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Abstract—The main result in this paper establishes the energy savings derived by using probabilistic AND as well as NOT gates

constructed from an idealized switch that produces a probabilistic bit (PBIT). A probabilistic switch produces the desired value as an

output that is 0 or 1 with probability p, represented as a PBIT, and, hence, can produce the wrong output value with a probability of

ð1� pÞ. In contrast with a probabilistic switch, a conventional deterministic switch produces a BIT whose value is always correct. Our

switch-based gate constructions are a particular case of a systematic methodology developed here for building energy-aware networks

for computing, using PBITs. Interesting examples of such networks include AND, OR, and NOT gates (or, as functions, Boolean

conjunction, disjunction, and negation, respectively). To quantify the energy savings, novel measures of “technology independent”

energy complexity are also introduced here—these measures parallel conventional machine-independent notions of computational

complexity such as the algorithm’s running time and space. Networks of switches can be related to Turing machines and to Boolean

circuits, both of which are widely known and well-understood models of computation. Our gate and network constructions lend

substance to the following thesis (established for the first time by this author [1], [2], [3]): The mathematical technique referred to as

randomization yielding probabilistic algorithms results in energy savings through a physical interpretation based on statistical

thermodynamics and, hence, can serve as a basis for energy-aware computing. While the estimates of the energy saved through

PBIT-based probabilistic computing switches and networks developed here rely on the constructs and thermodynamic models due to

Boltzmann, Gibbs, and Planck, this work has also led to the innovation of probabilistic CMOS-based devices and computing

frameworks. Thus, for completeness, the relationship between the physical models on which this work is based and the electrical

domain of CMOS-based switching will be discussed.

Index Terms—Energy-aware systems, low-power design, probabilistic computation.

�

1 introduction

CONCERNS of power (or energy) consumption have become
increasingly significant in the context of the design as

well as the use of embedded and high-performance
computing systems. To paraphrase Trevor Mudge, “Power
(and energy) are first-class citizens in current considerations
of computer system design.” While devices, computer
architecture, and the layers of software that reside in and
execute at higher levels of abstraction (such as operating
systems, runtime, compilers, and programming languages)
all afford opportunities for being energy-aware, the most
fundamental limits are truly rooted in the physics of energy
consumption—specifically in thermodynamics. Based on this
premise, this paper embodies the innovation of models of
computing for energy-aware algorithm design and analysis,
for the first time, based on the following thesis central to
this work: The computational technique referred to as randomi-
zation yielding probabilistic algorithms, now ubiquitous to the
mathematical theory of probabilistic algorithm design and
analysis, when interpreted as a physical phenomenon through
classical statistical thermodynamics, yields to energy savings that
decrease with the probability p with which each primitive

computational step is guaranteed to be correct (or, equivalently,
increase with the probability of error, ð1� pÞ).

Historically, probabilistic algorithms were viewed as a

mathematically very promising approach to algorithmic

design, as elegantly stated by Schwartz [4]: “The startling

success of the Rabin-Strassen-Solovay (see Rabin [5])

algorithm, together with the intriguing foundational possi-

bility that axioms of randomness may constitute a useful

fundamental source of mathematical truth independent of,

but supplementary to, the standard axiomatic structure of

mathematics (see Chaitin and Schwartz [6]), suggests that

probabilistic algorithms ought to be sought vigorously.”

Since this prediction, probabilistic algorithms have prolif-

erated in a range of areas centered around the theoretical

foundations of computer science.
At its heart, the work described in this paper is based on

the definition of an abstract energy-aware switch, or switch for

short (in Section 4.1), which is the first contribution. A

switch, denoted sw, is a device for realizing computations

that are functions of a single bit. While switches are

provably building blocks for constructing Boolean gates as

well as for describing algorithms, in our context, they also

serve as idealizations for modeling energy consumption.

Our basic idealizations of a “switch” and “switching”

model transformations to the state of a physical device

capable of altering its Boltzmann (physical) entropy, with a

well-defined accompanying expenditure of energy consis-

tent with the laws of physical domain—electrical, gaseous,

or others in which the switch is operating.
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We note that, to realize computations, switching will be
used to alter the current bit or value, say 0, to some other
value, say 1. All computation can be realized as composi-
tions of such elemental one-bit switching changes. In this
work, the characterization of probabilistic switching as well
as its associated energy consumption will be based on
physical realizations characterized by (classical) statistical
thermodynamics, (see Balian [7], for example). This
statistical foundation is essential to proving two funda-
mental theorems (stated in Section 9) which serve as a basis
here for determining the energy consumption of computa-
tions constructed from networks of switches. These physical
principles characterizing the energy changes associated
with switching were established by this author in [1], [3]:
The energy consumed by deterministic switching is never less
than ð�t ln 2Þ joules, referred to often as the “fundamental (or
thermodynamic) limit.” In contrast, the energy consumed by an
idealized probabilistic switch with an associated probability of
error of (1-p) is lower, and can be as low as ð�t ln 2pÞ joules for
each switching step. Here, k is the well-known Boltzmann’s
constant, t is the temperature of the thermodynamic system,
and ln is the natural logarithm. This result established that,
at the fundamental limit, probabilistic algorithms offer the
potential for energy savings of kt lnð1pÞ joules per primitive
switching step. In keeping with traditional idealizations,
our switches are not lossy since switching is always
performed at thermal equilibrium. By basing our develop-
ments here on this notion of a probabilistic switch modeled
using statistical thermodynamics, rather than on the more
familiar deterministic models of energy consumption
known previously (see Section 2), our switches are
inherently probabilistic; they do not need an explicit
random source, typically realized as a pseudorandom
number generator central to the earlier development of
the theory of probabilistic algorithms (see Vazirani and
Vazirani [8] for example).

Given a switch sw, our second contribution (in Section 5)
involves a systematic method for constructing networks of
switches to realize AND gates. Each switch sw has an input
value which is either 0 or 1 and an explicit enabling signal
that determines whether a switch is “active” or “inactive.”
In turn, sw is capable of producing an output value from the
set f0; 1g and, possibly, an output enabling signal to a
successor switch. Thus, the output value of switch sw is correct
only with a probability p (and is erroneous with probability (1-p));
this output value will be referred to as a probabilistic bit or a
PBIT. A distinguishing feature of this switch is that
depending on the input to the associated network, it is
active only in the context of being “required” to compute a
value and is enabled by a predecessor switch; it is inactive
otherwise. For this reason, we will refer to such a switch as
an introverted switch.

A network N is central to defining a technology
independent energy complexity of a switch and constitutes
our third contribution; these complexity measures are
introduced in Section 5.3 in the deterministic context and
in Section 8.2 for probabilistic networks. Informally, the
energy complexity of a network is the number of steps
involved in switching from the start of the computation till
it is completed and, thus, is a measure of the dynamic energy

consumed by the computation in the context of a given
input. In the case of a probabilistic network, given a
particular input, it will be the average energy consumed
over the “family” of executions induced by the probabilistic
nature of the network. Through a straightforward construc-
tion and for completeness, we also show in Section 6 that
logical negation or a NOT gate can be realized through a
single switch and, therefore, its energy behavior in the
deterministic and probabilistic cases is identical to those
claimed above for a switch in isolation.

In Section 7, and moving to the fourth contribution, we
prove that a standard two-input AND function requires at
least two “energy consuming” switches in the deterministic
case and, hence, its energy complexity is bounded below by 2.
Identical results can be obtained for OR gate constructions.

While the above results are specific to deterministic
networks and computations, by construction, a switch sw
can be naturally or explicitly probabilistic. Thus, the energy
characteristics of a switch sw, where its output value and
associated enabling signal are only guaranteed to be correct
with a probability p, are the topic of Section 8 and constitute
the fifth contribution of this work. In this section, probabil-
istic versions of the AND gates from Section 5 are described
and their energy complexity characteristics are derived. By
contrast with a lower bound of 2 in the deterministic case,
we show that probabilistic AND gates can be realized with
an associated expected energy complexity of ð1þ pÞ with an
associated probability of error ð1� pÞ. This technology
independent notion of energy complexity can be converted
into physical energy estimates by interpreting the switches
and hence switching, in an appropriate physical domain.
For example, using estimates based on the thermodynamics
of an ideal gas and based on the switch construction of
Szilard [9] (also, see Section 11), each probabilistic switching
step can be realized using �t lnð2pÞ joules and, therefore, the
expected energy consumed by an AND network is ð1þ pÞ �
�t lnð2pÞ joules.

Reminiscent of combinational logic “networks” whose
power has been systematically studied relative to models of
computing such as Turing machines (see early character-
izations due to Pippenger and Fischer [10] and Pippenger
[11]), the model of a network N introduced in this paper
uses an enabling signal, in the absence of which a switch is
quiescent in that it does not switch and, hence, compute. In
keeping with current convention, throughout this paper, we
will use the term circuit to denote this widely studied
combinational logic “network” of Boolean gates wherein
measures such as size, depth, and width were of concern [12],
[13], [14], [15], whereas energy was not; by contrast, the
term network will be used to denote a structure built using
our introverted switches with enabling signals. Using this
terminology, every constituent “element” (in this case, a
Boolean gate) in a circuit is “extroverted” and switches once
for every input, whereas an introverted switch only
switches when it is activated, as determined by an input
enabling signal.

In Section 10, we outline relationships between net-
works of switches and circuits, as well as alternate
models of energy-aware algorithm design and analysis
introduced by this author in earlier work [2] [16]—the
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randomized bit-level random access machine (or RABRAM).
In Section 11, we shall address the increased relevance of
energy consumed statically due to leakage in realizing giga
and terascale circuits and the value of our definition of a
network of introverted switches in this increasingly sig-
nificant context.

2 HISTORICAL REMARKS, COMPARISONS, AND
PERSPECTIVES

The energy characteristics of switching have their roots in
thermodynamics, the history of which, traces back to the
works of Carnot [17] and Clausius [18] in the early
nineteenth century, leading to significant developments in
the early part of the twentieth century. Influenced sig-
nificantly by Maxwell (see [19] and [20], for example), the
current statistical interpretation of thermodynamics was
first introduced by Boltzmann and Brush [21] and was later
developed by Gibbs [22] and Planck [23]. In the context of
the considerations of energy consumption in this paper, the
work of Boltzmann leading to the definition of thermo-
dynamic entropy is especially relevant.

The notion of a value such as 0 or 1 being modeled in a
physical system with a single molecule dates back to 1929
and can be attributed to Szilard [9]. In particular, his work
and that of several subsequent physicists was motivated by
a need to explain the celebrated Maxwell’s demon [9]
paradox, which purported to, through a thought experi-
ment, violate the inviolate second law of thermodynamics.
Subsequent authors credit Szilard with having envisioned
the modern notion of a “bit” and a machine with two
“states.” While other celebrated researchers, including
von Neumann [24], observed that the minimum energy
needed to compute a bit is �t ln 2 joules, it was Landauer
[25] who took a very big step toward clarifying the
Maxwell’s demon paradox in his widely known work. In
doing so, he also explicitly laid the foundations for the
(more) modern field of the thermodynamics of computa-
tion. At the heart of Landauer’s work is the characterization
of erasure, which is also a property of switching in this work.

Bennett [26] pioneered logically reversible computations,
leading to the widely known models for reversible comput-
ing that admit computations with energy recovery. Subse-
quently, Fredkin and Toffoli [27] demonstrated logical gates
that exhibit the same property. By contrast, in all of our
work, we model switching as being based on nonrecovering
modes of energy consumption and computation—energy
once expended by a switching step is not recovered, even if
such a recovery is physically feasible through reversible
thermodynamic processes from a physical standpoint.

Moving toward realizations of “electrical switches”
based on which modern computers are built—transistors
being the ubiquitous vehicles—within the context of study-
ing the inherent energy needed by deterministic switching,
Meindl [28], and Meindl and Davis [29] in the context of
CMOS-based switches, established fundamental limits and
derived energy lower-bounds. The significance of Meindl’s
paper, which continues the philosophical tradition set by
Szilard, von Neumann, and Landauer, among others, is the
ability, for the first time, to model a switch in an idealized

manner—without lossy dissipation, for example,much aswe
do—while, at the same time, reconciling the delicate and
pragmatic balance needed to model the realities of modern
semiconductor devices. In doing so (see Meindl [28]), novel
techniques based on an inductive inverter-chain-based
argument were developed. This technique is a crucial step
in Meindl’s arguments for bounding the energy consumed
from below. While previous work does so implicitly, Meindl
[28] is also the first in this series to provide an explicitphysical
construction of a switch, in this case as an inverter, within the
context of proving a bound on the minimum energy needed,
thus making the bounds rather concrete.

The inherent energy bounds for deterministic switching
outlined in this work (in Section 9), while having the same
conceptual goal as Meindl’s approach, are distinct in a
three-fold manner. First, following Szilard [9], our switches
and, hence, energy limits are based on the more funda-
mental energy behavior of idealized monoatomic gases [21].
Second, our representations are the first characterizations of
a PBIT and concomitant energy bounds associated with a
probabilistic switch computing a PBIT. Thus, a study of the
energy characteristics of probabilistic switching is an
entirely novel contribution of this work. Finally, as outlined
in Section 11, at the thermodynamic limit, the gas-based
idealizations used in this paper yield potentially greater
energy savings in the context of computing PBITs than those
using the transistor based electrical switches following Stein
[30] and Meindl [28].

A consistent theme in all of the previous work is that
computation and, hence, the value of a bit being computed
is deterministic—since computation, starting with Turing,
was considered to be essentially a deterministic activity—
and, thus, traditionally, its physical instantiation has been
treated macrophysically [7] and has not been subjected to a
statistical interpretation. Perhaps it is not an exaggeration to
say that determinism is deeply ingrained, if not essential to
human intuition in considerations of computing. This is
perhaps the best explanation as to why an alternate style of
computing—the counterintuitive notion of probabilistic
algorithms that compute a value that could sometimes be
wrong in their Monte Carlo “flavor”—was not considered
until the 1970s from a mathematical perspective by
computer scientists; this despite the readily available
statistical interpretation of the value of a bit in Szilard’s
own construction of a molecular realization of a PBIT, based
on its location in a volume of gas. As a result, previous
work on modeling switches from the perspective of energy
analysis is not readily applicable to a probabilistic switch
designed to be deliberately erroneous.

In the context of mathematical theories of computing,
Rabin and Scott’s influential paper [31] introduced non-
determinism and broke with the tradition of determinism in
a definitive manner. Subsequently, Rabin [32] also took the
important step of explicitly introducing probability into the
definition of an automaton [32] and studied its expressive
power and relationship to a deterministic finite-state
machine. Attributable perhaps to the deep seated belief in
determinism in computing in general, over a decade
elapsed before the role of probability became prevalent in
the algorithmic computing domain following the influential
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work of Karp within the context of average-case analysis
[33], Gill’s characterizations of probabilistic complexity
classes [34] as well as the innovation of the Rabin-
Solovay-Strassen algorithm referred to earlier.

Feynman’s exposition of the thermodynamics of com-
puting [35] uses the gas-based model for switching, albeit in
the deterministic context. All of the energy estimates in this
paper are based on a physical system (and a phase-space)
akin to that associated with Szilard’s construction and
Feynman’s expositions, although our modeling of a state
and a PBIT that it represents is statistical and, hence,
microphysical, whereas previous approaches interpreted
them to be deterministic and, therefore, macrophysical
considerations suffice.

3 ROADMAP AND READING GUIDE

In Section 4.1, we define a switch and the associated notion
of switching is defined in Section 4.2. Using these
characteristics, in Section 5, we characterize the construction
of networks of switches and, hence, Boolean gates. A novel
technology or realization-independent measure of energy
complexity is also introduced in Section 5. In Section 6, we
outline a construction of deterministic and probabilistic
NOT gates and outline their energy characteristics. Then, in
Section 7, we prove a lower bound on the energy complex-
ity of any deterministic network realizing an AND gate. In
Section 8, we introduce networks of probabilistic switches,
as well as the associated measure of expected energy
complexity, and demonstrate energy savings relative to
their deterministic counterparts, derived from probabilistic
AND gates. Based on the definitions of a switch and of
switching from Section 4, the (physical) energy character-
istics of switching will be summarized in Section 9; details
can be found in earlier work by this author [3]. These
energy characteristics (from Section 9) allow the abstract
notion of energy complexity to be interpreted in a physical
domain in terms of actual energy measured in joules—in
our case, through a switch realized as a Szilard engine
based on an idealized monoatomic gas. In Section 10, we
characterize the relationship of our networks to established
models of computing such as Turing machines and
circuits, as well as traditional complexity measures such
as running time, space, and size. In Section 11, we contrast
the energy savings derived through the PBIT realizations
used in this paper and those derived using conventional

transistor-based switch realizations in the electrical domain.
Finally, in Section 12, we summarize the implications of
probabilistic switching to the pragmatic considerations of
semiconductor devices that are “nonideal” in that they are
lossy and dissipate energy, as well as the potential impact
on the national semiconductor (ITRS) roadmap.

4 A SWITCH AND SWITCHING

In Section 4.1, we will define the basic elements of a single
switch and its behavior. Following this, the notion of
switching will be introduced in Section 4.2. This definition
will be entirely in “logical” terms without recourse to the
considerations of physical realization. This formalism is
reminiscent of earlier developments in the classical field,
referred to as switching theory, described in Kohavi [36].

4.1 Defining a Switch

Starting with an informal introduction based on Fig. 1, each
switch sw has (up to) two alternate choices for “input
values” as well as “enabling signals.” Each input value and
enabling signal of sw is in turn the output of a distinct
switch (from the set of all switches, SW), sw0 and sw00 in the
example. In this example, the outputs of switch sw0 are
identified with the input value in1 and the input enabling
signal enablein1, whereas the outputs of sw00 are identified
with in2 and enablein2. Any switch sw in turn has two
possible (mutually exclusive) enabling signals as output,
denoted by enableout1 and enableout2, as well a single
output value out.

During the entire lifetime of a switch sw, each of its
enabling signals enableini; i 2 f1; 2g, is “associated with”
exactly one inj; j 2 f1; 2g. Subsequently, these associations
will be formalized as “switching relationships.” As shown
in Fig. 1, enablein1 is associated with in1 and, similarly,
enablein2 is associated with in2; in general, one of the four
possible associations are allowed. Finally, in this example,
switch sw produces an output value as a function of in1

whenever enablein1 is active, whereas it produces an output
value as a function of in2 whenever enablein2 is active,
where each switch sw realizes one of the four possible 1-bit
functions shown in Fig. 2. In any legal switching of sw,
exactly one of its two enabling signals must be “active,”
indicated by associating the value 1 with it.

To further understand switching, let us suppose that
enablein1 ¼ 1. Recall from Fig. 1 that the association or
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switching relationship between enablein1 and in1 implies
that, whenever enablein1 ¼ 1, the value of out is determined
by in1. In this case, sw switches and produces an output
using f ; the function f is one of the four possible choices
shown in Fig. 2: identity, complement, and the two constant
functions—say the complement function in this example.
Thus, out ¼ in1 whenever enable1 ¼ 1, whereas out ¼ in2

whenever enable2 ¼ 1.

For succinctness, we will use the notation in Fig. 3 to

denote the values associated with the various inputs and

outputs of sw. Formally, let Isw;1 and Isw;2 be the two inputs

to sw wherein Isw;i is the ordered pair < wsw;i; xsw;i0 > ,

where wsw;i 2 f0; 1g is an input enabling signal and xsw;i0 2
f0; 1;�g corresponds to the input value, with � denoting an

undefined value. Thus, each switch sw is associated with a

pair of switching relationships which are ordered pairs of the

form < wsw;i; xsw;1 > and < wsw;i0 ; xsw;2 > , where i 6¼ i0 and

i; i0 2 f1; 2g. Intuitively, these ordered pairs capture the

association between an input value and an enabling signal

—as shown in the example in Fig. 1, each of the two distinct

input enabling signals of swi is in a switching relationship

with each of the two inputs. To reiterate, when an input

enabling signal, say wsw;i ¼ 1, the corresponding value xsw;1

is used as the input whenever < wsw;i; xsw;1 > is a valid

switching relationship.
By definition, while a switch sw can produce two

mutually exclusive output enabling signals ysw;j and ysw;j0

with different values as outputs to two possible successor
switches, it must always have the same output value z to all
of its successors. In what follows, the subscript sw of
w; x; y; z will be omitted whenever the use of the symbols is
unambiguous.

4.2 The Process of Switching

Recall from Fig. 2 that a switch computes a fixed one-bit
function f . We will now introduce a few preliminary
definitions. A switch sw is obliviouswhenever the associated
function f that it computes is a constant function. It is
nonoblivious otherwise.

Given a switch sw as above with an associated function
f , a switching (step) is defined as follows:

1. z ¼ � and y1 ¼ y2 ¼ 0 whenever both its input
enabling signals w1 and w2 have an identical value.

2. Whenever exactly one input enabling signal, say
wi ¼ 1 (and wi0 ¼ 0 for i 6¼ i0), and < wi; xj > is a
valid switching relationship,

a. if xj ¼ 0, then z ¼ fð0Þ, y1 ¼ z, and y2 ¼ �zz,
b. if xj ¼ 1, then z ¼ fð1Þ, y1 ¼ z, and y2 ¼ �zz.

Let fðxÞ ¼ z be the deterministic switching (step) realized
by sw as above. A probabilistic switching (step) with a
probability parameter p � 1

2 is defined identically except
fðxÞ ¼ z with a probability p and fðxÞ ¼ �zz with probability
ð1� pÞ.

4.3 Composing Switches

Consider a switch sw with its inputs defined by the
switching relationships < wi; x1 > and < wi0 ; x2 > as
before. An instant of time � 2 <þ [ 0, where <þ is the set
of positive reals. Now, let � 0 be the earliest instant of time
when one of the two input enabling signals of switch sw,
say wi ¼ 1, that is wi ¼ wi0 ¼ 0, for i 6¼ i0 at any time
0 � � < � 0. Also, � 00 > � 0 exists and is the earliest instant
when either yi or yi0 is 1; switch sw has completed switching
by time � 00. Then, �̂� ¼ ð� 0; � 00Þ is the finite switching interval
associated with switch sw.

Consider a switch sw0 (distinct from switch sw) with
output enabling signals y0j, y

0
j0 , where j; j0 2 f1; 2g as before,

and output value z0. Switch sw0 is composed to switch sw,
denoted by sw0 � sw if and only if, for all � > 0, at least one
of the following conditions applies:

1. exactly one of the values x1 or x2 equals z0 or
2. exactly one of the input enabling signals w1 or w2 of

sw is identical to one of the the output enabling
signals y0j or y

0
j0 of sw

0.

Whenever sw0 � sw, switch sw0 is said to drive switch sw
or, equivalently, sw is said to be driven by switch sw0. Let
sw0 � sw. Whenever z0 ¼ xi, the ordered pair < z0; xi > is
referred to as a wire and xi is said to be connected to z0

through the wire < z0; xi > . Similarly, whenever wi ¼ y0j,
we again say that the wire < y0j; wi > connects y0j to wi.
Finally, when a switch sw0 drives sw, sw0 is defined to be the
predecessor of sw and sw is a successor of sw0. A switch sw is
well-connected if and only if both the elements of at least one
of its input switching relationships is connected to those of
a predecessor switch through wires. Given a switch sw, note
that having a predecessor switch does not guarantee that sw
is well-connected.

To develop structures meant to realize entire computa-
tions,wewill identify three types of switches: INPUTSWITCH,
OUTPUT SWITCH, and COMPUTE SWITCH, as shown in
Fig. 4. An INPUT SWITCH sw1 has no predecessors and
drives at least one switch of type COMPUTE SWITCH or of
type OUTPUT SWITCH. An input switch does not have w
and x values and its y and z values are fixed throughout the
life of the network. A switch such as sw2 in our example,
which is a COMPUTE SWITCH, is driven by a switch sw1
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which is an INPUT SWITCH. A COMPUTE SWITCH can in turn
drive one ormore switches that are either of a type COMPUTE

SWITCH or of a type OUTPUT SWITCH. In our example,
COMPUTE SWITCH sw2 drives sw4 which is an OUTPUT

SWITCH; an output switch has no successors and is driven by
at least one switch of type INPUT SWITCH or COMPUTE

SWITCH. Also, when convenient, wewill refer to a switch(es)
as being input switch(es), output switch(es), and compute
switch(es) to refer to switches of the respective types.

5 NETWORKS FOR DETERMINISTIC COMPUTATIONS

In this section, we will first introduce a network of switches
for deterministic computation (Sections 5.1 and 5.2) and
define their energy complexity (in Section 5.3). In Section 7,
we will prove a nontrivial lower bound on the energy
consumed by any deterministic network that can compute
the logical AND function.

5.1 Defining a Network

A network of switches is a connected directed acyclic graph
N ¼ ðSW;WIRESÞ such that the vertices are switches, the
edges are wires, and the switches that are of the type
OUTPUT SWITCH as well as those of type COMPUTE SWITCH

are all well-connected. Also, each switch has no more than
two predecessors and no more than two successors. This
assumption of bounded (two) degree entails no loss of
generality and is integrated into the definition of energy
complexity introduced in Section 5.3 below. A switch is
defined to be extrinsic if and only if at least one of its inputs
is driven by an input switch. It is defined to be intrinsic
otherwise. A network is said to be k-canonical for k � 1
whenever it has exactly:

1. k input switches,
2. two output switches, and
3. one compute switch sw with one of its input

enabling signals wi � y0j ¼ 1 at � ¼ 0, where y0j is
the output enabling signal of some input switch sw0

driving sw.
For convenience we will refer to switch sw0 switch

as the START switch.

From the perspective of the theory of computation (see
Manna [37], Kohavi [36]), when the network is used as a

basis for (formal) language recognition, it is convenient to
view the two output switches as being either an accepting
switch or a rejecting switch and hence oblivious. For
simplicity and through abuse of notation, given any switch
swi, we will use the notation xi;j, wi;j, and yi;j where
j 2 f1; 2g, to respectively denote its jth input value, input
enabling signal, and the output enable signal, respectively.
Similarly, zi shall denote the unique output value of switch
swi. For further notational simplicity, whenever the index i
of the switch is obvious, it shall be omitted. Thus, xj, wj, and
yj shall denote the jth input, input enabling signal, and
output enabling signal values associated with switch sw,
whereas z will denote its unique output (value). Also, given
an input to N , henceforth k-canonical, which is a binary
string determined by the settings of its input switches at
time � ¼ 0, the START switch swi, by definition, has exactly
one output enabling signal, say wi;j ¼ 1, thus “triggering”
the computation.

To illustrate the idea of a network, a 2-canonical network
computing the logical AND function is sketched in Fig. 5a.
Whereas switches sw1; sw2 are input switches, switches
sw3; sw4 are compute switches (implementing the comple-
ment function), and switches sw5 and sw6 are output
switches, sw5 is the rejecting switch and sw6 is the accepting
switch. We note that every switch in this network, unless it
is an input-switch, is well-connected and the network is
directed and acyclic. It is a simple exercise to verify that this
network is 2-canonical since, in addition to the above
constraints, exactly one compute switch sw3 has an input
enabling signal y1;1 � w3;1 ¼ 1. In Fig. 5b, we show the
crucial relationships between the input values to sw3 and
sw4 and their output and enabling signals in a “truth-table-
like” structure to help understand the structure of the wires
and the connectivity.

5.2 Execution of a Network

A switch sw is said to have switched by time � if and only if
its switching interval ð� 0; � 00Þ is such that � 00 � � . In what
follows, the input switches are all assumed to have
switched by time � ¼ 0. Continuing with our example from
Fig. 5, at time t ¼ 0, y1;1 is 1 since the input-switch sw1 has
switched by time � ¼ 0 during interval �̂�1 (Fig. 6). (While
this implies possibly negative switching times, this is
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Fig. 5. A deterministic 2-canonical network resolving the AND function where the compute-switches sw3 and sw4 with input switching relationships

< w3;1; x3;1 > and < w4;1; x4;1 > , respectively, as well as wires < y1;1; w3;1 >;< z1; x3;1 >;< y3;2; w4;1 >;< z2; x4;1 > drive the accepting switch sw6

and rejecting switch sw5.
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merely a technicality and can be trivially altered to yield
nonnegative switching times.) Thus, � ¼ 0 is interpreted to
denote the time when the first compute switch starts
switching. In our example detailed in Fig. 6, this switch is
sw3, which is enabled at � ¼ 0 and switches during interval
�̂�2. Depending on its input values, one of the two output
enabling signals y3;1 or y3;2 assumes a value of 1. If the first
input, also determined by switch sw1, x3;1 � z1 ¼ 1, then
y3;2 ¼ 1 at the end of the interval �̂�2; by contrast, y3;1 ¼ 1
whenever x3;1 � z1 ¼ 0. Returning to the case where
x3;1 � z1 ¼ 1, in the next interval, �̂�3 and, enabled by y3;2,
switch sw4 switches and, upon switching, computes an
output value and enables either switch sw5 or switch sw6.
Specifically, whenever x4;1 � z2 has a value of 1, y4;2 ¼ 1,
thereby leading to an accepting computation. On the other
hand, whenever x4;1 � z2 ¼ 0, y4;1 ¼ 1, resulting in a
rejecting computation. On the other hand, when y3;1 ¼ 1
(whenever x3;1 ¼ 0), leading to switch sw5 switching during
interval �̂�3, the input is rejected. As shown in Fig. 6, an
accepting computation from network N corresponds to the
AND gate with an input of (1; 1), thus having an output
value of 1, whereas a rejecting computation corresponds to
an input with at least one of the two values being a 0 and,
hence, an output value of 0.

More generally, let N ¼ ðSW;WIRESÞ be a k-canonical
network. An input binding, or input for short, is a function
IN ;k : SWIN ! f0; 1g, where SWIN � sw is the set of all
switches of type INPUT SWITCH and IN ;kðsw j sw 2 SWINÞ
is the (input) value x of switch sw, which, by definition, is
either 0 or 1. An execution of N determined by input IN ;k is a
partial function E : SW ! INT , where SW0 ¼ fSW�
SWINg and INT is the set of all intervals and EðswÞ ¼ �̂�
is defined for a switch sw whenever

1. one of the input enabling signals w of sw is 1 at time
� , where �̂� ¼ ð�; � 0Þ,

2. � is the smallest value for which this is true, and
3. switch sw has switched by time � 0.

Continuing and depending on its input value, one of the
two output enabling signals of switch sw will have a value
of 1 at time � 0. For example, with an input of (1; 0) to the
example network in Fig. 6, we see that, during interval
�̂�2 ¼ ð�2; � 02Þ, switch sw3 switches and that y3;2 ¼ 1 at time � 02.

Let SWE � SW0 be such that sw 2 SWE whenever EðswÞ
is defined. Given this fact, let �̂�f ¼ ð�f ; � 0fÞ be the final

interval, that is, the interval with the largest starting value
of time � ¼ �f in an execution of N (with input IN ;k) and let
EðswfÞ ¼ �̂�f . It follows from the definition of a k-canonical
network that

Observation 5.1. swf is either an accepting or a rejecting
switch.

Now, consider a finite sequence of intervals
< �̂�1; �̂�2; �̂�3; � � � ; �̂�l > such that �̂�1 ¼ ð0; � 0 > 0Þ and, for any �̂�i,
where 1 < i � l, � 0i�1 ¼ �i, where �̂i�i ¼ ð�i; � 0iÞ. A sequence
t ¼< �̂1�1; �̂2�2; �̂3�3; � � � ; �̂l�l > is said to be the trace of a network
N induced by execution E (with associated input IN ;k)
whenever E is a bijection from SWE to t. For complete-
ness, in Fig. 6, all of the traces associated with inputs
< 0; 0 > , < 0; 1 > , < 1; 0 > , and < 1; 1 > to the network in
Fig. 5 are shown. Given an input, traces will be used to
characterize the execution of a network. We note in passing
that, in the deterministic network from our example, each of
the four input bindings is associated with an execution E
and an associated trace.

5.3 Energy Complexity of Deterministic Networks

We will now introduce the definition of the energy complex-
ity of a network. An interval �̂� is oblivious in a trace t
whenever switch sw in this interval, determined by E�1ð�̂�Þ,
is oblivious. It is nonoblivious otherwise. We define the
energy characteristic of N in an execution E represented by
the function EC : ðSW�TÞ ! f0; 1g, where T is the set of
all traces included by the execution of N to be

ECðsw; tÞ ¼
1 whenever sw is a compute switch

and interval EðswÞ ¼ �̂� 2 t is nonoblivious
0 otherwise:

8<
:

Let t ¼< �̂�1; �̂�2; �̂�3; � � � ; �̂�l > be a trace induced by execu-
tion E of a network N , corresponding to input IN ;k. Then,
the effective energy of t is

EEðtÞ ¼
X

8sw2SW
ECðsw; tÞ:

The deterministic energy complexity E of a network with
respect to a family of traces �TT induced by input bindings
�I 0I 0N ;k; �I 00I 00N ;k; � � � is

EðN Þ ¼ max
8t2 �TT

EEðtÞ:
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Fig. 6. A trace for the deterministic network resolving the AND function.
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The technology-independent characterization of the
energy complexity of a network (of switches) can be easily
extended to account for the physical energy consumed by
the network. Consider a network N to be homogeneous if
all of its compute switches consume the same switching
energy, say � joules. Then,

Observation 5.2. There exists an input binding IN ;k and
execution E that induces a trace t such that the total
energy expended by the compute switches in N during
the trace t is EðN Þ � � joules.

6 CONSTRUCTING NOT GATES AS NETWORKS

A NOT gate can be realized as a single compute-switch
switch sw driven by one input switch which, in turn, drives
an accepting and a rejecting switch, as shown in Fig. 7.
Thus, the energy characteristics and complexity of this
network are identical to those of a single nonoblivious
switch sw with the associated function f being the
complement function, as described in Section 4. We note
that, in both the deterministic and the probabilistic cases,
the energy complexity of this network is 1. Thus, following
Section 9, a deterministic network for computing negation
will cost at least �t ln 2 joules, whereas a probabilistic
variant (following Theorem 9.3) can be realized with energy
that is as low as �t ln 2p joules; recall that p denotes the
probability with which sw computes the output correctly.

7 LOWER BOUND ON THE ENERGY COMPLEXITY OF

AN AND NETWORK

In the sections above, the notion of a network and the
energy complexity of such a network have been defined. In
this section, we will prove a lower bound on the energy
complexity of any network that resolves the (logical) AND
function.

7.1 Some Basic Definitions

We will first introduce some helpful technical definitions to
help prove the lower bound in Section 7.2. Formally, B is a
set of k-vectors from f0; 1gk. Consider a fixed vector b 2 B,
b ¼< b1; b2; b3; � � � ; bk > , where bi 2 f0; 1g and k � 1. Let B
be a k-input (or k-ary) Boolean function with B as its
domain and let sw0

1; sw
0
2; � � � ; sw0

k 2 SWIN denote the input
switches of a k-canonical network N . An input IN ;k binds N
oo b if and only if, for each sw0

j, there exists a unique bit

bj0 2 b for 1 � j; j0 � k IN ;kðsw0
jÞ ¼ bj0 . Recall from Section 5

that we have a unique execution E associated with each

input IN ;k. We will say that, bound by IN ;k, N resolves b

under IN ;k with respect to B whenever the final switch swf in

the trace t induced by execution E is an accepting (rejecting)

switch whenever BðbÞ ¼ 1 (0, respectively).

Now, consider a family of input bindings

I ¼ �IIN ;k; �I 0I 0N ;k; �I 00I 00N ;k; � � � . A family of bindings I binds N to

B if and only if, given any b 2 B, there exists a IN ;k 2 I such

that IN ;k binds N to b. A network N resolves a Boolean

function B with an input family of bindings I (that binds B

to it) provided, given any IN ;k that binds b 2 B to it, N
resolves b under IN ;k with with respect toB. We define I to be

consistent if and only if, given any pair of inputs �II 0N ;k and
�II 00N ;k and corresponding vectors, b and b0 such that
�II 0N ;kðswÞ ¼ bj 2 b, then �II 00N ;kðswÞ ¼ b0j 2 b0. Informally, all

consistent bindings associate the same index from the

inputs b and b0 with the same input switch switch sw. In

what follows, we will only consider families of consistent

bindings I. For example, the bindings in Fig. 8a are

consistent, whereas those in Fig. 8b are not consistent since

the second element of b3 is bound to switch sw1 (row 3 in

Fig. 8b), whereas the first element of input vectors b1 and b2

is bound to the same switch (in rows 1 and 2 of Fig. 8b).
Given a trace t ¼< �̂�1; �̂�2; �̂�3; � � � ; �̂�l > , a maximally ob-

livious subsequence < �̂�j; �̂�jþ1; � � � ; �̂�j0 > is any subsequence

of intervals such that every interval in the subsequence is

oblivious and, furthermore, whenever j > 1, �̂�j�1 and,

whenever j0 < l, �̂�j0þ1 are nonoblivious intervals. Finally, a

Boolean function B is nontrivial if and only if there exist

b;b0 2 B such that BðbÞ 6¼ Bðb0Þ.
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Fig. 8. (a) Consistent and (b) inconsistent bindings.
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7.2 The Lower Bound on the Energy Complexity of
an AND Network

First, we will show that

Lemma 7.1. GivenN , let t be a trace and�tt ¼< �̂�j; �̂�jþ1; � � � ; �̂�j0 > ,

where j0 ¼ jþ � for 1 � j � j0 � l be any maximally

oblivious subsequence of t. Then, N cannot resolve a

nontrivial Boolean function if � ¼ l� 1 for every trace t 2 T.

Proof. The proof follows a straightforward induction on the

length of the subsequence and the definition of an

oblivious function. tu
Lemma 7.2. Let ðt; t0; t00; � � �Þ be a set of traces of N induced by

executions (E; E0; E00; � � � ) associated, respectively, with inputs

(�IIN ;k; �I 0I 0N ;k; �I 00I 00N ;k; � � � ). Also, �tt ¼< �̂�j; �̂�jþ1; � � � ; �̂�j0 > is a

maximally oblivious subsequence of t where E�1ð�̂�jÞ ¼ sw

and E�1ð�̂�j0 Þ ¼ sw0 with z0 as its output. Then, whenever

ðE�1ð�̂�jÞ � E0�1ð�̂ 0� 0jÞ � E00�1ð�̂ 00� 00jÞ � � �Þ, respectively, in traces

ðt; t0; t00; � � �Þ, E�1ð�̂�j0 Þ � E0�1ð�̂� 0j0 Þ � E00�1ð�̂� 00j0 Þ � � � � sw0 and

z0 is a constant in all cases.

Proof. Follows from an induction on the length of the traces

using the definitions of an input, an output to a switch,

and the definition of switching. tu

This lemma essentially says that, given any number of

different inputs to the network N , if the input to a switch at

the “head” (in interval �̂�j) of an oblivious sequence of

steps sw is not changed in the respective traces, then the

sequence of switches traversed by the computations from

that step will be identical across all the traces leading to the

same final switch at the end, switch sw0, with the same

output value z0. These two lemmas will enable us to prove

the lower bound now.

Theorem 7.1. EðN Þ � 2 for any 2-canonical network N that

resolves the Boolean AND function.

Proof (sketch). If the theorem is false for a network N , in

any trace t induced by any execution E with input

binding IN ;k, there can be no more than one nonoblivious

interval. Without loss of generality, let this interval be �j
for 1 � j � l, where t ¼< �1; �2; �3; � � � ; �l > . If there is no

such interval, N cannot resolve a nontrivial Boolean

function from Lemma 7.1. Let E�1ð�jÞ ¼ sw. Switch sw

must be extrinsic or else, from Lemma 7.2, once again, N
cannot resolve a nontrivial Boolean function. Since the

output of N is a constant across all inputs.
Without loss of generality, let input switch sw0 drive

sw and consider inputs b1 �< 1; 1 > , b2 �< 0; 1 > , and
b3 �< 1; 0 > to B, which is an AND function. From
pigeon-holing, there exist two inputs in any consistent
family of input bindings, say binding b1 and b2 to N
without loss of generality, such that the input value to sw
derived from sw0 is identical in both cases. However,
from the definition of a Boolean AND, Bðb1Þ 6¼ Bðb2Þ.
Then, from Lemma 7.2 and the fact that N is 2-canonical,
we know that, in both cases, the corresponding traces
have the same accepting or rejecting switch sw in their
final interval, which contradicts the fact that N resolves
the Boolean AND function since Bðb1Þ 6¼ Bðb2Þ. tu

8 NETWORKS FOR RANDOMIZED COMPUTATIONS

In Section 5, the notion of a deterministic network that can
resolve a Boolean function was introduced and its energy
complexity defined. Implicit to this definition is the fact that
every switch sw in network N is a deterministic switch. In
Section 4.2, the notion of a probabilistic switch was
introduced. Analogous to deterministic network construc-
tions, we will now use this definition to construct probabil-
istic networks and characterize their energy complexity.

8.1 Probabilistic Networks and Their Execution

A k-canonical probabilistic network R is any network with

the property that a COMPUTE SWITCH can either be

deterministic or probabilistic. A probabilistic execution is ÊE :

SW ! INT as before, where the individual switches in sw

are probabilistic with some probability parameter p. Given a

k-canonical probabilistic network R and one input binding

IR;k, we have an associated family of probabilistic executions

Ê1E1; Ê2E2; Ê3E3; � � � ; ÊEl0 inducing a corresponding family of traces

F � f�1; �2; �3; � � � ; �l0 g, with respective probabilities

r1; r2; r3; � � � ; rl0 . Let ÊiEiðswÞ ¼ �̂�j as before and let sw0 be the

switch in interval �̂� 0ðj�1Þ immediately preceding �̂�j in trace �i,

where j > 1, that is, �̂�ðj�1Þ and �̂� are of the form ð� 00; �Þ and
ð�; � 0Þ, respectively. Also, let x0 be the input value of switch

sw0 at time � 00. (We recall that, in any legal execution, the

input value to a switch is defined and one of its input

enabling signals is asserted.) Now, the conditional prob-

ability qj associated with �̂�j in trace �i is the probability that

the output enabling signal from sw0 driving sw equals one at

time � given the input to sw0 as determined by IR;k is x0.

Informally, each member of this family of traces is generated

by the probabilistic or randomized nature of the switches in

R. This is in contrast to a deterministic network N , which

has a unique trace given an input binding IN ;k. The

following observation is immediate.

Observation 8.1. By definition, ri ¼
Q

1�j�l qj, where
�i ¼< �̂�1; �̂�2; �̂�3; � � � ; �̂�l0 > �l. Furthermore,

P
1�j0�l0 rj0 ¼ 1.

In Fig. 9, we show a probabilistic network R that can
resolve the logical AND function. The details of its
construction are identical to those in the deterministic case
from Fig. 5. Switches sw3 and sw4 are probabilistic compute
switches, with a probability parameter p. As before, they
compute the complement function probabilistically. As in
the case of the deterministic network, the output enabling
signals y are shown as a function of the inputs in the table in
Fig. 9. A probabilistic network can, depending on the
execution, invoke different switches with varying prob-
ability parameters each leading to a distinct trace with the
same input. Thus, with an input of x3;1 ¼ 1, switch sw3 (top
row in the table of Fig. 9) can result in two distinct traces,
one enabling output switch sw5 incorrectly with a prob-
ability of ð1� pÞ and the other enabling compute switch sw4

correctly with a probability of p, respectively, through
output enabling signals y3;1 and y3;2. This is in contrast to
the deterministic case, where a fixed input is associated
with a single (or unique) trace, whereas, in the probabilistic
case, it is associated with a family of traces whose relative
probabilities are characterized by Observation 8.1.
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8.2 Energy Complexity of Probabilistic Networks

We will now introduce the notion of the energy complexity of
a probabilistic network. Let � ¼< �̂�1; �̂�2; �̂�3; � � � ; �̂�l > be a
trace from the family F induced by executions associated
with a binding IR;k. Then, the expected effective energy of F is

REEðFÞ ¼
X
�i2F

ri � EEð�iÞ;

where ri is the probability of trace �i. These definitions are
an adaptation of the measure of logical work introduced by
Palem [2] in the context of a RABRAM. The randomized
energy complexity RE of a network is

REðRÞ ¼ max
8F2F

REEðFÞ;

where F is the set of all trace families induced by executions
associated with all the consistent input bindings
�IIR;k; �I 0I 0R;k; �I 00I 00R;k; � � � . It is a simple exercise to determine that:

Observation 8.2. The randomized energy complexity RE

of the 2-canonical network for resolving the Boolean
AND function (in Fig. 9) is ð1þ pÞ and, hence, is lower
than the minimum energy complexity of 2 associated
with any deterministic network.

Proof. Immediate from Theorem 7.1), whenever p < 1. tu

9 ENERGY CHARACTERISTICS OF SWITCHING

We will now relate the “realization” independent notion of
energy complexity from the previous sections to physical
energy. Recall that �̂� is the switching interval associated
with switch sw. Given the set of all switches SW, let
ENERGY : SW ! <þ be the switching energy, representing
the energy consumed in joules by a switch sw during its
associated switching interval �̂� .

Based on the analysis presented in detail in this author’s
earlier work [3], the switching energy associated with
deterministic nonoblivious switching can be bound from
below as follows:

Theorem 9.1. The switching energy ENERGYðswÞ � �t ln 2
joules whenever �̂� is nonoblivious and sw is a deterministic
switch.

Combining this theorem with the lower bound
(Theorem 7.1) on energy complexity, we have

Corollary 9.2. There exist inputs to any 2-canonical network that
resolve the Boolean AND function such that the energy
consumed is at least 2�t ln 2 joules.

Also, given a probability parameter p � 1
2 , the following

theorem (again from [3]) characterizes the energy consumed
by probabilistic switching.

Corollary 9.3. The switching energy ENERGYðswÞ can be as
low as �t ln 2p joules whenever sw is a nonoblivious
probabilistic switch with a probability parameter p.

From this, we can immediately deduce:

Corollary 9.4. The potential for saving through probabilistic
switching over deterministic switching is �tln 1

p joules per
switching step.

Moving from the deterministic to the randomized or
probabilistic context, let a probabilistic network R be
r-homogeneous if and only if it is homogeneous and all of
its compute switches are randomized with an identical
probability parameter, p.

Observation 9.5. The maximum energy in joules consumed
by the compute-switches of a r-homogeneous probabil-
istic networkR, across all of its inputs, averaged for each
input IR;k over all the traces induced by executions
ÊE1; ÊE2; � � � , can be as low as REðRÞ � �t ln 2p joules.

From Theorem 9.3 and in any switching, a probabilistic
switch with probability parameter p consumes �t ln 2p
joules. Thus, using this fact and since RE ¼ ð1þ pÞ for a
2-canonical probabilistic network for computing the AND
function, we have, from Observation 9.5:

Corollary 9.6. The expected energy consumed by switches of type
compute-switch in the probabilistic network for computing the
AND function can be as low as �ð1þ pÞ�t lnð2pÞ joules.
When p < 1, this is less than its deterministic counterpart,
which is a minimum of �2�t lnð2Þ joules.

10 COMPLEXITY THEORETIC CHARACTERIZATION OF

THE POWER OF NETWORKS

As shown earlier, a switch sw can be used to realize AND as
well as NOT “gates.” Disjunction or OR gates can be similarly
realized whose energy complexity in the deterministic and
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Fig. 9. A probabilistic 2-canonical network resolving the AND function.
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probabilistic cases are identical to those established for AND
gates. It will be useful to extend these foundational
constructs and results to the broader scope of realizing
entire computations and designing energy-aware algo-
rithms, using these switch constructs as building blocks.
To accomplish this goal, we will sketch relationships below,
between a network N and established models of computa-
tion such as Turing machines and circuits, from the theory
of computation; Papadimitriou [12] and Sipser [13] provide
introductions to the topic. Our goal in providing the
characterization sketched below is primarily to help place
our notion of a network and its associated energy complex-
ity in familiar terrain.

10.1 Switching and the RABRAM XModel of
Computing

In an earlier paper [2], this author introduced the
RABRAM model for energy-aware algorithm analysis and
design. The RABRAM and the model of a network as
introduced in this paper are equivalent—in the RABRAM,
the address decoder is abstracted away and is a potential
source of additional computational power, where a single
RABRAM program can correspond to an unbounded
family of networks, one for each input length. A central
contribution of this earlier work is the demonstration of
asymptotic energy savings in the RABRAM model, in the
context of the basic question of detecting whether a given
vector of n elements which are drawn from the set f0; 1g,
contains at least one element which is equal to 0. This
problem is referred to as the distinct vector problem, for
variants for which the following results are established
(in [2]). Using lower bounds for the deterministic case
and upper bounds for the probabilistic case, which has a
probability of error bound from above by 1

nc, energy
savings were shown to grow asymptotically in n, using a
probabilistic value amplification technique. An interesting
aspect of this result is that (as far as can be determined) it
is the first asymptotic demonstration of energy savings
derived from a probabilistic algorithm when compared to
any deterministic counterpart wherein the complexity of
the running time is asymptotically the same ð�ðnÞÞ in
both cases. This result demonstrated that the energy
savings are due to probabilistic “switching” as opposed to
being a byproduct of an improvement to the running
time achieved by randomization since, intuitively, a lower
running time may imply lower energy consumption.

10.2 Networks and Circuit Complexity

To reiterate, we will use the term circuit to refer to the form
of Boolean circuits that have become ubiquitous in the
study of the complexity of computing, and networks to refer
to the particular model for computing introduced in this
paper. A crucial body of work in the context of circuits,
using this terminology, is that of Pippenger and Fischer
[10]; we will use this paper as a basis for definitions. We
recognize that, since this early characterization, significant
strides have been made in circuit complexity, notably in
clarifying the power of “monotonicity,” as in the work of
Razborov [14], [15].

Following Pippenger and Fischer [10], two Turing
machinesM;M 0 simulate each other if, when they are started

with the same string of symbols on their input tapes, they
produce the same string of symbols online on their output
tapes; two machines that simulate each other do so online if
the shifts of the input and output heads occur in the same
order (but not necessarily at the same steps) for both
machines. This notion of simulation can be naturally
extended to involve intersimulation between Turing ma-
chines, networks (in the sense used in this paper), and
circuits, viewed as language recognizers within stated
resource bounds. As in the case of circuits, a potentially
infinite set of networks N 1;N 2; . . . correspond to a single
Turing machine, in one-one correspondence with each
distinct input size 1; 2; . . . to M. In the context of online
simulation, the energy complexity of networks is related to
the number of steps taken by any Turing machine, whereas
the size of a circuit is related to the number of steps of an
oblivious Turing machine. Thus, the energy complexity of a
network and the size of a circuit are related by a gap
determined by the separation between oblivious and non-
oblivious Turing machines using time-complexity as a
measure.

11 PHYSICAL REPRESENTATION OF PBITS AND

ENERGY SAVINGS

In this work (in Section 9) and as developed earlier by this
author in [1] and in [2], a bit is represented by a group of
classical microstates and the output value of switching is
determined through an instantaneous (classical) “measure-
ment” that detects the existence of a “witness” microstate to
the value of 0 or 1. An example of such an instantaneous
measurement is the detection of the position of a molecule of
gas in a cylinder containing it, asdescribedbySzilard [9]. This
approach to representing the value of a PBIT is to be
contrasted with the traditional approach to representing
PBITs as voltages and measured as averages as characterized
by Stein [30] and by Meindl [28]; we will briefly outline the
relationship between these alternate representations here.

A representation of a PBIT in the electrical domain would
use a value such as voltage, whose mean is the value of the
PBIT as shown in Fig. 10. A normally distributed noise
signal whose mean value is the intended PBIT value
determines the behavior of the system. Then, the probability
of detecting a particular voltage—assuming an arbitrarily
precise instantaneous measurement device—is determined
by the normal distribution and the actual value will be
centered around the current mean. In this representation
and as shown in Fig. 10, a value PBIT ¼ 0 is the interval of
the normalized voltage scale ð00; 0:5	, whereas PBIT ¼ 1
corresponds to the interval ½0:5; 00Þ. The overlap in the two
normally distributed random variables between these two
intervals, denoted by the hatched area A in the figure,
represents the region where a measurement can lead to an
erroneous value. Quantitatively, this area of overlap
between the two density functions, A, represents the error
of a PBIT value of 0 being erroneously detected to be 1 and
vice versa. Thus, using the notation from this paper, the
one-sided error ð1� pÞ ¼ A

2 . Comparisons between the
energy savings using probabilistic computing, between
the canonical realization of a PBIT and its novel counterpart
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were determined in collaboration with Palem et al. [38] and
Suresh et al. [39]; for a detailed discussion, the reader is
referred there. As shown in Fig. 11, while energy savings
are possible in both realizations, for a fixed probability p, in
an idealized thermodynamic sense, a realization of a PBIT

based on an approach inspired by a Szilard engine requires
lower energy than the canonical representation in the
electrical domain following the approach of Stein [30].

12 PBITS, LEAKAGE, AND THE NATIONAL

SEMICONDUCTOR ROADMAP

In this section, we will outline issues related to the energy
savings gleaned from probabilistic switching and devices
for realizing them. First, in Section 12.1, we provide an
overview of the anticipated impact that probabilistic
switching has on Moore’s law as projected by the current
roadmaps. An emerging and increasingly important aspect
of these roadmap projections is the energy consumption
attributed to leakage. In Section 12.2, we will outline the
potential that the switching constructs outlined in this
paper have for overcoming the challenges posed by leakage.
This has to be contrasted with the fact that, as described
thus far, our probabilistic switching elements and their

associated complexity framework address energy consump-
tion due to dynamic switching.

12.1 Probabilistic Switches as a Basis for
Accelerating Moore’s Law

A significant issue in modern computing devices, largely
based on CMOS semiconductor material, is lossy dissipation.
Feynman [35, Chapter 7] discusses this topic and its impact
on the idealized devices that are the basis for the energy
estimates in this paper. In devices available today, the
switching energy tends to be several orders of magnitude
above the ideal dissipationless value of �t ln 2 _pp based on the
idealized models used in this paper. Briefly, if lossy
dissipation is factored in, the savings due to probabilistic
switching are expected to be even greater than those
outlined at the fundamental limit in Section 9. We will
briefly discuss this phenomenon and its impact on energy
savings now.

In Fig. 12, we show the trends in energy consumed by
realistic CMOS devices with a feature size if 0:25�. Using
the well-known Trimaran framework and in collaboration
with Chakrapani and Seshasayee [40], we have shown the
energy savings through probabilistic switching savings can
be significant indeed and much higher than the amounts
characterized at the limit in Corollary 9.4. In this figure, the
energy savings in the context of a well-known probabilistic
algorithm, the Bayesian network, are illustrated. Thus, with
a Bayesian network of greater than 60 nodes and as shown
in the figure, the (energy� performanceðnumberofcyclesÞÞ
is better by a (multiplicative) factor of over 120 over
deterministic switching—deterministic computing is based
on a StrongArm SA1100 processor whose energy per-
switching step can be estimated from jouleTrack [41]
—through probabilistic CMOS devices with p ¼ 0:85.

One way of interpreting the trends illustrated in Fig. 12 is
to view probabilistic CMOS-based switching (devices) as a
basis for accelerating Moore’s law as projected by the
national semiconductor (ITRS) roadmap, wherein the exact
amount of acceleration depends on the feature size of the
technology and, hence, the point in time under considera-
tion. The term “acceleration” in this context implies that the
energy-performance benefits that Moore’s law characterizes
in the context of deterministic or conventional CMOS
devices and which is at the heart of the tremendous growth
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Fig. 11. Comparing energy savings due to probabilistic switching based

on PBIT realizations through a monoatomic gas referred to as the novel

representation and the more conventional realization through voltages

referred to as the canonical representation.

Fig. 10. Realization of a PBIT where a value of 0 is defined to be a
voltage in the interval ð00; 0:5	, whereas a 1 is defined to be a value in the
interval ½0:5; 00Þ.

Fig. 12. The improvements to energy X performance (running time) in

the context of a Bayesian network as a ratio of the deterministic case to

the case wherein the probabilistic computing steps are realized in

CMOS with thermal noise being used as a source of randomness.
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of the computing industry can be gleaned by an earlier
generation of probabilistic CMOS devices within the context
of probabilistic applications or workloads. Thus, probabil-
istic switching can be a basis for achieving the benefits of
Moore’s law earlier, albeit with an associated probability of
being correct p < 1; for a detailed discussion of this trend,
please see the work of Chakrapani et al. [40]. All of the
above predictions are empirical; for those interested in a
theoretical approach to modeling and analyzing dissipation
and its impact on switching, the reader is referred to
Gupta’s work [42].

12.2 Coping with Increased Leakage

In Fig. 13, we have shown the rate at which deterministic
switching energy drops with progress in CMOS technology,
based on the 2002 ITRS roadmap. As shown there, static
energy consumed as a result of leakage is increasing relative
to that consumed by switching. Thus, while switching
energy tends to be the dominant issue now and the
improvements projected by probabilistic switching shown
in Fig. 12 will be a significant factor for some time, after
2010, additional improvements to overcome static energy
consumption—efforts underway by technologists in the
semiconductor arena now—become increasingly signifi-
cant. In this context, a feature of switching and networks
that constituted most of the contents of this paper offers an
unanticipated and potential remedy. Specifically, a switch
sw in our formulation is not enabled or is dormant unless its
input enabling signal w is active, denoted by a value of 1.
Thus, switches that are not enabled in this sense are
quiescent and, hence, are introverted—they are active or
respond only when enabled.

In interpreting such a device in CMOS terms [43], this in
turn implies that networks realized from such introverted
switches can be a basis for minimizing static energy
consumption due to leakage. Conceptually, this notion is
similar to the idea of enabling entire blocks on logic only
when needed, leading to a style of circuits and computing
referred to as guarded evaluation by Tiwari et al. [44]. One
way of viewing an introverted switch is that it allows
guarded evaluation at the finest level of granularity
possible—that of one-bit functions—wherein the switches
are off when they are not in use. The entire methodology of
realizing networks (or circuits) based on our notion of

introverted switches to cope with the challenge posed by
leakage and the concomitant and novel challenges raised to
logic synthesis and design using them as building blocks is
an unexplored and potentially valuable direction of
research from the viewpoint of ameliorating the problems
posed by static power dissipation due to leakage. If our
networks are interpreted to be asynchronous or clock-
free—a context to which the development in this paper is
readily applicable—then the notion of an introverted switch
can, yet again, be viewed as a one-bit version of a “reactive
gate” that is at the core of designing asynchronous
processors (see Martin et al. [45]).

13 CONCLUDING REMARKS

The work described in this paper clearly builds substan-
tially on the surprising success of the use of probability in
deriving efficient algorithms wherein running time was the
primary criterion for success. Thus, Karp’s average-case
analysis [33], as well as the Rabin-Solovay-Strassen algo-
rithm referred to earlier on, which led to the field of
probabilistic computing, are important examples that
spawned the use of probability in algorithm design and
analysis. The work in this paper takes a different view from
these breakthroughs by interpreting probability to be a
byproduct of a physical phenomenon, ubiquitous to nature.
Please see Kish [46] for an excellent analysis of the impact of
noise viewed as an impediment to sustaining the projec-
tions of Moore’s law. In contrast to the universal view,
wherein noise is thus viewed as an impediment, our
approach takes the diametrically opposed view of viewing
it as a “resource” as an aid to achieving low-energy
probabilistic devices and computing. Thus, most devices
based on CMOS or other physical media are, by their very
nature, “unstable” “noisy” or, from our perspective,
inherently probabilistic. With these naturally unstable
devices as a starting point, energy is spent in deriving
stability so that what is popularly considered to be
(deterministic) computing is realized. If this energy is not
spent quite to the same extent and thus saved, these devices
provide a naturally probabilistic switch. Such a switch is
described and the concomitant energy savings are quanti-
fied in this work for the first time. A detailed discussion of
the relationship between this work and the rich history of
the role of probability in computing can be found in a paper
by this author [16].

The field of thermodynamics of computing, starting with
Landauer’s work [25] and leading to the reversible comput-
ingconceptsofBennett [26] aswell asFredkinandToffoli [27],
had much to offer in terms of a philosophy for reasoning
about physical models of computing that are simple and
idealized—this author credits Feynman [35]with providing a
helpful exposition for characterizing energy-aware comput-
ing abstractly using the thermodynamics of monoatomic
gases based on Szilard’s [9] work as a foundation. However,
the work presented in this paper departs from the reversible
computing framework, which can, in the ideal case, realize
computations with no energy expenditure at all—specifi-
cally, the work described in this paper deals with the style of
nonrecovering computing ubiquitous to any switch in any
commercially available modern-day computer, while the
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analytical models used here aand idealizations following
Feynman’s approach. Thus, while it is not reasonable to
expect that computers will be built in Silicon Valley and
elsewhere usingmodels based on the physics ofmonoatomic
gases used here (also see [1], [2], [3] for details), as Feynman
argues, these models provides a clean and abstract founda-
tion for reasoning about energy-aware computing without
the significant nonlinearities introduced by the more prac-
tical CMOS-basedmodels (brieflydiscussed in Section 11 and
developed further in [38]). Thus, our thermodynamic for-
mulations based on the models of a perfect gas can serve as a
convenient basis for identifying significant trends and
physical limits, even though the precise and quantitative
energy estimates will not be directly applicable to the context
of CMOS-based switches.

With this work as a starting point, four distinct areas of
research seem to hold promise in terms of further
exploration. The first direction concerns gaining a deeper
understanding of the inherent energy consumed within the
style of nonrecovering computing advocated in this paper.
Thus, the results claimed in Section 9 (and proved in [3])
can be viewed as “at least” estimates in the context of
energy savings achieved through probabilistic switching. It
will be interesting to understand the true behavior in terms
of “at most” estimates of the savings using realistic CMOS
devices, further developing the approach outlined in
Section 12.1. The second direction involves a systematic
study of the energy-complexity of algorithms as well as
complexity theoretic work, based on the models presented
here and this author’s earlier work [2], [39] that introduced
the RABRAM model. A third and, from a pragmatic
perspective, extremely important direction involves the
issue of realizing CMOS-based probabilistic switches as
well as their integration into circuits, thus forming a
substrate for computing. An important first in this direction
has been taken by interpreting the results from the previous
sections in the context of the electrical domain, as well as
plausible realizations as devices [38], [39], [47]. The fourth
and final direction concerns using an introverted switch in
conventional deterministic hardware (digital) designs as
well as in probabilistic designs (as discussed in Section 12.2)
as a basis for energy savings and for dealing with the
increasing and significant challenge posed by static dis-
sipation due to leakage.
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