a PSNR of 13.87 dB.

B. Video Compression

In this section, we illustrate the application of proposed
approximate adders in video compression, which is widely

Fig. 10. Power savings for DCT + IDCT over the base case.

TABLE IV

Operating Voltages for Different Techniques

Technique VDD (V) for the Three Cases
7 LSBs 8 LSBs 9 LSBs

DCT IDCT DCT IDCT DCT IDCT
Truncation 1.13 1.03 1.10 1.03 1.1 1
Approximation 1 1.18 1.05 1.15 1.03 1.15 1.03
Approximation 2 1.18 1.05 1.15 1.05 1.13 1.05
Approximation 3 1.18 1.05 1.1 1.03 1.1 1.03
Approximation 4 1.15 1.1 1.13 1.1 1.1 1.1
Approximation 5 1.14 1.02 1.11 1.01 1.1 1

Fig. 11. MPEG encoder architecture.

used in portable mobile devices. Fig. 11 shows the block
diagram of MPEG encoder architecture [28].

Here, we focus on motion estimation (ME) [6] hardware that
accounts for nearly 70% of the total power consumption [28].
In addition to the ME block, we have implemented a few
other adders/subtractors using approximate adders that are
shown in white (ME, subtractor for DCT error, and IDCT
reconstruction adder) in Fig. 11. The basic building block
for any ME algorithm is the hardware that implements sum
of absolute difference (SAD) [28]. We have implemented
the basic SAD architecture that consists of an 8-b absolute
difference block followed by a 16-b accumulator. We have
used various approximate adders discussed earlier to design
a low-power approximate SAD and compared its quality and
power to the nominal design as well as truncation.



130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 12. Output quality for Akiyo sequence.

Fig. 13. Power savings over accurate adders for video compression.

1) Output Quality: Fig. 12 shows the average frame
PSNR for 50 frames of the Akiyo benchmark CIF [28] video
sequence. We consider the frame quality for truncation as well
as the five approximations applied to 1–4 LSBs of the adders in
SAD and MPEG hardware shown in white (ME, subtractor for
DCT error, and IDCT reconstruction adder) in Fig. 11. With
the increase in number of LSBs implemented as imprecise
adders, our proposed approximations scale more gracefully in
terms of quality when compared to truncation.

2) Power Consumption: Fig. 13 shows the power savings
for approximate adders. Again, approximation 5 provides max-
imum power savings (≈42% when 4 LSBs are approximated)
among all approximations. As mentioned earlier, truncation
results in better power savings compared to all approximations.
However, it also results in significant degradation in output
frame quality.

IV. Power and Error Models for Approximate

Adders

In this section, we derive mathematical models for mean
error and power consumption of approximate adders.

A. Modeling Error in Approximate Adders

Let us denote the signal probabilities P(A[x] = 1) and
P(B[x] = 1) by ax and bx, respectively. Here x is the bit

position (starting from 0). Let the accurate signal probabilities
P(Sum[x] = 1) and P(Cin[x] = 1) be denoted by sx and cx,
respectively. Similarly, let the approximate signal probabilities
P(Sum′[x] = 1)2 and P(C′

in[x] = 1) be denoted by s′
x and c′

x,
respectively. Without loss of generality, let us assume the input
bit probabilities ax = 0.5 and bx = 0.5. We calculate the signal
probabilities sx, cx, s′

x, and c′
x for both conventional FA and

approximate FA cells using the ideas mentioned in [29].
1) Conventional FA: For the accurate FA, Sum= ABCin +

ĀB̄Cin + ĀBC̄in + AB̄C̄in, Cout = AB + ĀBCin + AB̄Cin. This
gives us the following expressions for sx and cx+1:

sx = axbxcx + (1 − ax)(1 − bx)cx

+ (1 − ax)bx(1 − cx) + ax(1 − bx)(1 − cx)

= ax + bx + cx − 2axbx − 2axcx − 2bxcx + 4axbxcx

= 0.5

cx+1 = axbx + (1 − ax)bxcx + (1 − bx)axcx

= axbx + bxcx + axcx − 2axbxcx

= (2cx + 1)/4.

Clearly, c0 = 0. Thus, using the recursive relationship for cx+1

in the above equation, cx = 0.5−2−(x+1), x = 1, 2, . . . . Similar
to the accurate case, Sum and Cout expressions for all approx-
imations can be calculated using Tables I and II. This leads
to explicit expressions for s′

x and c′
x for all approximations,

which are shown next.
2) Approximation 1: Sum′ = ĀB̄C′

in + ABC′
in, C′

out =
ABC′

in + ABC′
in + AB̄C′

in + ĀBC′
in + ĀBC′

in

s′
0 = 0, c′

x =
2

3
− 1

3.22x−1
, s′

x =
1

3
− 1

3.22x
, x = 1, 2, . . . .

3) Approximation 2: C′
out = AB + ĀBC′

in +AB̄C′
in, Sum′ =

C′
out

s′
0 =

3

4
, c′

x =
1

2
− 1

2x+1
, s′

x =
1

2
+

1

2x+2
, x = 1, 2, . . . .

4) Approximation 3: C′
out = ABC′

in + ABC′
in + AB̄C′

in +
ĀBC′

in + ĀBC′
in, Sum′ = C′

out

s′
0 =

1

2
, c′

x =
2

3
− 1

3.22x−1
, s′

x =
1

3
+

1

3.22x+1
, x = 1, 2, . . . .

5) Approximation 4: Sum′ = ĀB̄C′
in + ĀBC′

in +
ABC′

in, C′
out = A

s′
0 = 0, c′

x =
1

2
, s′

x =
3

8
, x = 1, 2, . . . .

6) Approximation 5: Sum′ = B, C′
out = A

s′
0 =

1

2
, c′

x =
1

2
, s′

x =
1

2
, x = 1, 2, . . . .

Suppose y LSBs are approximate in an RCA.3 Then the
error ε in approximate addition is given by

ε = (Sum′[0] − Sum[0]) + 2(Sum′[1] − Sum[1])

+ . . . + 2y−1(Sum′[y − 1] − Sum[y − 1])

+ 2y(C′
in[y] − Cin[y])

= e[0] + 2e[1] + . . . + 2y−1e[y − 1] + 2ye[y]. (2)

2We denote the approximate version of a variable V by V ′.
3RCA is used for ease of illustration. Similar derivations can done for CSAs.



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 131

Fig. 14. Mean error in approximate addition.

Fig. 15. Error variance in approximate addition.

Thus, the mean error μ can be written as

μ(y) = E(ε)

=
y∑

x=0

2xE(e[x]) (3)

where E(·) denotes the expectation.
Thus, μ(y) denotes the mean of the probability distribution

of error in approximate addition (over an exhaustive set of
inputs). The mean error for different approximations as a
function of y is plotted in Fig. 14. A detailed derivation for all
approximations is provided in the Appendix. We also compare
the mean error for the proposed approximations with trunca-
tion, another well-known approximation technique. From the
plot, it is clear that the proposed approximations are better than
truncation in terms of mean error. Approximation 1 is the best
(having an mean error of zero), while Approximation 4 is the
worst. We also plot the variance of error for different approx-
imations and truncation in Fig. 15. Again, Approximation 1
has the least variance. Truncation has larger variance than all
approximations. This completely characterizes the probability
distribution of error for the proposed approximations.

B. Modeling Power Consumption of Approximate Adders

Now we derive simple mathematical models for estimating
the power consumption of an approximate RCA. Let Cgn and

TABLE V

Capacitances for Different Approximations

Approximation Technique Node A Node B Node Cin

Approximation 1 12 15 13
Approximation 2 12 12 8
Approximation 3 8 11 8
Approximation 4 12 8 9
Approximation 5 4 8 0

Cgp be the gate capacitance of a minimum size nMOS and
pMOS transistor, respectively. Similarly, let Cdn and Cdp be
the drain diffusion capacitances respectively. If the pMOS
transistor has three times the width of the nMOS transistor,
then Cgp ≈ 3Cgn and Cdp ≈ 3Cdn. Let us also assume
that Cdn ≈ Cgn. In a multilevel adder tree, the Sum bits
of intermediate outputs become the input bits A and B for
the subsequent adder level. The output capacitance at each
Sum node is Cdn + Cdp. The schematic of the conventional
MA in Fig. 1 can be used to calculate the input capacitances
at nodes A, B and Cin. Thus, the total capacitance at node
A can be written as (Cdn + Cdp) + 4(Cgn + Cgp) ≈ 20Cgn.
Similarly, the total capacitance at node B is (Cdn + Cdp) +
4(Cgn + Cgp) ≈ 20Cgn, while the capacitance at node Cin

is (Cdn + Cdp) + 3(Cgn + Cgp) ≈ 16Cgn. Continuing this
way, the total capacitances at nodes A, B and Cin for all
approximations can be calculated using their transistor-level
schematics. Table V shows these values (normalized with
respect to Cgn). Note that Cin[1], Cin[2], . . . , Cin[y − 1] are
not calculated in approximation 5 (if y bits are approximate).
Hence, the capacitance at node Cin for approximation 5 is zero.
Henceforth, we will use normalized capacitances for all our
subsequent discussions.

In the adder tree shown in Fig. 7, the inputs a, c, and e

correspond to the input “A,” while the inputs b, d, and f

correspond to the input “B” in an RCA. Let Capp and Cacc

be the capacitances at node Cin for an approximate FA and
accurate FA, respectively. Similarly, we define Sapp and Sacc

to be the capacitances at Sum node. Sapp and Sacc are defined
as mean of the capacitances at corresponding nodes A and B.
For example, Sacc = 20, while Sapp = 13.5 for approximation
1. Consider y bits to be approximate in an RCA of bit width
N. Then the total capacitance Csw that is switched due to bits
Sum and Cin is given by

Csw = (y − 1)Capp + ySapp + (N − y)(Cacc + Sacc). (4)

Next, we need to determine the scaled voltage that can be
applied due to the approximation. Let the slack available due
to approximation be p per bit. Since VDD ∝ 1/delay, the scaled
voltage VDDapp is given by

VDDapp = VDD

(
1 − yp

Tc

)
. (5)

Here, VDD is the nominal voltage (accurate case), Tc = 1/fc is
the clock period, and fc is the operating frequency. The pa-
rameter p can be estimated by simulating an N-b approximate
RCA for different values of y, and using the above equation for
fitting. The critical path in an adder tree is primarily dominated



132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 16. Comparison with partial products approach.

by the carry chain of the last adder. Hence, the same value of
p can be used for determining the scaled voltage as a function
of y in an adder tree. Using the above equations, a first order
estimate Papp for the power consumption of an approximate
RCA can be written as Papp = (1/2)CswV 2

DDappfc, which is a
function of y.

C. Comparison With Approximate Multipliers

Approximate multipliers based on Karnaugh map simpli-
fication have been proposed in [13]. There the errors are
introduced via partial products. We constructed an 8 × 8
multiplier using our approximate FA cells. The accumulation
of partial products (accurate) was done using a carry-save
tree using an 8:2 compressor (approximate) followed by an
RCA (approximate). We considered five cases, where 5–9
LSBs were kept approximate. The power consumption was
calculated by running exhaustive nanosim simulations for both
accurate and approximate 8 × 8 multipliers. The mean errors
for the respective cases were obtained using MATLAB. The
error-power tradeoff for the proposed approximate multiplier
was compared with the data in [13]. Fig. 16 shows the
results, where we plot percentage power reduction versus mean
error. We find that approximation 4 performs better than the
partial product approach for larger mean errors. Also, the
partial product approach reaches the saturation point faster
than approximations 4 and 5.

V. Quality Constrained Synthesis of DSP Systems

In this section, we consider synthesis of common DSP
blocks using the proposed approximate adders. The outputs
of most DSP blocks can be expressed as linear chains of
adders, i.e., consisting of shifts and additions only. Since the
final output in most DSP applications is resilient to errors
in intermediate blocks, such blocks can be synthesized using
approximate adders. The DCT block used in image compres-
sion is a good example. In DCT, all outputs do not contribute
equally to the quality of the image obtained after decoding.
Since the human eye is more sensitive to low frequencies,
low-frequency terms in DCT outputs are more significant
compared to high-frequency terms. Therefore, high-frequency
terms can tolerate errors of greater magnitude compared to
low-frequency terms.

There is a notion of “significance” in most DSP blocks,
where some outputs are more significant compared to oth-
ers [7], [8], [30]. This implies that the outputs that are less
significant can use adders with more approximate LSBs, as
compared to those which are more significant. This leads us
to a design problem where it is required to find out how many
bits to approximate for the calculation of each output. The
goal of the design problem is to minimize the total power
dissipation, while meeting an error/quality constraint. In the
next section, we define a quality metric that takes into account
the significance of different outputs.

A. Quantifying Error in Approximate Outputs of a DSP Block

Based on the discussion in previous paragraphs, we formu-
late a quality metric for the outputs of a DSP block using ap-
proximate adders. Suppose a DSP block has n outputs. Let the
errors in the outputs be ε1(y0), ε1(y1), ε2(y2), . . . , εn−1(yn−1).
Here, y0, y1, . . . , yn−1 are the number of approximate LSBs
in the calculation of the respective outputs. We assign a
significance factor λi, i = 0, 1, . . . , (n − 1) for each output,
depending on its contribution to the final output quality of the
DSP application. We define our quality metric Q as follows:

Q =
n−1∑

i=0

λiE[εi(yi)]. (6)

Thus, Q is defined as the sum of mean errors weighted by
their significance factor. Here we assume that each output is
expressed only using shifts and additions, which can be done
in most cases (multiplication can be converted to shifts and ad-
ditions). Therefore, if ai is the number of approximate adders
used to calculate the ith output, then E[εi(yi)] =

∑ai

j=1 βjμ(yi).
Here, μ(yi) is the mean error in each approximate addition
(discussed in Section IV-A), and the coefficients βj depend on
the values of intermediate shifts. As derived in Section IV-B,
the power consumption Pi for each output is also a function
of yi, and can be approximately written as Pi ≈ aiPapp, where
Papp is the power consumption of a single approximate RCA.
The design problem can then be stated as follows:

minimize
n−1∑

i=0

Pi(yi)

subject to Qmin ≤ Q(y0, y1, . . . , yn−1) ≤ Qmax.

We illustrate the solution to this design problem with the
help of two examples, DCT and low-pass FIR filter, which are
described in the next section. We target these blocks owing to
their extensive use in several applications in the DSP domain.
For example, DCT is widely used in image compression, video
compression, face recognition, and digital watermarking. FIR
filters are used in hearing aids, digital video broadcast, digital
video effects, and digital wireless communications.

B. Design Examples

As discussed in Section IV-B, the scaled supply voltage
depends on the number of approximate LSBs. Since using
a large number of different supply voltages is not feasible
in a design, we allow a maximum of three different supply
voltages.



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 133

TABLE VI

Cosine Coefficients for DCT

Coefficient Value Implementation
a 64 1 << 6
b 60 (1 << 6) − (1 << 2)
c 56 (1 << 6) − (1 << 3)
d 45 1 + (1 << 2) + (1 << 3) + (1 << 5)
e 36 (1 << 2) + (1 << 5)
f 24 (1 << 3) + (1 << 4)
g 12 (1 << 2) + (1 << 3)

1) DCT: Here we consider DCT in the context of JPEG
image compression. Two-dimensional DCT of an 8 × 8 input
block X is given by Z = C(CX)T , where C is the coefficient
matrix consisting of cosine terms [31]. As it is clear from
the expression for Z, 2-D DCT can be broken down into two
1-D DCT operations. One-dimensional DCT outputs wi, i =
0, 1, . . . , 7 are given by

w0 = dx0 + dx1 + dx2 + dx3 + dx4 + dx5 + dx6 + dx7

w1 = ax0 + cx1 + ex2 + gx3 − gx4 − ex5 − cx6 − ax7

w2 = bx0 + fx1 − fx2 − bx3 − bx4 − fx5 + fx6 + bx7

w3 = cx0 − gx1 − ax2 − ex3 + ex4 + ax5 + gx6 − cx7

w4 = dx0 − dx1 − dx2 + dx3 + dx4 − dx5 − dx6 + dx7

w5 = ex0 − ax1 + gx2 + cx3 − cx4 − gx5 + ax6 − ex7

w6 = fx0 − bx1 + bx2 − fx3 − fx4 + bx5 − bx6 + fx7

w7 = gx0 − ex1 + cx2 − ax3 + ax4 − cx5 + ex6 − gx7.

The 8-b cosine coefficients are shown in Table VI.
In JPEG compression, quantization of 2-D DCT outputs is

done before encoding them. This process accounts for the
fact that the human visual system is more sensitive to low
frequencies. The quantization process for a DCT coefficient
involves division by an integer followed by rounding. These
integer divisors are specified in a standard JPEG quantization
table [32]. Each 1-D DCT output has an mean error E(εi), i =
0, 1, . . . , 7. These errors are propagated to the 2-D DCT
outputs. The significance factor λi for each 1-D DCT output is
determined as follows. The mean errors E(εi) are propagated
to 2-D DCT outputs and an error matrix is generated. The
components of this error matrix are weighted by the reciprocal
of integer divisors in the quantization table and the mean error
for the whole DCT output matrix is calculated. The mean error
expression is a linear sum of the mean errors E(εi) multiplied
by certain coefficients, which are used as significance factors
in the expression for Q.

From the implementation given in Table VI, the outputs
w0 and w4 require 31 adders in total; w2 and w6 require
15 adders, while outputs w1, w3, w5, and w7 require 13
adders. Since we allow three different supply voltages, w0

and w4 have l1 approximate LSBs, w1, w3, w5, and w7 have
l2 approximate LSBs, while w2 and w6 have l3 approximate
LSBs. The allowable range for l1, l2, and l3 is fixed to be
2 ≤ li ≤ 10, i = 1, 2, 3. These ranges can be decided based on
their effects on the final output image quality obtained after
decoding. Thus, Q is a function of l1, l2, and l3. Similarly, the

Fig. 17. Comparison between analytical optimization and exhaustive search.

Fig. 18. Output quality for −6 ≤ Q ≤ 0.

total power consumption is also a function of l1, l2, and l3 (Sec-
tion V-A). Thus, the design problem mentioned in Section V-A
can be solved to yield the optimum values of l1, l2, and l3 that
yield minimum power dissipation subject to a constraint on Q.
This problem has been solved using MATLAB. The results for
different approximations are shown next.

The output quality of the decoded image after IDCT is mea-
sured in terms of PSNR. The PSNR for the nominal case using
accurate RCAs is 31.16 dB. The percentage power savings is
calculated between the case using approximate RCAs and the
nominal case using accurate RCAs. In order to test the efficacy
of the power model introduced in Section IV-B, we obtain
the simulated power dissipation for all triplets l1, l2, and l3
satisfying a particular constraint on Q. This is done by running
nanosim on 12 288 vectors from the standard image Lena in
IBM 90-nm technology. The operating frequency is set to
333.33 MHz. The triplet that gives the minimum power is then
determined using exhaustive search. Another optimum triplet
[l1, l2, l3] (see Table VII) is obtained by solving the design
problem using the power model. Power savings is calculated
using both approaches and compared. The results are shown in
Table VII. Clearly, the power savings obtained from analytical
optimization using the power model agree closely with that
obtained by exhaustive search for most cases. These trends
are also shown in Fig. 17 for the five constraints on Q.

Fig. 18 shows the output images for the constraint −6 ≤
Q ≤ 0. Truncation provides more power savings (65.9%)
compared to approximation 4 (62.9%) for the same constraint.
However, truncation results in blocky output images with
PSNR loss of 7.24 dB compared to approximation 4, as is
clear from Fig. 18.

The mean error due to approximation 1 is zero, while
that due to approximation 5 is 0.5 (see the Appendix). Thus,



134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

TABLE VII

Quality and Power Results for DCT

Approximation Technique Range of Q Optimum [l1, l2, l3] PSNR (dB) Power Savings (%)
− Power Model

Power Savings
(%) − Exhaustive
Search

Approximation 1 0 [10, 10, 10] 25.94 57.08 57.08

[0.09, 0.1] [2, 3, 2] 31.34 40.48 40.48

[0.09, 0.2] [5, 5, 4] 31.30 47.72 50.85

Approximation 2 [0.09, 0.3] [6, 10, 5] 29.13 58.58 59.93

[0.09, 0.4] [10, 10, 8] 20.89 65.71 66.18

[0.09, 0.5] [5, 5, 4] 20.73 67.45 67.45

[0.126, 0.13] [2, 2, 2] 31.33 38.35 38.35

[0.126, 0.14] [2, 10, 2] 28.09 51.64 51.64

Approximation 3 [0.126, 0.15] [2, 10, 10] 27.20 59.11 59.11

[0.126, 0.16] [10, 10, 2] 19.56 60.57 60.57

[0.126, 0.17] [10, 10, 10] 19.2 68.04 68.04

[−2, 0] [7, 6, 6] 30.78 53.05 54.71
Approximation 4 [−4, 0] [8, 7, 7] 29.74 60.52 60.52

[−6, 0] [8, 8, 8] 29.30 62.9 62.9

[−8, 0] [9, 8, 8] 26.94 63.85 64.05

[-10, 0] [9, 9, 8] 26.12 64.99 64.99

Approximation 5 0.021 [10, 10, 10] 25.30 69.32 69.32

[−2, 0] [7, 6, 6] 27.29 60.81 61.87
[−4, 0] [8, 7, 7] 22.21 64.58 64.58

Truncation [-6, 0] [8, 8, 8] 22.06 65.9 65.9

[-8, 0] [9, 8, 8] 16.61 66.58 66.84
[-10, 0] [9, 9, 8] 16.36 67.53 67.53

Fig. 19. Output quality for l1 = 10, l2 = 10, and l3 = 10.

Q = 0 for approximation 1 and Q = 0.021 for approximation
5. Since Q is not a function of l1, l2, and l3 for these
approximations, we set them to their maximum allowed values,
i.e., l1 = 10, l2 = 10, l3 = 10. This provides maximum power
savings for approximations 1 and 5. The output images for
these approximations are shown in Fig. 19. Approximation 5
provides maximum power savings of 69.32% with satisfactory
output image quality. In general, approximation 4 is the
right choice when Q is negative. For positive values of Q,
the suitable choices are approximation 1, approximation 5,
approximation 3, and approximation 2, in that order. This is
in accordance with the trends of mean error μ(y) for large
values of y (see the Appendix).

2) FIR Filter: We consider a 25 tap low-pass equirip-
ple FIR filter with the following specifications: Fs =
48 000 Hz, Fpass = 10 000 Hz, Fstop = 12 000 Hz. The
coefficients of this filter c0, . . . , c24 were obtained using the
MATLAB FDA tool. We consider the implementation of
the filter in transposed form [30], where the coefficients are
synthesized in the multiplier block. The 25 coefficients are
converted to their equivalent 16-b fixed point representations.
The FIR filter input x is also assumed to be 16 b. According to
the terminology mentioned in Section V-A, n = 25 in this case.

TABLE VIII

Sorted Coefficients for FIR Filter

Coefficient Absolute Value Fixed Point

c1 0.0017219515241194 0000000000111000

c3 0.0116238118940803 0000000101111100

c5 0.0231495073798233 0000001011110110

c2 0.0238666379355453 0000001100001110

c4 0.0277034324942943 0000001110001011

c6 0.0347323795277931 0000010001110010

c0 0.0369760641356146 0000010010111011

c8 0.0371467378315251 0000010011000001

c10 0.0415921203506734 0000010101010010

c7 0.0479147131729558 0000011000100010

c9 0.0946865327578015 0000110000011110

c11 0.3155493020793390 0010100001100011

c12 0.4591823044074993 0011101011000110

The significance factors λi, i = 0, 1, . . . , 24 are determined
by the process mentioned in [30]. Each filter coefficient is
set to zero one at a time, and the filter response (maximum
pass-band and stop-band ripple) is calculated using the new
set of coefficients. It is observed that the degradation in filter
response follows the magnitude of the coefficients. The greater
the magnitude, the more the degradation in maximum pass-
band and stop-band ripple when that coefficient is set to zero.
Based on this sensitivity analysis, the coefficients arranged in
ascending order of magnitude are shown in Table VIII.

This is also the order of contribution of the coefficients
to the filter output quality. Therefore, the significance factors
λi, i = 0, 1, . . . , 24 are set to the absolute value of the
coefficients. Since the filter is symmetric, only coefficients c0

to c12 need to be synthesized. Since we allow three supply
voltages, we divide the 13 coefficients into three sets. The
first five coefficients in Table VIII form the first set, the next
four the second set, while the last four form the third set. The



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 135

TABLE IX

Quality and Power Results for FIR Filter

Approximation Technique Range of Q Optimum [l1, l2, l3] � MPBR (%) � MSBR (%) Power Savings (%)
− Power Model

Power Savings
(%) − Exhaustive
Search

Approximation 1 0 [10, 10, 10] 2.08 1.48 51.97 51.97

[3.3, 6.6] [10, 9, 3] 6.01 9.31 37.22 38.34

[3.3, 9.2] [10, 10, 4] 6.08 12.8 40.13 40.13

Approximation 2 [3.3, 11.8] [10, 10, 6] 5.93 12.7 44.76 44.76

[3.3, 14.4] [10, 10, 8] 7.28 12.53 47.88 47.88

[3.3, 17] [10, 10, 10] 13.43 12.2 50.85 50.86

[4.9, 5.3] [10, 10, 2] 9.69 18.27 37.5 37.5

[4.9, 5.6] [10, 10, 2] 9.69 18.27 37.5 37.5

Approximation 3 [4.9, 5.9] [10, 10, 3] 9.66 18.27 42.95 42.95

[4.9, 6.2] [10, 10, 4] 9.57 18.26 41.65 42.95

[4.9, 6.5] [10, 10, 10] 17.93 18.18 55.14 55.14

[−200, 0] [10, 9, 7] 1.35 1.77 41.00 41.90

[-350, 0] [10, 10, 8] 2.23 3.19 44.55 44.55

Approximation 4 [−500, 0] [10, 10, 9] 2.73 3.11 47.73 47.73

[−650, 0] [10, 10, 9] 2.73 3.11 47.73 47.73

[−800, 0] [10, 10, 10] 1.99 1.82 47.07 47.73

Approximation 5 3.24 [10, 10, 10] 0.27 1.92 61.77 61.77

[−200, 0] [7, 6, 4] 1.03 1.5 32.31 35.66

[−350, 0] [8, 6, 5] 2.69 2.08 38.08 42.08

Truncation [−500, 0] [9, 7, 5] 6.00 4.55 44.49 46.06

[−650, 0] [9, 7, 6] 6.21 4.53 46.21 48.26
[−800, 0] [9, 8, 6] 6.38 6.28 49.09 50.67

coefficients are synthesized using the shift-and-add approach
based on their fixed-point representations.

The number of approximate LSBs for the three sets are
assumed to be l1, l2, and l3, respectively. The allowable range
of l1, l2, and l3 is kept same as in the DCT example, i.e.,
2 ≤ li ≤ 10, i = 1, 2, 3. The design problem mentioned in
Section V-A is solved to obtain the optimum values of l1,
l2, and l3. In the FIR filter, the outputs c0x, c1x, . . . , c12x

depend on the input x. When we use approximate adders in
synthesis, we calculate the equivalent approximate coefficients
c′

0, c
′
1, . . . , c′

12. We calculate the respective approximate out-
puts for a particular input x and then divide by x to calculate
one instance of approximate coefficients. This process is
repeated for 1000 random inputs and the mean is taken to cal-
culate the equivalent approximate coefficients. The pass-band
and stop-band ripples are calculated for the FIR filter using the
equivalent approximate coefficients. The output quality is thus
measured as the percentage change in pass-band and stop-band
ripples compared to the case using original coefficients.

The results are shown in Table IX. The operating frequency
is set to 300 MHz. �MPBR and �MSBR denote the percent-
age changes in maximum pass-band and stop-band ripples. As
the range of Q increases on the negative side, the percentage
change in maximum pass-band and stop-band ripples increases
for truncation. Thus, approximation 4 is better than truncation
for such cases. Approximation 5 provides maximum power
savings of 61.77% among all approximations with minimum
percentage change in maximum pass-band ripple. Approxima-
tion 1 has the least percentage change in maximum stop-band
ripple. As discussed in the DCT case, approximation 1 is best
for Q = 0. For increasing positive values of Q, the suitable
choices are approximation 5, approximation 3, and approxima-
tion 2, in that order. This trend is same as in the DCT example.

VI. Conclusion

In this paper, we proposed several imprecise or approximate
adders that can be effectively utilized to trade off power and
quality for error-resilient DSP systems. Our approach aimed
to simplify the complexity of a conventional MA cell by
reducing the number of transistors and also the load capac-
itances. When the errors introduced by these approximations
were reflected at a high level in a typical DSP algorithm,
the impact on output quality was very little. Note that our
approach differed from previous approaches where errors were
introduced due to VOS [3]–[10]. A decrease in the number of
series connected transistors helped in reducing the effective
switched capacitance and achieving voltage scaling. We also
derived simplified mathematical models for error and power
consumption of an approximate RCA using the approximate
FA cells. Using these models, we discussed how to apply these
approximations to achieve maximum power savings subject to
a given quality constraint. This procedure has been illustrated
for two examples, DCT and FIR filter. We believe that the
proposed approximate adders can be used on top of already
existing low-power techniques like SDC and ANT to extract
multifold benefits with a very minimal loss in output quality.

Appendix

Derivation of Mean Error for an Approximate RCA

As mentioned in Section IV-A, the expression for mean error
is given by

μ(y) = E(ε)

=
y∑

x=0

2xE(e[x]).



136 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Clearly, e[x] ∈ {−1, 0, 1}. Thus, E(e[x]) ∀ x ∈ {0, 1, . . . , y}
can be calculated as follows:

E(e[x]) = P(e[x] = 1) − P(e[x] = −1)

= P({Sum′[x] = 1} ∩ {Sum[x] = 0})
− P({Sum′[x] = 0} ∩ P{Sum[x] = 1})
= s′

x(1 − sx) − sx(1 − s′
x)

= s′
x − sx

= s′
x − 1

2
, x ∈ {0, 1, . . . , y − 1}

E(e[y]) = P({C′
in[y] = 1} ∩ {Cin[y] = 0})

− P({C′
in[y] = 0} ∩ {Cin[y] = 1})

= c′
y − cy

= c′
y −

(
1

2
− 1

2y+1

)
.

Expressions for s′
x and c′

y were derived in Section IV-A. Thus,
the mean error for the proposed approximations and truncation
can be calculated as follows.

A. Approximation 1

μ(y) = −1

6

y−1∑

x=0

2x − 1

3

y−1∑

x=0

1

2x
+

(
1

6
− 1

3.22y−1
+

1

2y+1

)
2y

= −1

6
(2y − 1) − 2

3
(1 − 2−y) +

2y

6
− 1

3.2y−1
+

1

2
= 0.

B. Approximation 2

μ(y) =
y−1∑

x=0

1

2x+2
× 2x + 0

=
y

4
.

C. Approximation 3

μ(y) = −1

6

y−1∑

x=0

2x +
1

3

y−1∑

x=0

1

2x+1

+

(
1

6
− 1

3.22y−1
+

1

2y+1

)
2y

= −1

6
(2y − 1) +

1

3
(1 − 2−y) +

2y

6
− 1

3.2y−1
+

1

2
= 1 − 2−y.

D. Approximation 4

μ(y) = −1

2
− 1

8

y−1∑

x=1

2x +
1

2
× 2

2y+1
× 2y

=
1 − 2y−1

4
.

E. Approximation 5

μ(y) = 0 +
1

2y+1
× 2y

=
1

2
.

F. Truncation

μ(y) = −1

2

y−1∑

x=0

2x +

(
1

2
− 1

2y+1

)
2y

= 1 − 2y.

References

[1] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh,
J. Park, and D. Sheffield, “Efficient embedded computing,” Computer,
vol. 41, no. 7, pp. 27–32, Jul. 2008.

[2] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in Proc. 24th IEEE Int.
Conf. VLSI Design, Jan. 2011, pp. 346–351.

[3] R. Hegde and N. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in Proc. IEEE/ACM Int. Symp. Low Power
Electron. Design, Aug. 1999, pp. 30–35.

[4] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 9, no. 6, pp. 813–823, Jun.
2001.

[5] B. Shim, S. Sridhara, and N. Shanbhag, “Reliable low-power digital
signal processing via reduced precision redundancy,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 12, no. 5, pp. 497–510, May 2004.

[6] G. Varatkar and N. Shanbhag, “Energy-efficient motion estimation using
error-tolerance,” in Proc. IEEE/ACM Int. Symp. Low Power Electron.
Design, Oct. 2006, pp. 113–118.

[7] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven
computation: A voltage-scalable, variation-aware, quality-tuning motion
estimator,” in Proc. IEEE/ACM Int. Symp. Low Power Electron. Design,
Aug. 2009, pp. 195–200.

[8] N. Banerjee, G. Karakonstantis, and K. Roy, “Process variation tolerant
low power DCT architecture,” in Proc. Design, Automat. Test Eur., 2007,
pp. 1–6.

[9] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level DSP syn-
thesis using voltage overscaling, unequal error protection and adaptive
quality tuning,” in Proc. IEEE Workshop Signal Processing Systems,
Oct. 2009, pp. 133–138.

[10] L. N. Chakrapani, K. K. Muntimadugu, L. Avinash, J. George, and K. V.
Palem, “Highly energy and performance efficient embedded computing
through approximately correct arithmetic: A mathematical foundation
and preliminary experimental validation,” in Proc. CASES, 2008, pp.
187–196.

[11] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in Proc. Design,
Automat. Test Eur., 2008, pp. 1250–1255.

[12] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-
speed adder for error-tolerant application,” in Proc. IEEE Int. Symp.
Integr. Circuits, Dec. 2009, pp. 69–72.

[13] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electron., vol. 7, no. 4, pp.
490–501, 2011.

[14] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in Proc. Design, Automat. Test Eur., 2010, pp. 957–960.

[15] B. J. Phillips, D. R. Kelly, and B. W. Ng, “Estimating adders for a low
density parity check decoder,” Proc. SPIE, vol. 6313, p. 631302, Aug.
2006.

[16] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst. Part I, vol. 57,
no. 4, pp. 850–862, Apr. 2010.

[17] D. Shin and S. K. Gupta, “A re-design technique for datapath modules
in error tolerant applications,” in Proc. 17th Asian Test Symp., 2008, pp.
431–437.

[18] D. Kelly and B. Phillips, “Arithmetic data value speculation,” in Proc.
Asia-Pacific Comput. Syst. Architect. Conf., 2005, pp. 353–366.

[19] S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67–73, Mar. 2004.



GUPTA et al.: LOW-POWER DIGITAL SIGNAL PROCESSING 137

[20] Y. V. Ivanov and C. J. Bleakley, “Real-time h.264 video encoding in
software with fast mode decision and dynamic complexity control,” ACM
Trans. Multimedia Comput. Commun. Applicat., vol. 6, pp. 5:1–5:21,
Feb. 2010.

[21] M. Shafique, L. Bauer, and J. Henkel, “enBudget: A run-time adaptive
predictive energy-budgeting scheme for energy-aware motion estimation
in H.264/MPEG-4 AVC video encoder,” in Proc. Design, Automat. Test
Eur., Mar. 2010, pp. 1725–1730.

[22] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: Imprecise adders for low-power approximate computing,” in
Proc. IEEE/ACM Int. Symp. Low-Power Electron. Design, Aug. 2011,
pp. 409–414.

[23] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper
Saddle River, NJ: Prentice-Hall, 1996.

[24] E. Lyons, V. Ganti, R. Goldman, V. Melikyan, and H. Mahmoodi,
“Full-custom design project for digital VLSI and IC design courses
using synopsys generic 90nm CMOS library,” in Proc. IEEE Int. Conf.
Microelectron. Syst. Edu., Jul. 2009, pp. 45–48.

[25] G. Wallace, “The JPEG still picture compression standard,” IEEE Trans.
Consumer Electron., vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992.

[26] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. New York: Wiley, 1999.

[27] G. Ying. (2012). Nanosim: A Next-Generation Solution for SoC Integra-
tion Verification [Online]. Available: http://www.synopsys.com/Tools/
Verification/Pages/socintegration.aspx

[28] P. M. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures
for MPEG-4 Motion Estimation, 1st ed. Norwell, MA: Kluwer, 1999.

[29] K. Parker and E. McCluskey, “Probabilistic treatment of general combi-
national networks,” IEEE Trans. Comput., vol. C-24, no. 6, pp. 668–670,
Jun. 1975.

[30] J. Choi, N. Banerjee, and K. Roy, “Variation-aware low-power synthesis
methodology for fixed-point FIR filters,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 28, no. 1, pp. 87–97, Jan. 2009.

[31] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards: Algorithms and Architectures, 2nd ed. Norwell, MA: Kluwer,
1997.

[32] International Telecommunication Union. (1992). Information
Technology—Digital Compression and Coding of Continuous-Tone
Still Images—Requirements and Guidelines [Online]. Available:
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Vaibhav Gupta received the B.Tech. degree from
the Indian Institute of Technology Kharagpur,
Kharagpur, India, in 2008, and the M.S. degree from
Purdue University, West Lafayette, IN, in 2012, both
in electrical engineering.

His current research interests include low-power
approximate computing for communication and sig-
nal processing applications.

Mr. Gupta was a recipient of the Third Prize in
the Altera’s Innovate North America Design Contest
2010.

Debabrata Mohapatra received the B.Tech. degree
in electrical engineering from the Indian Institute of
Technology Kharagpur, Kharagpur, India, in 2005,
and the Ph.D. degree from Purdue University, West
Lafayette, IN, in April 2011.

Since 2011, he has been a Research Scientist
with the Microarchitecture Research Laboratory, In-
tel Corporation, Santa Clara, CA. His current re-
search interests include design of low-power and
process-variation-aware hardware for error-resilient
applications.

Anand Raghunathan (F’12) received the B.Tech.
degree in electrical and electronics engineering from
the Indian Institute of Technology, Madras, India, in
1992, and the M.A. and Ph.D. degrees in electrical
engineering from Princeton University, Princeton,
NJ, in 1994 and 1997, respectively.

He is currently a Professor with the School of
Electrical and Computer Engineering, Purdue Uni-
versity, West Lafayette, IN. He was a Senior Re-
search Staff Member with NEC Laboratories Amer-
ica, Princeton, where he led research projects related

to system-on-chip architectures, design methodologies, and design tools.
He was the co-author of a book entitled High-Level Power Analysis and
Optimization (A. Raghunathan, N. K. Jha, and S. Dey, Kluwer Academic,
Norwell, MA, 1998) and eight book chapters. He holds 21 U.S. patents. He
has presented several full-day and embedded conference tutorials.

Dr. Raghunathan was a recipient of the IEEE Meritorious Service Award in
2001 and the Outstanding Service Award in 2004. He was a recipient of eight
Best Paper Awards and four Best Paper Nominations at leading conferences.
He received the Patent of the Year Award (an award recognizing the invention
that has achieved the highest impact) and two Technology Commercialization
Awards from NEC. He was chosen by MIT’s Technology Review among the
TR35 (top 35 innovators under 35 years, across various disciplines of science
and technology) in 2006, for his work on “making mobile secure.” He has
been a member of the technical program and organizing committees of several
leading conferences and workshops. He was the Program and General Co-
Chair of the ACM/IEEE International Symposium on Low Power Electronics
and Design, the IEEE VLSI Test Symposium, and the IEEE International
Conference on VLSI Design. He was an Associate Editor of the IEEE
Transactions on Computer-Aided Design, the IEEE Transactions

on Very Large Scale Integration Systems, the ACM Transactions
on Design Automation of Electronic Systems, the IEEE Transactions

on Mobile Computing, the ACM Transactions on Embedded Computing
Systems, the IEEE Design and Test of Computers, and the Journal of Low
Power Electronics. He is a Golden Core Member of the IEEE Computer
Society.

Kaushik Roy (F’12) received the B.Tech. degree
in electronics and electrical communications engi-
neering from the Indian Institute of Technology
(IIT) Kharagpur, Kharagpur, India, and the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, University of Illinois at Urbana-
Champaign, Urbana, in 1990.

He was with the Semiconductor Process and De-
sign Center of Texas Instruments, Dallas, TX, where
he worked on field-programmable gate array archi-
tecture development and low-power circuit design.

He joined the Electrical and Computer Engineering Faculty at Purdue Uni-
versity, West Lafayette, IN, in 1993, where he is currently a Professor and
holds the Roscoe H. George Chair of the Electrical and Computer Engineering
Department. He has published more than 600 papers in refereed journals and
conference proceedings. He holds 15 patents. He guided 56 Ph.D. students.
He is the co-author of two books on low power CMOS VLSI design. His
current research interests include spintronics, device–circuit codesign for
nanoscale silicon and non-silicon technologies, low-power electronics for
portable computing and wireless communications, and new computing models
enabled by emerging technologies.

Dr. Roy was a recipient of the National Science Foundation Career Devel-
opment Award in 1995, the IBM Faculty Partnership Award, the ATT/Lucent
Foundation Award, the 2005 SRC Technical Excellence Award, the SRC
Inventors Award, the Purdue College of Engineering Research Excellence
Award, the Humboldt Research Award in 2010, the IEEE Circuits and Systems
Society Technical Achievement Award in 2010, the Distinguished Alumnus
Award from IIT Kharagpur, and the Best Paper Award at the 1997 International
Test Conference, the IEEE 2000 International Symposium on Quality of
IC Design, the 2003 IEEE Latin American Test Workshop, the 2003 IEEE
Nano, the 2004 IEEE International Conference on Computer Design, the
2006 IEEE/ACM International Symposium on Low Power Electronics and
Design, and the 2005 IEEE Circuits and System Society Outstanding Young
Author Award (with C. Kim). He also was the recipient of the 2006 IEEE
Transactions on Very Large Scale Integration Systems Best Paper
Award and the 2012 ACM/IEEE International Symposium on Low Power
Electronics and Design Best Paper Award. From 1998 to 2003, he was
a Purdue University Faculty Scholar. He was a Research Visionary Board
Member of the Motorola Laboratories in 2002. He was also the M.K. Gandhi
Distinguished Visiting Faculty at IIT Bombay, Mumbai, India. He was an
Editorial Board Member of the IEEE Design and Test of Computers, the IEEE
Transactions on Circuits and Systems, the IEEE Transactions on

Very Large Scale Integration Systems, and the IEEE Transactions

on Electron Devices. He was the Guest Editor of the special issue on low-
power VLSI in the IEEE Design and Test of Computers in 1994, the IEEE
Transactions on Very Large Scale Integration Systems in June
2000, the IEE Proceedings: Computers and Digital Techniques in July 2002,
and the IEEE Journal on Emerging and Selected Topics in Circuits

and Systems in 2011.


