
Microprocessors and Microsystems 34 (2010) 151–162
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Search algorithms for the multiple constant multiplications problem: Exact
and approximate

Levent Aksoy a,*, Ece Olcay Günes� a, Paulo Flores b

a Istanbul Technical University, Department of Electronics and Communication Engineering, 34469, Maslak, Istanbul, Turkey
b INESC-ID / IST, TU Lisbon, Rua Alves Redol, 1000-029, Lisbon, Portugal

a r t i c l e i n f o
Article history:
Available online 14 October 2009

Keywords:
Multiple constant multiplications problem
Depth-first search
Breadth-first search
Graph-based algorithms
Finite Impulse Response filters
0141-9331/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.micpro.2009.10.001

* Corresponding author. Tel.: +90 212 2856733; fax
E-mail addresses: aksoyl@itu.edu.tr (L. Aksoy), ece.g

pff@inesc-id.pt (P. Flores).
a b s t r a c t

This article addresses the multiplication of one data sample with multiple constants using addition/sub-
traction and shift operations, i.e., the multiple constant multiplications (MCM) operation. In the last two
decades, many efficient algorithms have been proposed to implement the MCM operation using the few-
est number of addition and subtraction operations. However, due to the NP-hardness of the problem,
almost all the existing algorithms have been heuristics. The main contribution of this article is the pro-
posal of an exact depth-first search algorithm that, using lower and upper bound values of the search
space for the MCM problem instance, finds the minimum solution consuming less computational
resources than the previously proposed exact breadth-first search algorithm. We start by describing
the exact breadth-first search algorithm that can be applied on real mid-size instances. We also present
our recently proposed approximate algorithm that finds solutions close to the minimum and is able to
compute better bounds for the MCM problem. The experimental results clearly indicate that the exact
depth-first search algorithm can be efficiently applied to large size hard instances that the exact
breadth-first search algorithm cannot handle and the heuristics can only find suboptimal solutions.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In several computationally intensive Digital Signal Processing
(DSP) operations, such as Finite Impulse Response (FIR) filters as
illustrated in Fig. 1 and Fast Fourier Transforms (FFT), the same in-
put is multiplied by a set of constant coefficients, an operation
known as multiple constant multiplications (MCM). The MCM
operation is a central operation and performance bottleneck in
many applications such as, digital audio and video processing,
wireless communication, and computer arithmetic. Hence, hard-
wired dedicated architectures are the best option for maximum
performance and minimum power consumption.

In hardware, the constant multiplications are generally realized
using addition/subtraction and shifting operations in the shifts-add
architecture [1] due to two main reasons: (i) the design of a mul-
tiplication operation is expensive in terms of area, delay, and
power consumption. Although the relative cost of an adder and a
multiplier in hardware depends on the adder and multiplier archi-
tectures, note that a k � k array multiplier has k times the area and
twice the latency of the slowest ripple carry adder; (ii) the con-
stants to be multiplied in the MCM operation are determined by
ll rights reserved.

: +90 212 2856535.
unes@itu.edu.tr (E.O. Günes�),
the DSP algorithms beforehand. Hence, the full-flexibility of a mul-
tiplier is not required in the implementation of the MCM operation.
Thus, since shifts are free in terms of hardware, the MCM problem
is defined as finding the minimum number of addition/subtraction
operations that implement the constant multiplications and has
been proven to be an NP-hard problem in [2].

The multiple constant multiplications also allow for a great
reduction in the number of operations, consequently in area and
power dissipation of the MCM design, when the common partial
products are shared among different constant multiplications. As
a small example, suppose the constant multiplications 11x and
13x as given in Fig. 2a. The shift-adds implementations of constant
multiplications are presented in Fig. 2b–c. Observe that while the
multiplierless implementation without partial product sharing re-
quires four operations, Fig. 2b, the sharing of partial product 9x in
both multiplications reduces the number of operations to 3, Fig. 2c.

The last two decades have seen much tremendous effort on the
design of efficient algorithms proposed for the MCM problem. These
methods focus on the maximization of the partial product sharing
and can be categorized in two classes: Common Subexpression Elim-
ination (CSE) algorithms [3–7] and graph-based techniques [8–12].
In CSE algorithms, initially, the constants are defined under a num-
ber representation namely, binary, Canonical Signed Digit (CSD)
[4], or Minimal Signed Digit (MSD) [6]. Then, all possible subexpres-
sions are extracted from the representations of the constants and the

Fig. 2. (a) Multiple constant multiplications; shift-adds implementations: (b) without partial product sharing; (c) with partial product sharing.

Fig. 1. Transposed form of a hardwired FIR filter implementation.

152 L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162
‘‘best” subexpression, generally the most common, is chosen to be
shared in constant multiplications. For the example given in Fig. 2,
the sharing of partial product 9x is possible, when constants in mul-
tiplications 11x and 13x are defined in binary, i.e., 11x ¼ ð1011Þbinx
and 13x ¼ ð1101Þbinx respectively, and the most common partial
product, i.e., ð1001Þbinx ¼ xþ ðx� 3Þ ¼ 9x, is identified in both mul-
tiplications. The exact CSE algorithms of [13,14] formalize the MCM
problem as a 0–1 integer linear programming problem and find the
minimum number of operations solution by maximizing the partial
product sharing. However, the search space of a CSE algorithm is re-
stricted with the possible subexpressions that can be extracted from
the representations of constants.

Furthermore, to increase the number of possible implementa-
tions of a constant, consequently the partial product sharing, the
algorithm of [15] applies the CSE technique of [4] to all signed-digit
representations of a constant taking into account up to m addi-
tional signed digits to the CSD representation, i.e., for a constant
including n signed digits in CSD, the constant is represented with
up to n + m signed digits. This approach is applied to multiple con-
stants using exhaustive searches in [16]. Also, the heuristic of [17]
obtains much better solutions than the CSE heuristic of [6] by
extending the possible implementations of constants based on
MSD representation.

On the other hand, graph-based algorithms are not restricted to
a particular number representation and synthesize the constants
iteratively by building a graph. Although the graph-based algo-
rithms find better results than CSE algorithms as shown in [12],
all the previously proposed graph-based algorithms are based on
heuristics and provide no indication on how far from the minimum
their solutions are.

A large amount of work that considers the MCM problem has also
addressed efficient implementations of the MCM operation in hard-
ware. These techniques include the use of different architectures,
implementation styles, and optimization methods, e.g., [18,19].

In this paper, we introduce exact and approximate algorithms
designed for the MCM problem. Initially, we present an exact
graph-based algorithm [20] that searches the minimum number
of operations solution of the MCM problem in a breadth-first man-
ner. Then, we describe an approximate graph-based algorithm [21]
that finds similar results with the minimum solutions and can be
applied on more complex instances that the exact algorithm can-
not handle. The main contribution of this paper is the introduction
of an exact depth-first search algorithm that uses the solution of
the approximate algorithm, in the determination of the lower
and upper bounds of the search space, and finds the minimum
solution using less computational effort than the exact breadth-
first search algorithm. The proposed algorithms were applied on
a comprehensive set of instances including randomly generated in-
stances and FIR filters, and compared with the previously proposed
exact CSE algorithm [14] and prominent graph-based heuristics
[9,12]. The experimental results clearly indicate that the exact
depth-first search algorithm that explores a highly constricted
search space determined by the approximate algorithm obtains
the minimum solutions of the MCM instances that the exact
breadth-first search algorithm finds them difficult to handle and
for which all the prominent graph-based heuristics obtain subopti-
mal solutions.

The rest of the paper is organized as follows: Section 2 gives the
background concepts on the MCM problem and Section 3 describes
the exact breadth-first search algorithm. The approximate graph-
based algorithm is presented in Section 4 and the exact depth-first
search algorithm is introduced in Section 5. Afterwards, experi-
mental results are presented and finally, the conclusions are given
in Section 7.

2. Background

In this section, initially, we give the main concepts and the
problem definition and then, we present an overview of the
graph-based algorithms.

Note that since the common input is multiplied by the multiple
constants in MCM, the implementation of constant multiplications
is equal to the implementation of constants. For example, the con-
stant multiplication 3x ¼ ðx� 1Þ þ x ¼ ðð1� 1Þ þ 1Þx can be
rewritten as 3 ¼ ð1� 1Þ þ 1 by eliminating the variable x from both
sides. Hereafter, this notation will be used for the sake of clarity and
in this notation, we will refer ‘1’ and the intermediate constant to the
variable that the constants are multiplied with, i.e., x, and to the par-
tial product used in the former notation respectively.

2.1. Definitions

In the MCM problem, the main operation, called A-operation in
[12], is an operation with two integer inputs and one integer out-

Fig. 3. The representation of the A-operation in a graph.

L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162 153
put that performs a single addition or a subtraction, and an arbi-
trary number of shifts. It is defined as follows:

w ¼ Aðu;vÞ ¼ jðu� l1Þ þ ð�1Þsðv � l2Þj � r

¼ j2l1 uþ ð�1Þs2l2 v j2�r ð1Þ

where l1; l2 P 0 are integers denoting left shifts, r P 0 is an integer
indicating the right shift, and s 2 f0;1g is the sign that denotes the
addition/subtraction operation to be performed. The operation that
implements a constant can be represented in a graph where the ver-
tices are labeled with constants and the edges are labeled with the
sign and shifts as illustrated in Fig. 3.

In the MCM problem, it is assumed that the shifting operation
has no cost, since shifts can be implemented only with wires in
hardware. Also, the sign of the constant is assumed to be adjusted
at some part of the design and the complexity of an adder and a
subtracter is equal in hardware, although the area of an addition/
subtraction operation depends on the low-level implementation
issues as described in [18]. Thus, in the MCM problem, only posi-
tive and odd constants are considered. Observe from Eq. (1) that
in the implementation of an odd constant considering any two
odd constants at the inputs of an A-operation, one of the left shifts,
l1 or l2, is zero and r is zero, or both l1 and l2 are zero and r is greater
than zero. When finding an operation to implement a constant, it is
necessary to constrain the number of left shifts, otherwise a con-
stant can be implemented in infinite ways. As shown in [9], it is
sufficient to limit the shifts by the maximum bit-width of the con-
stants to be implemented, i.e., bw, since allowing larger shifts does
not improve the solutions obtained with the former limits. In the
algorithms introduced in this paper and also, in the graph-based
algorithm of [12], the number of shifts is allowed to be at most
bwþ 1. With these considerations, the MCM problem [12] can be
also defined as follows:

Definition 1 (The MCM problem). Given the target set,
T ¼ ft1; . . . ; tng � N, including the positive and odd unrepeated
target constants to be implemented, find the smallest ready set
R ¼ fr0; r1; . . . ; rmg with T � R such that r0 ¼ 1 and for all rk with
1 6 k 6 m, there exist ri; rj with 0 6 i; j < k and an A-operation
rk ¼ Aðri; rjÞ.

Hence, the number of operations required to be implemented
for the MCM problem is jRj � 1 as given in [12]. Thus, to find the
minimum number of operations solution of the MCM problem,
one has to find the minimum number of intermediate constants
such that all the constants, target and intermediate, are imple-
mented using a single A-operation where its inputs are ‘1’, interme-
diate, or target constants and the MCM implementation is
represented in a directed acyclic graph.

2.2. Related work

For the single constant multiplication problem, an exact algo-
rithm that finds the minimum number of required operations for
a constant up to 12 bits was introduced in [22] and it was extended
up to 19 bits in [23].

For the MCM problem, four algorithms, ‘add-only’, ‘add/sub-
tract’, ‘add/shift’, and ‘add/subtract/shift’, were proposed in [8].
The ‘add/subtract/shift’ algorithm of [8] was modified in [9], called
BHM, by extending the possible implementations of a constant,
considering only odd numbers, and processing constants in order
of increasing single coefficient cost that is evaluated by the algo-
rithm of [22]. A graph-based algorithm, called RAG-n, was also
introduced in [9]. RAG-n has two parts: optimal and heuristic. In
the optimal part where the initial ready set includes only ‘1’, each
target constant that can be implemented using a single A-operation
whose inputs are in the ready set are found and removed from the
target set to the ready set. If there exist unimplemented element(s)
left in the target set, the algorithm switches to the heuristic part. In
this iterative part of the algorithm, intermediate constants are
added to the ready set to implement the target constants. RAG-n
initially chooses a single unimplemented target constant with
the smallest single coefficient cost evaluated by the algorithm of
[22] and then, synthesizes it with a single operation including
one(two) intermediate constant(s) that has(have) the smallest va-
lue among the possible constants. However, observe that since the
intermediate constants are selected for the implementation of a
single target constant in each iteration, the intermediate constants
chosen in previous iterations may not be shared for the implemen-
tation of not-yet synthesized target constants in later iterations,
thus yielding a local minimum solution. To overcome this limita-
tion, the graph-based heuristic of [12], called Hcub, includes the
same optimal part of RAG-n, but uses a better heuristic that consid-
ers the impact of each possible intermediate constant on the not-
yet synthesized target constants. In each iteration, for the imple-
mentation of a single target constant, Hcub chooses a single inter-
mediate constant that yields the best cumulative benefit over all
unimplemented target constants. It is shown in [12] that Hcub ob-
tains significantly better results than BHM and RAG-n.

We make two general observations on a heuristic algorithm de-
signed for the MCM problem. In these observations, jTj denotes the
number of elements of the target set to be implemented, i.e., the
lowest bound on the number of required operations.

Lemma 1. If a heuristic algorithm finds a solution with jTj operations,
then the found solution is minimum.

In this case, no intermediate constant is required to implement the
target constants. Since the elements of the target set cannot be
synthesized using less than jTj operations as shown in [9], then the
found solution by the heuristic algorithm is the minimum solution.

Lemma 2. If a heuristic algorithm that includes an optimal part as
RAG-n and Hcub finds a solution with jTj þ 1 operations, then the
found solution is minimum.

In this case, only one intermediate constant is required to
implement the target constants. If the heuristic algorithm cannot find
a solution in the optimal part, then it is obvious that at least one
intermediate constant is required to find the minimum solution. So, if
the found solution includes jTj þ 1 operations, then it is the minimum
solution.

Observe that while the case described in Lemma 1 is general for
all algorithms designed for the MCM problem, the case described
in Lemma 2 is valid for all algorithms that include an optimal part
as RAG-n and Hcub. Note that the RAG-n and Hcub algorithms can-
not determine their solutions as minimum if the obtained solu-
tions include the number of operations more than the number of
target constants to be implemented plus 1. Because, in this case,
the target and intermediate constants are synthesized once at a
time in the heuristic parts of the algorithms.

Furthermore, we note that the solution found by a heuristic
algorithm can be also determined as minimum if the number of
operations in its solution is equal to the lower bound of the
MCM problem instance determined by the formula given in [24].

154 L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162
3. The exact breadth-first search algorithm

As described in Section 2.1, the MCM problem is to find the
minimum number of intermediate constants such that each target
and intermediate constant can be implemented with an operation
as given in Eq. (1) where u and v are ‘1’, target, or intermediate
constants. This section presents an exact algorithm [20] that finds
the minimum number of intermediate constants and therefore,
the minimum number of operations solution, by exploring all
possible intermediate constant combinations in a breadth-first
manner.

3.1. The implementation

In the preprocessing phase of the algorithm, as described in Sec-
tion 2.1, the target constants are made positive and odd, and added
to the target set, T, without repetition. The maximum bit-width of
the target constants, bw, is determined. In the main part of the ex-
act algorithm given in Algorithm 1, the ready set that includes the
minimum number of elements is computed.
Algorithm 1. The exact breadth-first search algorithm. The
algorithm takes the target set, T, including target constants to be
implemented and returns the ready set, R, with the minimum
number of elements including ‘1’, target, and intermediate
constants.

BFSearch (T)
1: R {1}
2: (R, T) = Synthesize(R, T)
3: if T ¼ ;
4: return R
5: else
6: n ¼ 1; WR1 R; WT1 T
7: while 1 do
8: m ¼ n; XR ¼WR ; XT ¼WT

9: n ¼ 0; WR ¼WT ¼ ½ �
10: for i = 1 to m do

11: for j = 1 to 2bwþ1 � 1 step 2 do
12: if j R XRi

and j R XTi
then

13: (A, B) = SynthesizeðXRi
; fjgÞ

14: if B ¼ ; then
15: n = n + 1
16: ðWRn ;WTn Þ = Synthesize(A, XTi

)
17: if WTn ¼ ; then
18: return WRn

Synthesize(R, T)
1: repeat
2: isadded = 0
3: for k ¼ 1 to jTj do
4: if tk can be synthesized with the elements of R then
5: isadded = 1
6: R R [ftkg
7: T T n ftkg
8: until isadded = 0
9: return (R, T)
Fig. 4. The flow of the BFSearch algorithm
In the BFSearch, initially, the ready set including only ‘1’ is
formed. Then, the target constants that can be implemented using
a single operation with the elements of the ready set are found
iteratively and removed to the ready set using the Synthesize func-
tion. If there exist element(s) in the target set, the intermediate
constants to be added to the ready set are considered exhaustively
in the infinite loop, line 7 of the algorithm, until there is no element
left in the target set. The infinite loop starts with the working array
of ready and target sets WR1 and WT1 , i.e., the ready and target sets
obtained on the line 2 of the algorithm. Note that the size of the ar-
ray W that includes the ready and target sets as a pair of elements
is denoted by n. In the infinite loop, another working array X is as-
signed to the array W and its size is represented by m. Then, for
each ready set of the array X, all possible intermediate constants
are found. Each intermediate constant is added to the associated
ready set, and a new ready set is formed. The possible intermediate
constants are determined as the positive and odd constants that
are not included in the current ready and target sets, XRi

and XTi
,

and can be implemented with the elements of the current ready
set, as given on the lines 11–14. Note that there is no need to con-
sider the intermediate constants that cannot be implemented with
the elements of the current ready set, since all these constants are
considered in other ready sets due to the exhaustiveness of the
algorithm. When a possible intermediate constant is found, the
implications of the possible intermediate constant with the ele-
ments of the ready set XRi

on the target set XTi
are determined by

the Synthesize function and the modified ready and target sets
are stored to the array W as a new pair, line 16 of the algorithm.
Observe from lines 17–18 of the algorithm that when there is no
element left in a target set, the minimum number of operations
solution is obtained with the associated ready set.

We note that although it is not stated in Algorithm 1 for the
sake of clarity, we avoid from the duplicate intermediate constant
combinations by considering the intermediate constants in a
sequence.

As a small example, suppose the target set T = {307,439}. The
iterations in the infinite loop of the BFSearch algorithm are
sketched in Fig. 4 indicating the working array W with ready and
target sets. In this figure, the edges labeled with the intermediate
constants represent the inclusions of constants to the ready set.
In the first iteration, the intermediate constants that can be imple-
mented using a single operation with the ready set R = {1}, i.e., 3, 5,
7, 9, 15, 17, 31, 33, 63, 65, 127, 129, 511, 513, 1023, are computed.
However, all the possible one intermediate constant combinations,
i.e., {1,3}, {1,5}, . . . , {1,1023}, cannot synthesize all the target con-
stants. Then, in the second iteration, the two intermediate constant
combinations are considered. Observe that all the target constants
are synthesized when the intermediate constant 55 is added to the
ready set R = {1,63}.

After the ready set with the minimum number of intermediate
constants is computed, the final implementation is obtained by
synthesizing each target and intermediate constant using a single
for the target constants 307 and 439.

Fig. 5. The results of algorithms for the target constants 307 and 439: (a) four operations with the BFSearch algorithm; (b) five operations with Hcub.

L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162 155
operation. Fig. 5a presents the solution of the BFSearch algorithm.
Also, the solution of Hcub is given in Fig. 5b. Observe that since
Hcub synthesizes the target constants iteratively by including
intermediate constants, the intermediate constants chosen for
the implementation of target constants in previous iterations
may not be shared in the implementation of target constants in la-
ter iterations.

Hence, we can make the following observation on the BFSearch
algorithm.

Lemma 3. The solution obtained by the BFSearch algorithm yields the
minimum number of operations solution.

If the BFSearch algorithm returns a solution on the line 4 of the
algorithm, then no intermediate constant is required to implement the
target constants. Similar to the conclusion drawn in Lemma 1, each
target constant can be implemented using a single operation whose
inputs are ‘1’ or target constants as ensured by the Synthesize function
and the number of required operations to implement the target
constants is jTj.

If the BFSearch algorithm returns a solution on the line 18 of the
algorithm, then intermediate constants are required to implement the
target constants. In this case, the number of required operations to
implement the target constants is jTj plus the number of intermediate
constants. Because each element of the ready set, except ‘1’, is
guaranteed to be implemented using a single operation by the
Synthesize function and all possible intermediate constant combina-
tions are explored exhaustively in a breadth-first manner, the obtained
ready set yields the minimum number of operations solution.
3.2. Complexity analysis

The complexity of the BFSearch algorithm depends on both the
number of considered ready sets in each iteration, i.e., n in the
Algorithm 1, and the maximum bit-width of the target constants,
i.e., bw, since the number of considered intermediate constant
combinations increases as bw increases. Table 1 presents the max-
imum number of ready sets exploited by the BFSearch algorithm
including up to four intermediate constants for a single target con-
stant in between 10 and 14 bit-width. The worst case values given
in Table 1 were observed from the BFSearch algorithm during the
Table 1
Upper bounds on the number of ready sets exploited by the exact algorithm for the
implementation of a single constant under different bit-widths.

bw #Ready sets considered in iterations

1 2 3 4 Total

10 19 648 30,428 19,000,657 19,031,752
11 21 810 43,761 57,559,925 57,604,517
12 23 990 60,435 165,546,959 165,608,407
13 25 1188 80,907 458,873,308 458,955,428
14 27 1404 105,462 1,230,677,125 1,230,784,018
search for the minimum number of operations solutions of the sin-
gle constants. The exponential growth of the search space can be
clearly observed when the number of iterations increases. This is
simply because, the inclusion of an intermediate constant to a
ready set in the current iteration increases the number of possible
intermediate constants to be considered in the next iteration.

Note that the maximum number of considered intermediate con-
stant combinations in finding the minimum solutions of the single
constants under the same bit-width may be different. For example,
the constant 833 in 10 bit-width can be implemented using three
operations, 3¼ð1�2Þ�1; 13¼ð3�2Þþ1, and 833¼ð13�6Þþ1
with two intermediate constants, i.e., 3 and 13. However, the
constant 981 defined under the same bit-width requires four
operations, 3¼ ð1� 2Þ�1; 5¼ ð1� 2Þþ1; 43¼ ð5� 3Þþ3, and
981¼ð1�10Þ�43, thus with three intermediate constants, 3, 5,
and 43. In the former case, the maximum number of considered
intermediate constant combinations is 19 + 648 = 667 and in the
latter case, this value is 19 + 648 + 30428 = 31095. Also, we note that
the minimum number of operations solution for a single constant
is generally obtained using much less considerations than the
worst case.

Observe that there are cases where the existence of multiple
constants may reduce the complexity of the search space. For
example, consider the target constants 43 and 981. In this case,
there is no need to try all the three intermediate constant combi-
nations, since the two intermediate constant combination {3,5}
yields the minimum solution. Therefore, the values of the target
constants in an MCM instance determine the complexity of the
search space to be explored, that directly effects the performance
of the algorithm. However, we observe that the BFSearch algorithm
can obtain the minimum solutions for some MCM instances in a
reasonable time. These instances require, in general, less than four
intermediate constants to generate all the target constants.
4. The approximate graph-based algorithm

As can be observed from Section 3.2, there are still some com-
plex MCM problem instances for which the BFSearch algorithm
cannot find the minimum solution in a reasonable time. Hence,
heuristic algorithms that find solutions close to the minimum
and better solutions than those of the previously proposed promi-
nent heuristics are always indispensable.

In this section, we present an approximate graph-based algo-
rithm [21] that is based on the BFSearch algorithm. Similarly to
the exact algorithm, we compute all possible intermediate con-
stants that can be synthesized with the current set of implemented
constants in each iteration. But, to cope with more complex in-
stances, we select a single intermediate constant that synthesizes
the largest number of target constants, and continue the search
with the chosen constant. By doing so, we reduce the search space
by selecting the ‘‘best” intermediate constant at each search level,
as opposed to keeping all the valid possibilities until the minimum
solution is found. Observe that the approach of the approximate

156 L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162
algorithm to the MCM problem is different from that of RAG-n and
Hcub, where in each iteration, they select a target constant and
synthesize it by finding the ‘‘best” intermediate constant. We also
note that the implementation of the approximate algorithm in this
scheme enables itself to guarantee the minimum solution on more
instances than RAG-n and Hcub as will be shown in Sections 4.2
and 6.

4.1. The implementation

The main part of the approximate algorithm is given in Algo-
rithm 2. We note that the preprocessing phase and the Synthesize
function used in the approximate algorithm are the same as those
described in the exact breadth-first search algorithm.
Algorithm 2. The approximate graph-based algorithm. The
algorithm takes the target set, T, including target constants to be
implemented and returns the ready set, R, that includes ‘1’, target,
and intermediate constants.

ApproximateSearch(T)
1: R f1g
2: (R, T) = Synthesize(R, T)
3: if T ¼ ; then
4: return R
5: else
6: while 1 do

7: for j ¼ 1 to 2bwþ1 � 1 step 2 do
8: if j R R and j R T
9: (A, B) = Synthesize(R, {j})
10: if B ¼ ; then
11: (A, B) = Synthesize(A, T)
12: if B ¼ ;
13: A = RemoveRedundant(A)
14: return A
15: else
16: costj = EvaluateCost(B)
17: Find the intermediate constant, ic, with the minimum

cost among all possible constants j
18: R R [ficg
19: (R, T) = Synthesize(R, T)
EvaluateCost(B)
1: cost = 0
2: for k ¼ 1 to jBj then
3: cost = cost + SingleCoefficientCostðbkÞ
4: return cost
RemoveRedundant(A)
1: for k ¼ 1 to jAj do
2: if ak is an intermediate constant then
3: A A n fakg
4: (A, B) = Synthesize({1}, A)
5: if B – ; then
6: A A [fakg
7: return A
As done in the optimal part of RAG-n and Hcub, the Approxi-
mateSearch initially forms the ready set including only ‘1’ and then,
the target constants that can be implemented with the elements of
the ready set using a single operation are found and removed to the
ready set iteratively using the Synthesize function. If there exist
unimplemented constant(s) in the target set, then in each iteration
of the infinite loop, line 6 of the algorithm, an intermediate con-
stant is added to the ready set until there is no element left in
the target set. As done in the BFSearch algorithm, the Approximate-
Search algorithm considers the positive and odd constants that are
not included in the current ready and target sets and can be imple-
mented with the elements of the current ready set using a single
operation as possible intermediate constants. Note that the work-
ing ready and target sets in each iteration are denoted by A and B
respectively. After the possible intermediate constant is included
into the working ready set, its implications on the current target
set are found by the Synthesize function. If there exist unimple-
mented target constants in the working target set, by using the
EvaluateCost function, the implementation cost of the not-yet syn-
thesized target constants is determined in terms of the single coef-
ficient cost computed as in [23] and is assigned to the cost value of
the intermediate constant. After the cost value of each possible
intermediate constant is found, the one with the minimum cost va-
lue is chosen and added to the current ready set, and the target
constants that can be implemented with the elements of the up-
dated ready set are found. The infinite loop is interrupted when-
ever there is no element left in the working target set, thus the
solution is obtained with the working ready set. However, note
that by adding an intermediate constant to the ready set in each
iteration, the previously added intermediate constants can be
redundant due to the recently added constant. Hence, the Remove-
Redundant function is applied on the final ready set to remove
redundant intermediate constants. After the ready set that consists
of the fewest number of constants is obtained, each element in the
ready set, except 1, are synthesized with a single operation whose
inputs are the elements of the ready set.

As an example, suppose the target set T ¼ f287;307;487g. Fig. 6
presents the solutions obtained by the ApproximateSearch and
Hcub algorithms. In this example, the ApproximateSearch algorithm
chooses the intermediate constant 5 that can be implemented as
5 ¼ ð1� 2Þ þ 1 with the current ready set R = {1} and adds it to
the ready set in the first iteration. Then, the intermediate constant
25 that can be implemented as 25 ¼ ð5� 2Þ þ 5 with the current
ready set R ¼ f1;5g is chosen to be included into the ready set in
the second iteration. As can be observed from Fig. 6a, all the target
constants are synthesized with the current ready set R ¼ f1;5;25g.
As can be observed from Fig. 6a and b, the intermediate constant
selection heuristic used in the ApproximateSearch algorithm (i.e.,
selecting the ‘‘best” intermediate constant for the implementation
of the most of the target constants) may yield better solutions than
the intermediate constant selection heuristic used in Hcub (i.e.,
selecting the ‘‘best” intermediate constant for the implementation
of a single target constant taking into account the not-yet synthe-
sized constants). We note that the solution found by the Approxi-
mateSearch algorithm is the minimum number of operations
solution, as determined by Lemma 4 given in Section 4.2 where
main characteristics of the ApproximateSearch algorithm are
introduced.

We also note that the removal of redundant intermediate con-
stants is never considered in the previously proposed graph-based
heuristics. Hence, their solutions may include redundant constants.
For instance, consider the target constants 287 and 411 to be
implemented. The solution of Hcub presented in Fig. 7a includes
four operations with the intermediate constants 9 and 31. How-
ever, the intermediate constant 9 is redundant, as determined by
the RemoveRedundant function, since only the intermediate con-
stant 31 can be used to synthesize the target constants 287 and
411 as shown in Fig. 7b. We note that this is also the minimum
number of operations solution for the implementation of the target
constants 287 and 411 guaranteed by the exact algorithm.
4.2. The characteristics of the approximate algorithm

The observations given in Lemmas 1 and 2 are also valid for the
ApproximateSearch algorithm given in Algorithm 2, since it includes
the same optimal part as Hcub and RAG-n. Furthermore, the fol-
lowing conclusions can be drawn for the ApproximateSearch
algorithm.

Fig. 6. The results of algorithms for the target constants 287, 307, and 487: (a) five operations with the approximate algorithm; (b) six operations with Hcub.

Fig. 7. The implementations of the target constants 287 and 411: (a) four operations with Hcub; (b) three operations after using the RemoveRedundant function.

L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162 157
Lemma 4. If the ApproximateSearch algorithm finds a solution with
jTj þ 2 operations, then the found solution is minimum.

In this case, two intermediate constants are required to implement
the target constants. Note that the case described in Lemma 1 is
checked on the lines 2–3 of the algorithm and the case described in
Lemma 2 is explored exhaustively on the lines 7–16 of the algorithm
in the first iteration. Hence, if there exist unimplemented target
constants at the end of the first iteration, then the minimum solution
requires at least one more intermediate constant, thus totally two
intermediate constants. So, if ApproximateSearch algorithm finds a
solution including jTj þ 2 operations, then it is the minimum solution.

It is obvious that if the ApproximateSearch algorithm finds a
solution including more than jTj þ 2 operations, then it cannot
guarantee the found solution is minimum, since all possible inter-
mediate constant combinations including more than one constant
are not explored exhaustively.

Lemma 5. If the minimum solution of an MCM instance includes up
to jTj þ 1 operations, then the ApproximateSearch algorithm always
finds the minimum solution.

For the MCM instances including jTj operations in their minimum
solutions, the ApproximateSearch algorithm and also, RAG-n and
Hcub, always find the minimum solution due to their optimal part.

For the MCM instances including jTj þ 1 operations in their
minimum solutions, the ApproximateSearch algorithm always finds
the minimum solution, since it considers all possible one intermediate
combinations exhaustively on the lines 7–16 of the algorithm in the
first iteration.

Note that for the MCM instances including jTj þ 1 operations in
their minimum solutions, RAG-n and Hcub do not always find the
minimum solution (for an example, see Fig. 7), since in this case,
the solutions are obtained in their heuristic parts.

Hence, the following conclusion can be drawn from Lemma 5.
Lemma 6. If the ApproximateSearch algorithm cannot guarantee its
solution as the minimum solution, then the lower bound on the
minimum number of operations solution is jTj þ 2.

In this case, the ApproximateSearch algorithm finds a solution
including more than jTj þ 2 operations. Since the minimum solution of
the MCM instance includes greater than or equal to jTj þ 2 operations
due to Lemma 5, the lower bound on the minimum number of
operations solution is jTj þ 2.

On the other hand, if RAG-n and Hcub algorithms cannot guar-
antee the minimum solution on an MCM instance, then they
implicitly state that the lower bound on the minimum number of
operations solution is jTj þ 1.

Also, it is obvious that if the ApproximateSearch algorithm can-
not guarantee the minimum solution, then the upper bound on
the minimum number of operations solution is determined as
the number of operations in its solution. Thus, the lower and upper
bounds of the search space obtained by the ApproximateSearch
algorithm can be used to direct the search in finding the minimum
solution as described in the following section.

5. The exact depth-first search algorithm

The exact breadth-first search algorithm introduced in Section 3
has a main drawback: it lacks pruning techniques that reduce the
search space and consequently, the required time to find the min-
imum solution. On the other hand, the approximate algorithm pre-
sented in Section 4 gives promising lower and upper bounds on the
search space to be explored by an exact algorithm.

In this section, we introduce an exact algorithm that searches
the minimum solution in a depth-first manner with the use of low-
er and upper bounds obtained by the approximate algorithm. In
the proposed exact depth-first search algorithm, initially, a solu-
tion is found using the approximate algorithm. If the approximate
algorithm can guarantee its solution as the minimum number of

158 L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162
operations solution, then the minimum solution is returned, other-
wise the depth-first search is applied. At the end of the depth-first
search, the minimum solution that is better than the solution ob-
tained by the approximate algorithm is found or it is proved by
exploring all possible intermediate constant combinations that
the solution found by the approximate algorithm is, in fact, the
minimum solution.

The main part of the exact depth-first search algorithm is given
in Algorithm 3. Again, the preprocessing phase and the Synthesize
function used in the exact depth-first search algorithm are the
same as those described in the exact breadth-first search
algorithm.
Algorithm 3. The exact depth-first search algorithm. The
algorithm takes the target set, T, including target constants to be
implemented and returns the ready set, R, with the minimum
number of elements including ‘1’, target, and intermediate
constants.

DFSearch(T)
1: R = ApproximateSearch(T)
2: if jRj � 1 6 jTj þ 2
3: return R
4: else
5: lb ¼ jTj þ 2; ub ¼ jRj � 1; d ¼ 0; ic list0 ¼ 1
6: ðWR0 ;WT0 Þ = Synthesize({1}, T)
7: while 1 do
8: if jTj þ dþ 1 6 ub� 1
9: ic = FindIntermediateConstantðic listd;WRd

;WTd
Þ

10: if ic then
11: ic listd ¼ ic; d ¼ dþ 1
12: ðWRd

;WTd
Þ = Synthesize ðWRd�1

[ficg;WTd�1
Þ

13: if WTd
¼ ; then

14: R ¼WRd
; ub ¼ jRj � 1

15: if lb = ub then
16: return R
17: else
18: d ¼ ub� jTj � 2
19: else
20: if CLB ðWRd

n f1g [WTd
ÞP ub then

21: d ¼ d� 1
22: else
23: ic listd ¼ 1
24: else
25: d ¼ d� 1
26: else
27: d ¼ d� 1
28: if d ¼ �1 then
29: return R
FindIntermediateConstant(ic, R, T)
1: while 1 do
2: ic ¼ ic þ 2

3: if ic > 2bwþ1 � 1 then
4: return 0
5: else
6: if ic R R and ic R T then
7: (A, B) = Synthesize(R, {ic})
8: if B ¼ ; then
9: return ic
In the DFSearch, initially, the approximate algorithm given in
Algorithm 2 is applied. If the approximate algorithm returns the
minimum number of operations solution that is guaranteed by
Lemmas 1, 2 and 4, then the DFSearch algorithm is returned with
the solution of the approximate algorithm. Otherwise, the initial
lower and upper bound values of the search space, denoted by
lb and ub respectively, are determined. The decision level or the
depth of search space, i.e., d, is set to 0. An array denoted by ic_list
that includes the intermediate constants considered at each deci-
sion level is formed and its value at the decision level 0 is as-
signed to 1. The working ready and target sets at decision level
0, i.e., WR0 and WT0 , are obtained using the Synthesize function.
In the infinite loop, the search space is explored in a depth-first
manner up to ub-1 decision level, since we have a solution includ-
ing ub number of operations. Hence, the condition given on the
line 8 of the algorithm avoids to make unnecessary moves beyond
ub-1 during the search. At each decision level, the FindIntermedi-
ateConstant function is applied to find the positive and odd inter-
mediate constant that is not included in the current working
ready and target sets and can be implemented using a single oper-
ation with the elements of the current working ready set. If an
intermediate constant is found, it is stored to the intermediate
constant list at that decision level, ic listd. Then, the next decision
level working ready and target sets are simply obtained when the
intermediate constant is included in the current ready set and its
implications are found on the current working target set by the
Synthesize function. Whenever all the elements of the target set
are synthesized, a better solution than the one found so far is ob-
tained and ub is updated. In this case, if the number of operations
in the found solution is equal to lb, the infinite loop is interrupted
indicating that the obtained solution is the minimum solution.
Otherwise, the search is backtracked to the ub� jTj � 2 decision
level. Fig. 8a illustrates this backtrack when a better solution is
found during the depth-first search. For this example, suppose
that the number of target constants to be implemented, i.e., jTj,
is 10, and lb and ub values obtained by the approximate algorithm
are determined as 12 and 15 respectively. In this figure, icdi de-
notes the intermediate constant considered at the decision level
d with its index i.

In the DFSearch, if the CLB (ComputeLowerBound) function that
determines the lower bound on a set of constants using the for-
mula given in [24] returns a value that is equal to or greater
than the current upper bound, i.e., when the condition given
on the line 20 of the algorithm is met, then a backtrack to the
previous decision level occurs. This simply states that with the
elements in the current ready and target sets, to be found solu-
tion will have for sure a number of operations equal to or great-
er than the one that has been found so far. Also, if all possible
intermediate constants are considered at a decision level, i.e.,
when the condition given on the line 24 of the algorithm is
met, the search backtracks to the previous decision level as illus-
trated in Fig. 8b. Note that whenever the decision level is �1, the
infinite loop is interrupted indicating that the depth-first search
is completed.

In the DFSearch algorithm, we avoid from the duplicate inter-
mediate constant combinations by paying attention to the inter-
mediate constants considered at each decision level. We note
that in the worst case, the complexity of the DFSearch algorithm,
i.e., the number of considered intermediate constant combina-
tions, is the same as that of the BFSearch algorithm. However, ob-
serve that a better initial lower bound enables the DFSearch
algorithm to conclude the search in an earlier decision level, when
a solution is found. A better initial upper bound helps the algo-
rithm to search up to a smaller decision level where a better solu-
tion can be found. Also, observe from the FindIntermediateConstant
function that the DFSearch algorithm, at each decision level,
branches with an intermediate constant that has a smaller value,
since it is more possible to implement the target constants with
smaller intermediate constants. This branching method enables
the algorithm to explore less number of intermediate constant
combinations in finding a better solution. Hence, the DFSearch
algorithm, in general, finds the minimum solution of an MCM
problem instance by exploring significantly less search space
and requiring much less memory than the BFSearch algorithm.

Fig. 8. Backtracks in the DFSearch algorithm: (a) when a better solution is found; (b) when all possible constants are considered.

L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162 159
6. Experimental results

In this section, we present the results of the exact and approx-
imate algorithms on randomly generated and FIR filter instances,
and compare with those of the previously proposed exact CSE algo-
rithm [14] and the graph-based heuristics [9,12]. The graph-based
heuristics were obtained from [25].

As the first experiment set, we used uniformly distributed ran-
domly generated instances where constants were defined under
14 bit-width. The number of constants ranges between 10 and
100, and we generated 30 instances for each of them. Thus, the
experiment set includes 300 instances. Fig. 9 presents the solutions
obtained by the exact CSE algorithm of [14] under binary, CSD, and
MSD representations and the exact graph-based algorithm.

As can be observed from Fig. 9, the solutions obtained by the ex-
act CSE algorithm [14] are far from the minimum number of oper-
ations solutions, since the possible implementations of constants
are limited with the number representation in the exact CSE algo-
rithm. We note that on these instances, the average difference of
the number of operations solutions between the exact CSE algo-
rithm under binary, CSD, and MSD representations, and the exact
10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

Number of the constants

Av
er

ag
e

nu
m

be
r o

f o
pe

ra
tio

ns

Randomly generated instances in 14 bits

Exact CSE − Binary
Exact CSE − CSD
Exact CSE − MSD
Exact Graph−based

Fig. 9. Results of exact CSE and graph-based algorithms on randomly generated
instances defined under 14 bit-width.
graph-based algorithm is 8.5, 10.8, and 8.6 respectively. Since both
CSE and graph-based algorithms are exact, we can clearly state that
the graph-based algorithms obtain much better solutions than the
CSE algorithms.

As the second experiment set, we used FIR filter instances
where filter coefficients were computed with the remez algorithm
in MATLAB. The specifications of filters are presented in Table 2
where: Pass and Stop are normalized frequencies that define the
passband and stopband respectively; #Tap is the number of coeffi-
cients; and width is the bit-width of the coefficients.

The results of the algorithms are presented in Table 3 where Ad-
der denotes the number of operations and Step indicates the max-
imum number of operations in series, i.e., generally known as
adder-steps. In this table, jTj denotes the number of unrepeated
positive and odd filter coefficients, i.e., the lowest bound on the
number of operations, and the LBs indicates the lower bounds on
the number of operations and the number of adder-steps obtained
by the formulas given in [24].

As can be easily observed from Table 3, while the graph-based
heuristic RAG-n obtains suboptimal solutions that are far away
from the minimum, Hcub and approximate algorithms find solu-
tions close to the minimum. We note that the approximate algo-
rithm finds similar or better solutions than RAG-n and Hcub, and
according to Lemmas 1, 2 and 4, it guarantees the minimum solu-
tion on two filter instances, i.e., Filter 5 and 8. Also, according to
Lemmas 1 and 2, the graph-based heuristics RAG-n and Hcub can-
not guarantee any of their solutions as the minimum solution. Note
that the lower bound [24] on the minimum number of required
operations can only be used to determine the solution of the
approximate algorithm on Filter 8 as the minimum solution,
although it is also proven to be minimum by Lemma 2. Also, ob-
serve from Lemma 6 that the lower bounds obtained by the
Table 2
Filter specifications.

Filter Pass Stop #Tap Width

1 0.10 0.15 40 14
2 0.10 0.12 40 14
3 0.15 0.20 30 14
4 0.20 0.25 30 14
5 0.10 0.15 80 16
6 0.15 0.20 60 16
7 0.20 0.25 40 16
8 0.10 0.20 80 16

Table 3
Summary of results of graph-based algorithms on FIR filter instances.

Filter jTj LBs [24] RAG-n [9] Hcub [12] Approximate Exact

Adder Step Adder Step Adder Step Adder Step Adder Step

1 19 20 3 24 10 23 7 22 9 22 8
2 19 20 3 27 6 24 6 23 7 23 7
3 14 14 3 24 9 19 7 18 6 17 11
4 14 14 3 23 5 18 7 18 7 17 8
5 39 40 3 44 9 42 8 41 10 41 10
6 29 29 3 36 10 32 10 32 5 31 11
7 19 20 3 28 7 24 7 23 12 23 10
8 36 37 3 40 5 38 5 37 6 37 6

Total 189 194 24 246 61 220 57 214 62 211 71

160 L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162
approximate algorithm, i.e., jTj þ 2, on all filters except Filter 5 and
8, are better than those of [24]. On the other hand, the exact algo-
rithm finds better solutions than all the graph-based heuristics on
Filter 3, 4, and 6. Hence, this experiment indicates that an exact
algorithm is indispensable to ensure the minimum solution, since
there are real-size instances that all the prominent graph-based
heuristics cannot conclude with the minimum solution.

As can be observed from Table 3, the graph-based algorithms
designed for the MCM problem find the fewest number of opera-
tions solution with a greater number of adder-steps according to
its lower bound, indicating the traditional tradeoff between area
and delay. This occurs because, the sharing of intermediate con-
stants in MCM generally increases the logic depth of the MCM de-
sign as shown in [26]. However, we note that the exact algorithms
can be easily modified to find the fewest number of operations
solution under a delay constraint as done in [14,26,27]. In this case,
only the intermediate constants that do not violate the delay con-
straint must be considered.

On this experiment set, we also compare the runtime perfor-
mance of the BFSearch and DFSearch algorithms in Tables 4 and 5
respectively. In these tables, Crs indicates the number of consid-
ered ready sets in the breadth-first and depth-first search parts
Table 4
Runtime performance of the BFSearch algorithm on FIR filter instances.

Filter Adder #Crs CPU

1 22 14,098 136.28
2 – 236,289 3600.01
3 – 145,418 3600.01
4 – 142,308 3600.01
5 41 2986 26.44
6 – 253,029 3600.01
7 – 70,003 3600.01
8 37 8 0.53

Total 100 864,139 18,163.30

Table 5
Runtime performance of the DFSearch algorithm on FIR filter instances.

Filter With RAG-n With Hcub

Adder #Crs CPU Adder #

1 22 14,281 10.52 22
2 24 6,814,991 3600.01 24
3 17 4,321,079 1586.08 17
4 17 63,870 30.7 17
5 41 9079 9.27 41
6 31 1,871,348 1460.39 31
7 23 1,375,750 756.75 23
8 37 38 0.16 37

Total 212 14,470,436 7453.88 212 1
of the exact algorithms, and CPU denotes the CPU time in seconds
of the exact algorithms implemented in MATLAB to obtain a solution
on a PC with 2.4 GHz Intel Core 2 Quad CPU and 3.5GB memory.
We note that the CPU time limit was determined as 1 h. For the
DFSearch algorithm, the initial lower and upper bounds of the
search space were determined by RAG-n, Hcub, and approximate
algorithms. Note that the graph-based heuristics obtained their
solutions using a little computational effort, thus their execution
time were not taken into account in the DFSearch algorithm. In
these tables, an italic result indicates that the exact algorithm is
ended due to the CPU time limit returning with the best solution
found so far.

As can be easily observed from Tables 4 and 5, although the
BFSearch algorithm is proven to be a complete algorithm by Lemma
3, i.e., given all the required computational resources, the BFSearch
algorithm guarantees to find the minimum solution, it cannot con-
clude with a solution on Filter 2, 3, 4, 6, and 7 due to the CPU time
limit. On the other hand, the DFSearch algorithm initially obtains a
solution using a graph-based heuristic, i.e., it never returns without
a solution. Then, with the lower and upper bounds of the search
space determined by the solution of the graph-based heuristic, it
finds the minimum solution that is better than that of the graph-
based heuristic or proves that the solution of the graph-based heu-
ristic is the minimum solution by exploring all the search space.
For example, the solutions of RAG-n on all filter instances include
totally 246 operations as given in Table 3 and RAG-n cannot guar-
antee any of its solution as minimum. However, the DFSearch algo-
rithm using the solutions of RAG-n to compute the bounds of
search space finds the minimum solution on all filter instances ex-
cept Filter 2 with totally 212 operations and in almost 2 h. As can
be easily observed from Table 5, the quality of the graph-based
heuristic solution, i.e., the quality of lower and upper bounds of
search space, effects the performance of the DFSearch algorithm
significantly. For example, with the solutions of the approximate
algorithm that are close to the minimum, the DFSearch algorithm
concludes with ensuring the minimum solution on all instances
With approximate

Crs CPU Adder #Crs CPU

14,138 10.34 22 3834 2.38
6,832,247 3600.01 23 2,157,429 1042.61
4,309,727 1595.97 17 3,261,389 1162.19

23,530 7.86 17 23,530 7.91
2993 3.05 41 0 0

1,706,210 1328.80 31 1,702,822 1326.48
1,300,795 617.73 23 695,115 250.61

9 0.14 37 0 0

4,189,649 7163.90 211 7,844,119 3792.18

Table 6
Summary of results of the graph-based heuristics on hard instances.

> BHM [9] RAG-n [9] Hcub [12] Approximate

BHM [9] 0 173 3 9
RAG-n [9] 964 0 96 6
Hcub [12] 1231 700 0 62
Approximate 1235 802 442 0

L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162 161
and using less computational effort (the number of considered
ready sets and CPU time) than those obtained with the solutions
of RAG-n and Hcub.

As the third experiment set, we used randomly generated in-
stances where constants were defined in between 10 and 14 bit-
width. We tried to generate hard instances to distinguish the algo-
rithms clearly. Hence, under each bit-width (bw), the constants
were generated randomly in ½2bw�2 þ 1;2bw�1 � 1�. Also, the num-
ber of constants were determined as 2, 5, 10, 15, 20, 30, 50, 75,
and 100 and we generated 30 instances for each of them. Thus,
the experiment set includes 1350 instances.

The results of graph-based heuristic algorithms on overall
1350 instances are summarized in Table 6 where X > Y denotes
the number of instances that the algorithm X finds better solu-
tions than the algorithm Y. As can be easily observed from Ta-
ble 6, the number of instances that the approximate algorithm
finds better solutions than Hcub is 442, while the number of in-
stances that Hcub obtains better solutions than the approximate
algorithm is 62 on overall 1350 instances. When the approxi-
mate algorithm is compared with RAG-n and BHM, it finds bet-
ter solutions than these heuristics on 802 and 1235 instances
respectively. It is observed that the instances that the approxi-
mate algorithm finds worse solutions than the prominent
graph-based heuristics generally include small number of con-
stants, e.g., 2, under large bit-widths, e.g., 14. We note that this
is simply because of the greedy heuristic used in the approxi-
mate algorithm where, in each iteration, an intermediate con-
stant that synthesizes the largest number of target constant is
chosen. We also note that the number of instances that the
approximate algorithm guarantees the minimum solution is
699 (51.8% of the experiment set), and the number of instances
that RAG-n and Hcub ensure the minimum solution is 394
(29.2% of the experiment set) and 386 (28.6% of the experiment
set) respectively on overall 1350 instances. Hence, this experi-
ment indicates that the approximate algorithm guarantees the
minimum solution on more instances than the prominent
graph-based heuristics.

We also applied the DFSearch algorithm with the bounds result-
ing from both Hcub and the approximate algorithm on 651 in-
stances whose solutions were not guaranteed to be the minimum
by these algorithms. Again, the CPU time limit was set to 1 h. We
note that the DFSearch algorithm ensured the minimum solution
on 473 instances obtaining better solutions than both Hcub and
the approximate algorithm on 195 instances. However, the
DFSearch algorithm could not conclude with the minimum solution
on 178 instances due to the CPU time limit. On these 178 instances,
we observed that the difference between the best upper bound ob-
tained by Hcub and the approximate algorithm and the lowest
bound is equal to or greater than 6, that means, in the worst case,
all intermediate constant combinations including 5 or more than 5
constants must be considered to complete the search. This experi-
ment clearly indicates that although the DFSearch algorithm can be
applied on real-size instances and finds better solutions than the
graph-based heuristics, there are still instances that the DFSearch
algorithm cannot return the minimum solution in a reasonable
time.
7. Conclusions

In this article, we introduced exact and approximate graph-
based algorithms designed for the MCM problem for which only
heuristic algorithms have been proposed due to the NP-hardness
of the problem. In this content, we presented an exact breadth-first
search algorithm that is capable of finding the minimum number
of operations solution of real mid-size instances. To cope with
more complex instances that the exact algorithm cannot handle,
we introduced an approximate algorithm based on the exact algo-
rithm that finds competitive solutions with the minimum solutions
and also obtains better lower and upper bound values of the search
space. Furthermore, we proposed an exact depth-first search algo-
rithm that is equipped with search pruning techniques and incor-
porates the approximate algorithm to determine the lower and
upper bounds of the search space. These techniques enable the ex-
act depth-first search algorithm to be applied on large size in-
stances. The proposed algorithms, exact and approximate, have
been applied on a comprehensive set of instances including ran-
domly generated and FIR filter instances, and compared with the
exact CSE algorithm and the prominent graph-based heuristics.
The following conclusions were drawn from the experimental re-
sults: (i) the exact graph-based algorithm finds significantly better
results than the exact CSE algorithm; (ii) the proposed approxi-
mate algorithm obtains competitive and better solutions, and com-
putes better lower and upper bound values of the search space
than the existing graph-based heuristic algorithms; (iii) the pro-
posed exact depth-first search algorithm can find the minimum
solutions of the MCM problem instances that the previously pro-
posed exact breadth-first search algorithm cannot handle and for
which all the prominent graph-based heuristics find suboptimal
solutions or cannot guarantee the minimum solutions.
References

[1] H. Nguyen, A. Chatterjee, Number-splitting with shift-and-add decomposition
for power and hardware optimization in linear DSP synthesis, IEEE
Transactions on VLSI 8 (4) (2000) 419–424.

[2] P. Cappello, K. Steiglitz, Some complexity issues in digital signal processing,
IEEE Transactions on Acoustics, Speech, and Signal Processing 32 (5) (1984)
1037–1041.

[3] M. Potkonjak, M. Srivastava, A. Chandrakasan, Multiple constant
multiplications: efficient versatile framework algorithms for exploring
common subexpression elimination, IEEE TCAD 15 (2) (1996) 151–165.

[4] R. Hartley, Subexpression sharing in filters using canonic signed digit
multipliers, IEEE TCAS II 43 (10) (1996) 677–688.

[5] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, D. Durackova, A new
algorithm for elimination of common subexpressions, IEEE TCAD 18 (1) (1999)
58–68.

[6] I-C. Park, H-J. Kang, Digital filter synthesis based on minimal signed digit
representation, in: Proceedings of DAC, 2001, pp. 468–473.

[7] R. Mahesh, A.P. Vinod, A new common subexpression elimination algorithm
for realizing low-complexity higher order digital filters, IEEE TCAD 27 (2)
(2008) 217–229.

[8] D. Bull, D. Horrocks, Primitive operator digital filters, IEE Proceedings G:
Circuits, Devices and Systems 138 (3) (1991) 401–412.

[9] A. Dempster, M. Macleod, Use of minimum-adder multiplier blocks in FIR
digital filters, IEEE TCAS II 42 (9) (1995) 569–577.

[10] K. Muhammad, K. Roy, A graph theoretic approach for synthesizing very low-
complexity high-speed digital filters, IEEE TCAD 21 (2) (2002) 204–216.

[11] O. Gustafsson, H. Ohlsson, L. Wanhammar, Improved multiple constant
multiplication using a minimum spanning tree, in: Proceedings of Asilomar
Conference on Signals, Systems and Computers, 2004, pp. 63–66.

[12] Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication,
ACM Transactions on Algorithms 3 (2) (2007).

[13] O. Gustafsson, L. Wanhammar, ILP modelling of the common subexpression
sharing problem, in: Proceedings of ICECS, 2002, pp. 1171–1174.

[14] L. Aksoy, E. Costa, P. Flores, J. Monteiro, Exact and approximate algorithms for
the optimization of area and delay in multiple constant multiplications, IEEE
TCAD 27 (6) (2008) 1013–1026.

[15] A. Dempster, M. Macleod, Using all signed-digit representations to design
single integer multipliers using subexpression elimination, in: Proceedings of
ISCAS, 2004, pp. 165–168.

162 L. Aksoy et al. / Microprocessors and Microsystems 34 (2010) 151–162
[16] A. Dempster, M. Macleod, Digital filter design using subexpression elimination
and all signed-digit representations, in: Proceedings of ISCAS, 2004, pp. 169–
172.

[17] E. Costa, P. Flores, J. Monteiro, Exploiting general coefficient representation for
the optimal sharing of partial products in MCMs, in: Proceedings of SBCCI,
2006, pp. 161–166.

[18] K. Johansson, O. Gustafsson, L. Wanhammar, Bit-level optimization of shift-
and-add based FIR filters, in: Proceedings of ICECS, 2007, pp. 713–716.

[19] O. Gustafsson, A. Dempster, L. Wanhammar, Multiplier blocks using carry-save
adders, in: Proceedings of ISCAS, 2004, pp. 473–476.

[20] L. Aksoy, E.O. Gunes, P. Flores, An exact breadth-first search algorithm for the
multiple constant multiplications problem, in: Proceedings of IEEE Norchip
Conference, 2008, pp. 41–46.

[21] L. Aksoy, E.O. Gunes, An approximate algorithm for the multiple constant
multiplications problem, in: Proceedings of SBCCI, 2008, pp. 58–63.

[22] A. Dempster, M. Macleod, Constant integer multiplication using minimum
adders, IEE Proceedings – Circuits, Devices and Systems 141 (5) (1994) 407–
413.

[23] O. Gustafsson, A. Dempster, K. Johansson, M. Macleod, L. Wanhammar,
Simplified design of constant coefficient multipliers, Circuits, Systems, and
Signal Processing 25 (2) (2006) 225–251.

[24] O. Gustafsson, Lower bounds for constant multiplication problems, IEEE TCAS
II: Analog and Digital Signal Processing 54 (11) (2007) 974–978.

[25] Spiral webpage, <http://www.spiral.net>.
[26] H-J. Kang, I-C. Park, FIR filter synthesis algorithms for minimizing the delay

and the number of adders, IEEE TCAS II: Analog and Digital Signal Processing
48 (8) (2001) 770–777.

[27] A. Dempster, S. Demirsoy, I. Kale, Designing multiplier blocks with low logic
depth, in: Proceedings of ISCAS, 2002, pp. 773–776.

Levent Aksoy received his B.Sc. degree in Electronics and
Communications Engineering, from Yıldız Technical
University in 2000. He received his M.Sc. and Ph.D.
degree from the Institute of Science and Technology,
Istanbul Technical University (ITU) in 2003 and 2009
respectively. Since 2001, he has been a Research Assis-
tant with the Division of Circuits and Systems, Faculty of
Electrical and Electronics Engineering, ITU. During
2005–2006, he was a Visiting Researcher with the
Algorithms for Optimization and Simulation Research
Unit, Instituto de Engenharia de Sistemas e Computa-
dores (INESC-ID), Lisbon, Portugal.

His research interests include satisfiability algorithms, pseudo-Boolean optimiza-
tion, and electronic design automation problems.
Ece Olcay Günes� received her B.Sc. degree in Electronics
and Communications Engineering from the Faculty of
Electrical and Electronics Engineering, Istanbul Techni-
cal University, Turkey. She received her M.Sc. and Ph.D.
degrees in 1991 and 1998, respectively, from the Insti-
tute of Science and Technology of the same university.
She is currently a full Professor at the Electronics and
Communications Department in ITU.
Her main research interests are analog circuit design,
current-mode circuits and logic design.
Paulo Flores received the five-year Engineering degree,
M.Sc., and Ph.D. degrees in Electrical and Computer
Engineering from the Instituto Superior Técnico, Tech-
nical University of Lisbon, Lisbon, Portugal, in 1989,
1993, and 2001, respectively. Since 1990, he has been
teaching at Instituto Superior Técnico, Technical Uni-
versity of Lisbon, where he is currently an Assistant
Professor in the Department of Electrical and Computer
Engineering. He has also been with the Instituto de
Engenharia de Sistemas e Computadores (INESC-ID),
Lisbon, since 1988, where he is currently a Senior
Researcher.

His research interests are in the area of embedded systems, test and verification of
digital systems, and computer algorithms, with particular emphasis on optimiza-
tion of hardware/software problems using satisfiability (SAT) models.Dr. Flores is a

member of the IEEE Circuit and Systems Society.

