1063-9667/11 $26.00 © 2011 IEEE
DOI 10.1109/VLSID.2011.51

2011 24th Annual Conference on VLSI Design

Trading Accuracy for Power with an Underdesigned
Multiplier Architecture

Parag Kulkarni(paragk@ucla.edu)*, Puneet Gupta(puneet@ee.ucla.edu)*, Milos Ercegovac(milos@cs.ulca.edu)
*Department of Electrical Engineering, University of California, Los Angeles
tDepartment of Computer Science, University of California, Los Angeles

Abstract—We propose a novel multiplier architecture with tun-
able error characteristics, that leverages a modified inaccurate
2x2 building block. Our inaccurate multipliers achieve an average
power saving of 31.78% — 45.4% over corresponding accurate
multiplier designs, for an average error of 1.39% — 3.32%. Using
image filtering and JPEG compression as sample applications
we show that our architecture can achieve 2X - 8X better
Signal-Noise-Ratio (SNR) for the same power savings when com-
pared to recent voltage over-scaling based power-error tradeoff
methods. We project the multiplier power savings to bigger
designs highlighting the fact that the benefits are strongly design-
dependent. We compare this circuit-centric approach to power-
quality tradeoffs with a pure software adaptation approach for a
JPEG example. We also enhance the design to allow for correct
operation of the multiplier using a residual adder, for non error-
resilient applications.

I. INTRODUCTION

NERGY consumption is a critical design criterion for
E today’s embedded and mobile systems. Significant effort
has already been devoted to improve energy efficiency at
various levels, from software, to architecture all the way down
to circuit and device levels.

Techniques which trade energy for quality of final solution are
typically at the algorithmic level and work with parameters
such as quantization levels and precision of coefficients [1]—
[3], but they utilize accurate building blocks. Any application
which can withstand bounded and relatively small errors from
their constituent components stands to gain from inaccurate
but low-power building blocks. For instance, [4] uses color
interpolation filtering to demonstrate graceful degradation of
SNR during voltage-scaling by ensuring that important com-
putations are least affected. [5] demonstrated how correctness
of arithmetic primitives themselves can be traded for energy
consumed. In [6], the authors scale the voltage below the
minimum voltage supply value needed, so as to trade accuracy
for power. The authors in [7] improved on this by using the
observation that errors in bits of higher value affect the quality
of the solution more as compared to lower bits, hence they
operate adders at more significant bits with a higher voltage
and over-scale the voltages for lower bits. [8] introduced the
first methodology for a voltage scaling based inaccurate mul-
tiplier, their Monte-Carlo simulation based approach achieves
a 50% reduction in power using four voltage domains, but
they do not report a SNR for the filtering application they
use. Such techniques which require multiple voltage domains
within a single arithmetic units are likely to be impractical for
a realistic design flow due to layout, voltage level conversion
etc., overheads which are ignored by [8] and others.

346

Though, most existing work [5], [7], [8] introduces errors by
over-scaling voltage supplies, there has been some work in the
direction of introducing error into a system via manipulation of
its logic-function, for adders [9]-[11] as well as combinational
logic [12]. The focus of the optimization is not power in either
case and the latter paper acknowledges poor results for multi-
output logic such as arithmetic units. [13] uses inaccurate
4 : 2 counters to build adders with fewer stages of logic with
power savings of ~ 3% — 8%. [14] reports power savings
of up to 66% without affecting accuracy of programs that
manipulate low resolution data, by reducing the bitwidth of
floating point multipliers. None of these works provide any
way to correct the incorrect output if needed. This may be
especially important for general purpose computing hardware
which runs a variety of applications.

Majority of the work in probabilistic or inaccurate low-power
design has focused on adders and their derivative systems.
Multipliers on the other hand are one of the primary sources
of power consumption in DSP applications such as Finite-
Impulse-Response (FIR) filters [15]. This work focuses on
low-power approximate multiplier architectures. Our contri-
butions are as follows.

o We present a 2x2 underdesigned multiplier block and
show how it can be used to build arbitrarily large power
efficient inaccurate multipliers. The architecture lends
itself to easy tunability of error and we present methods
to correct error (at a power cost) if needed.

o We evaluate the operation of this multiplier for image
filtering and JPEG applications and compare it with
voltage scaling based method.

o For a complete study, we also project power savings from
different software configurations and compare with our
approach.

Rest of this paper is organized as follows. The inaccurate
multiplier is described in section II, section III overviews our
experimental setup and results, section IV details the impact
on real applications and section V introduces a correction
mechanism and we conclude in section VL.

II. INACCURATE MULTIPLIER

In this section we introduce the building block for our in-
accurate multipliers and show how larger multipliers can be
efficiently built from it. We also discuss the associated errors.

A. Building Block

Our objective is to introduce error into the multiplier by
manipulating its logic function, using the 2x2 multiplier as

IEEE
computer
psoue

ty

a building block. The modified Karnaugh Map (K-Map) is
shown in Fig. 1, with the changed entry highlighted. The
motivation behind this change was the observation that by
representing the output of 3 % 3 using three bits (111) instead
of the usual four (1001), we are able to significantly reduce
the complexity of the circuit. The resulting simpler circuit
is shown in Fig. 2a, and has an output that is correct for
fifteen out of the sixteen possible inputs. Error occurs with
a magnitude of (9 — 7) = 2, with a probability of %. The
inaccurate version has close to half the area of the accurate
(Fig. 2b) version (see Section III.A); a shorter and faster
critical path and less wires. Since the inaccurate version of
the 2x2 multiplier has smaller switching capacitance than
its accurate counterpart, it offers the potential for significant
dynamic power reduction for the same frequency of operation.

B. Building Larger Multipliers

Larger multipliers are built by using the inaccurate 2x2 block
to produce partial products and then adding the shifted partial
products [16]. Fig. 3, shows an example of a single 4x4
multiplier built out of four 2x2 blocks, where Ay, Xp and
Ap, X are the upper and lower two bits of inputs A, X
respectively. This can sometimes be restrictive for optimization
of the adder tree [16]. But since the inaccurate 2x2 building
block has no adder or XOR gates, it does not suffer from this
restriction. Hence larger multiplier blocks can be built out of
the 2x2 building block, and still perform better in terms of
power and area as compared to accurate architectures. The
results presented in section III will reflect this. Note that our
baseline architectures are not built using 2x2 components, but
are regular power optimized multipliers which are optimized
by a commercial synthesis tool RTL-Compiler (RC) [17].
The optimization of the adder tree is also left to RC, for
both the accurate and inaccurate cases. When building larger
multipliers, we introduce inaccuracy via the partial products,
the adder tree remains accurate. This makes our error rates
easily computable and is the topic of the following sub-section.

BiBg
ALA, 00 01 11 10
00 000 000 000 000
01 000 001 011 010
11 000 011 111 110
10 000 010 110 100
Figure 1. K-Map for the inaccurate 2x2 multiplier

C. Error Rates

The 2x2 multiplier introduced in Section II.A, has a small
and easily computable error probability of 1—16 with a max
error magnitude of 22.22%. But building multipliers of higher
bit widths using the inaccurate multiplier as a building block,
leads to slightly more complicated relationships for their error
rates. We wrote simulation models in C++ to compute the error
probabilities and mean error for higher bit widths. The results
in Table I show that while the max-possible error percentage
remains constant at 22.22% the probability of error rises with
increasing bit-width. But the mean-error increases slowly and

L out2
al

out1

o } out0
a0 (a)

out1

o out0
a

(b)

Figure 2. The accurate (b) and inaccurate (a) 2x2 multipliers, with the critical
paths highlighted

An AL

x Xpu Xr

Ap x X

AH X XL

AL X XH
Apg x Xy

Building larger multipliers from smaller blocks

Figure 3.

then almost saturates between 3.3%—3.35%. This is important,
as the mean-error is a good indicator of the SNR, as we
will see in Section IV. The graph in Fig. 4 gives a clearer
understanding of why the mean-error saturates - for higher bit
widths the less significant errors are dominant and the larger
errors are more unlikely. This results in an almost static mean-
error. We will also see in later sections, that the ~ 3.3% mean-
error compares well with the mean-error achieved via other
methods.

D. Tunable Error

The inaccurate multiplier we introduced has a fixed mean-
error and error-probability for a given bit-width (Table I), but
a designer may want to exploit other points on the accuracy-
power curve. Since our multiplier is built using 2x2 compo-
nents, it is possible to replace these individual components
with accurate versions to reduce the error rate and mean-
error. Such a replacement results in smaller power savings,
but provides a means to achieve different points on the error
vs. power savings trade-off curve. The resulting power vs.
accuracy curve for our inaccurate multiplier is shown in Fig.
7 (dotted line). As expected, increasing the mean-error results
in greater power savings.

347

Table 1
ERROR PROBABILITY AND MEAN-ERROR FOR VARYING BIT-WIDTHS

Bit- Error-Prob | Mean-Error | Max-Error
Width
2 0.0625 1.39% 22.22%
4 0.19 2.60% 22.22%
8 0.46 3.25% 22.22%
12 0.675 3.31% 22.22%
16 0.81 3.32% 22.22%
60
£ s ‘
E
2 40
=
g 30
£ 20 =12
Z 10 4
£l Lw. il al e il
St det Ol e T T T T T
CEEELE LN 8
S
Error Value (%)
Figure 4. Error percentage distribution for 4-bit and 12-bit inaccurate

multipliers
III. EXPERIMENTAL SETUP AND CIRCUIT LEVEL RESULTS
A. Experimental Setup

In this section we present a brief overview of our power
measurement methodology and experimental setup. All archi-
tectures were written in Verilog, and synthesized by RC [17]
to meet the target frequencies. The inaccurate multipliers were
built using the 2x2 inaccurate building blocks to generate the
partial products; but the adder network to generate the final
product was generated and optimized by the tool and was
completely accurate. The accurate versions were implemented
in two different ways:

900
750
< 600
3
= 450
@
3
a 300
150 —
0 1
133 2 25 3 333
Frequency (Ghz) ——Accurate -#Inaccurate
Figure 5. Dynamic power vs. frequency for accurate and inaccurate
multipliers
50%
=D i
Reduction
30%
® Lcakage
20% Power
Reduction
- l
Area
0% Reduction
1.33 2 25 3 3.33

Freqﬁency (Ghz)

Figure 6. Dynamic power, leakage power and area savings for a 4-bit
inaccurate mulfiplier

Table 1T
DYNAMIC POWER REDUCTION WITH INCREASING BIT-WIDTHS FOR
VARIOUS FREQUENCIES

Bit | F 1.25F | L5F | L75F | 2F | Avg

) |) |) | o) | (B) | (%)
2 | 449 | 4201 | 421 | 489 | 489 | 454
4 | 137 | 31.6 | 448 | 447 | 465 | 363
8 | 331 | 404 | 263 | 488 | 589 | 415
16 | 256 | 29.6 | 324 | 338 | 374 | 318

1) By generating partial products and adding shifted ver-
sions of them as was done for the inaccurate case;

2) The entire architecture selection and optimization of the
multiplier is left to synthesis tool.

The best result of the two was used for comparison for
each case. To obtain accurate power numbers as well as
error characteristics, the synthesized netlists were simulated
in NCSIM [18], using all possible input vectors with back-
annotated delays [19]. Resulting switching activity information
is extracted using a Value-Change-Dump (VCD) file [20], and
fed to RC for dynamic power computation. The designs are
synthesized using the 45nm Nangate open cell library [21].
For voltage scaled versions of the multipliers, the library was
recharacterized at different voltage points.

B. Power and Area Results

Fig. 6 shows the reduction in dynamic/leakage power as well
as area for a 4-bit inaccurate multiplier. Table II shows the
dynamic power reduction (31.8% — 45.4%) at higher bit-
widths and varying frequencies. We take measurements at
five different frequency values between F' and 2F, where
2F is the maximum possible achievable frequency of the
accurate multiplier. We observe that the power benefits of
the 2x2 multiplier are carried forward to higher bit-widths.
Also increasing the frequency of operation results in greater
benefits (Fig. 5). This is because the inaccurate version is
inherently faster, and needs less aggressive gate sizing to meet
increasing frequency constraints. Less gate sizing results in
smaller switching capacitance.

C. Design Level Power Savings

To confirm power savings in a larger design that instantiates it,
we used the inaccurate multiplier in a variety of designs from
[22]. The results are presented in Table III. As expected the
power savings are best in multiplier intensive designs such
as the FIR filter, and far less pronounced on other designs
such as the mini RISC processor. These results highlight that
approximate arithmetic approaches may not be useful for all
designs.

Table IIT
DESIGN LEVEL POWER SAVINGS

Design # # Mult. Total
Multi- | Gates Power Power
pliers () Reduction | Reduction
FFT 32 158K 25.166% 13.98%
FIR 4 1.IK 31.09% 18.30%
RISC 1 10K 28.04% 1.51%

348

Table IV
ERROR RATES AND POWER SAVINGS FOR INACCURATE ADDER BASED
MULTIPLIER

Error | Mean Error | Max Error | Power Reduction
Prob.

0.29 10.07% 62.22% 37.89%
0.23 6.01% 57.14% 32.35%
0.20 4.40% 57.14% 28.87%

0.15 3.40% 57.14% 20.16%
0.16 3.04% 57.14% 16.83%
0.19 2.92% 44.44% 19.81%
0.12 2.18% 44.44% 12.14%

D. Partial Products vs. Adder Tree

Our design introduces errors via the partial products. Alter-
natively it is also possible to introduce the inaccuracy via the
adder-tree, using an inaccurate adder like the one introduced in
[9]. One of the issues with this is that it is hard to analyze the
errors, as noted in [8], making it difficult to build a correction
unit. For a comparison of the power-accuracy trade-off for
such a system, we used the inaccurate adder introduced in [9],
to build inaccurate multipliers. Using accurate partial products
and by placing these inaccurate adders (best possible locations
were exhaustively searched) at different points in the adder
tree we were able to obtain the error-power tradeoff. It can
be seen from Table IV that the mean and max error from this
technique is relatively large. Moreover, the power savings are
roughly in the same range as what we encountered before.
The accuracy-power tradeoff (Fig. 7) for the partial product
technique is better than the inaccurate adder technique.

35 =
~ & e
\@ 30 g
S -, /
= 25 e |
£ n-- F
g 20
315 /
& /
5 10
S
£ 5
0 T . !
0.5 1.5 25 3.5 4.5 5.5 6.5
Mean-Error (%) - -Partial Products ——FA
Figure 7. Accuracy vs. power tradeoff comparison for partial product and

adder based approaches.

e proposed partial product based approach give a
much better tradeoff.

IV. IMPACT ON REAL APPLICATIONS

In this section we test our inaccurate multiplier on two image
processing applications and then compare software based
power-quality tradeoff to our hardware based technique on the
JPEG image compression algorithm.

A. Image Filtering

The first application we use is a Gaussian smoothing based
image sharpening filter, modeled in MATLAB, similar to the
one used in [8]. This is done by convolving the image with a
matrix identical to the one presented in [8]. For the inaccurate

filter, the 8-bit multiplication in the convolution is performed
by an inaccurate multiplier, using its corresponding MATLAB
model. Fig. 8 shows the results for accurate as well as
various inaccurate multiplier approaches. Our underdesigned
multiplier has an average power saving of 41.48% with a SNR
of 20.36dB. In comparison, the authors in [5] report a SNR
of 19.63dB for 21.7% power saving (though for a different
technology) over baseline, using four different voltage do-
mains. Fig. 8 (e¢) and 8 (d) show that our approach results
in 2X - 8X better SNR when compared to simple voltage
over-scaling [6]. This suggests that image processing/filtering
applications could employ the presented inaccurate multiplier
with significant power savings and minimal loss in image
quality. Note that the SNR for the filtering application is
defined between the accurately filtered image and inaccurately
filtered image, this was done for sake of uniform comparison
with [5], who use this notation. For the JPEG application we
revert back to the more common definition, where SNR is
defined between the original noise-less image and the filtered
result.

(e) (F

Figure 8. Image sharpening (a) original blurred image; (b) enhanced using
accurate multiplier; (c) by inaccurate multiplier, power reduction 41.5%,
SNR : 20.365dB; (d) voltage over-scaling for 30% power reduction, SNR :
9.16dB; (e) voltage over-scaling for 50% power reduction, SNR : 2.64dB;
(f) by introducing errors via the adder-tree, SNR : 7.3dB

349

B. Comparison with Software-level Power-Quality Tradeoff

As a second application we use a JPEG compression algorithm
to observe the effects of our inaccurate multiplier on a more
complex application and to compare software and hardware
based quality tradeoffs. As before, we replace the multiplica-
tion in the JPEG algorithm with the model of the inaccurate
multiplier. Table V compares compression quality for four
benchmark images. The average SNR reduction is found to
be roughly in the same range as the mean-error introduced
(Table I).

The JPEG algorithm can trade accuracy for runtime by reduc-
ing the number of coefficients used for compression, allowing
for a software based tradeoff. To compare with the software
approach, we synthesized the inaccurate multiplier again to
consume the same power as the accurate one but operate at
a greater frequency. This would result in speed up of the
JPEG application assuming that the multiplier constitutes the
critical path of the implementation. We first run the baseline
JPEG increasing the number of coefficients (runtime) used,
resulting in the SNR vs. runtime curve shown in Fig. 9. We
use the same coefficients, but with the inaccurate multiplier,
giving us a different (lower) set of SNR points. Using the
frequency scaling factor from our synthesis results, we derive
a SNR vs. runtime curve for when the multiplier is on the
critical path (scaled inaccurate case in Fig. 9). Fig. 9 shows
that for the JPEG application, hardware based approach has
limited benefits and the software based approach yields a better
tradeoff, especially at higher SNR values.

In section II we showed that the inaccurate multiplier can
be built to have different values of mean-error and power
consumption. Using that resulting accuracy-power curve (Fig.
7), the frequency power table previously presented (Table II)
and the SNR vs. runtime curve derived above (Fig. 9), we are
able to compare the accuracy vs. power curves of the hardware
and software based approaches. In our experiments the total
runtime for the JPEG compression is kept constant. We use
various configurations of the inaccurate multiplier, each with a
different mean-error and power consumption (Fig. 7), yielding
a power vs. SNR curve for the hardware based approach.
From the runtime vs. SNR curve in Fig. 9 we know the
amount of runtime (hence number of coefficients) the software
approach would need to achieve the same SNR. Since we
keep the runtime constant, we scale the frequency of operation
appropriately and use our power-frequency tables to derive a
SNR vs. power relationship for the software approach. The
comparison of the two in Fig. 10 shows that the hardware
based approach still consumes less power than the software
one, to achieve the same SNR in a fixed amount of runtime.
Though the difference in power consumption is significantly
smaller than that of the stand-alone inaccurate multiplier over
the baseline. These experiments hold under the assumption
that the multiplier determines the frequency of the operation
and consumes the bulk of the power.

V. ACCURATE MODE OF OPERATION

One of the advantages of our approach, is that simple decoder
logic can be used to detect the magnitude of error for any input

235
=
&
g 33
w1
31
29
0.02 0.06 0.1 0.14 0.18
Runtime (sec) -=-Accurate Inaccurate —-Scaled Inaccurate
Figure 9. Run-time-accuracy tradeoff for software and hardware based

approaches for JPEG_compression. Accurate : accurate hardware, purely
software based tradeoff. Inaccurate : inaccurate multiplier, when not in critical
path. Scaled Inaccurate : inaccurate multiplier and in critical path.

450
400
350
300
250
200
150
100

50

0
30 31 32 33 34 35 36

SNR (dB)

-=-SW

Power (uW)

——HW

Figure 10. Power-accuracy tradeoff for software and hardware based
approaches for JPEG compression

vector. This error amount can then be added to the inaccurate
product to yield the accurate result when needed. Fig. 12
shows the example of the error-detection and correction unit
for the 2x2 case. The AND gate acts as a simple decoder,
detecting the 3 % 3 input vector and the correcting adder
adds the required amount (2) when the error triggering input
pattern is detected. Such a correction mechanism involves an
overhead, and will be less efficient in terms of area than the
baseline architecture. Therefore we envision a system (Fig.
11) with two modes of operation - a regular, non-critical and
inaccurate mode, and a mission-critical and hence accurate
mode. In the non-critical mode, the correction unit will be
either completely switched off or power gated, resulting in the
basic inaccurate operation, with its significant power savings.
In the critical mode of operation, the system produces an
accurate result at the cost of greater power in the critical
mode of operation, and works at a slightly slower frequency
in this mode. We re-ran our initial experiments to evaluate
this overhead. Synthesizing the new architecture to work at
0.85 times the original frequency in the accurate-mode, and
at the same frequency as the baseline for the inaccurate

Table V
JPEG COMPRESSION USING THE INACCURATE MULTIPLIER

Image Inaccurate Accurate SNR
SNR (dB) | SNR (dB) | Reduction

Lenna 25.19 25.56 1.44%

Coins 19.31 19.55 1.22%

Sand-Dunes 36.5 37.94 3.79%

Fireman 30.23 30.89 2.13%

Average - - 2.15%

350

mode. As before, we synthesized this modified design for
multiple frequencies and observed an average area overhead
of 4.6% —10.5% and in the inaccurate mode an average power
overhead of 4.8% — 8.56% (Table VI).

Table VI
ACCURATE OPERATION AREA AND POWER OVERHEAD
Bit Average Max Average Max
Width Area Area Power Power
Overhead Overhead Overhead Overhead
2 4.6% 8.14% 4.8% 8.32%
4 5.87% 7.67% 7.5% 16.14%
8 10.5% 13.44% 8.56% 12.88%
16 9.875% 13.85% 8.22% 13.67%
JERERRARARRRESRAREG S AR 1
; il
........... - s
Accurate-Mode &
Enable Signal
z 3 Error Detection &
Correcting Adder 5
Inaccurate
—— Multiplier
= on o BmTe S & i N
_______ ! [;
1
| S——

Figure 11. Accurate mode extension, the upper path is for accurate operation
and the lower path is for inaccurate operation

VI. CONCLUSION

With a mean error of 1.39% — 3.35% and power savings
between 30% —50%, the underdesigned multiplier architecture
presented allows for trading of accuracy for power. It achieves
2X - 8X better SNR than simple voltage over-scaling tech-
niques, and does not suffer from overheads associated with the
multiple voltage domains of advanced over-scaling techniques.
A simple correction mechanism is proposed for usage in a
critical mode. We also show that introducing errors via partial
products is more promising than via the adder tree. The results
suggest that design-for-error based techniques have significant
potential for power savings, and can be easily integrated into
today’s automated ASIC design flow. Future work includes
extending the approach to other arithmetic components and
an algorithm for finding the point of maximum power benefit
for a given error rate.

ACKNOWLEDGEMENT

The authors would like to thank Pratyush Aditya from Cadence
Design Systems, for his valuable feedback and contributions
towards setting up power optimization for multiplier compo-
nents generated by RC.

REFERENCES

[1] M. Lamoureux, “The poorman’s transform: approximating the fourier
transform without multiplication,” Signal Processing, IEEE Transactions
on, vol. 41, no. 3, pp. 1413 —1415, mar 1993.

351

Correction
=2'p10=2

o+

Error Detection Logic

Accurate Output

Inaccurate Input

Correcting Adder
Figure 12. The error detection and correction logic for the 2x2 case
[2] 1. Reed, D. Tufts, X. Yu, T. Truong, M.-T. Shih, and X. Yin, “Fourier

[10
[11]
[2

[13]

[15]

analysis and signal processing by use of the mobius inversion formula,”
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 38,
no. 3, pp. 458 —470, mar 1990.

G. Boudreaux-Bartels and T. Parks, “Discrete fourier transform using
summation by parts,” in Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP '87., vol. 12, apr 1987, pp. 1827
— 1830.

N. Banerjee, G. Karakonstantis, J. H. Choi, C. Chakrabarti, and K. Roy,
“Design methodology for low power and parametric robustness through
output-quality modulation: application to color-interpolation filtering,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 28, no. 8, pp. 1127-1137,
2009.

J. George, B. Marr, B. E. S. Akgul, and K. V. Palem, “Probabilistic
arithmetic and energy efficient embedded signal processing,” in CASES
'06: Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems. New York, NY, USA:
ACM, 2006, pp. 158-168.

R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED ’99: Proceedings of the 1999
international symposium on Low power electronics and design. New
York, NY, USA: ACM, 1999, pp. 30-35.

K. V. Palem, “Energy aware computing through probabilistic switching:
A study of limits,” JEEE Trans. Comput., vol. 54, no. 9, pp. 1123-1137,
2005.

M. S. Lau, K.-V. Ling, and Y.-C. Chu, “Energy-aware probabilistic
multiplier: design and analysis,” in CASES '09: Proceedings of the 2009
international conference on Compilers, architecture, and synthesis for
embedded systems. New York, NY, USA: ACM, 2009, pp. 281-290.

D. Shin and S. K. Gupta, “A re-design technique for datapath modules in
error tolerant applications,” Asian Test Symposium, vol. 0, pp. 431-437,
2008.

D. Kelly and B. Phillips, “Arithmetic data value speculation,” in A4sia-
Pacific Computer Systems Architecture Conference, 2005, pp. 353-366.
S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67-73, 2004.

D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in in Proc. 13th IEEE Design, Automation and Test in
Europe, 2010.

B. J. Phillips, D. R. Kelly, and B. W. Ng, “Estimating adders
for a low density parity check decoder,” F. T. Luk, Ed., vol.
6313, no. 1. SPIE, 2006, p. 631302. [Online]. Available: http:
//link.aip.org/link/?PS1/6313/631302/1

J. Tong, D. Nagle, and R. Rutenbar, “Reducing power by optimizing
the necessary precision/range of floating-point arithmetic,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 8, no. 3,
pp. 273 —286, jun. 2000.

S. K. Sangjin, S. Hong, M. C. Papaefthymiou, and W. E. Stark,
“Low power parallel multiplier design for dsp applications through
coefficient optimization,” in in Proc. 12th IEEE International ASIC/SOC
Conference, pp. 286-290.

1. Koren, Computer Arithmetic Algorithms, 2nd ed. A.K. Peters, 2002.
“Cadence rtl-compiler,” http://www.cadence.com/products/ld/rtl_
compiler/pages/default.aspx.

“Cadence incisive simulator,” http://www.cadence.com/products/ld/
design_team_simulator/pages/default.%aspx.

“Standard delay format,” http://www.vhdl.org/sdf/sdf 3.0.pdf.

“Value change dump file,” http://en.wikipedia.org/wiki/Value change
dump.

“Nangate open cell library,” http://www.nangate.com/index.php?option=
com_content&task=view&id=137&It%emid=137.

“Opencores,” http://www.opencores.org/.

