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Carnegie Mellon University

Abstract. A variable can be multiplied by a given set of fixed-point constants using a multiplier block
that consists exclusively of additions, subtractions, and shifts. The generation of a multiplier block
from the set of constants is known as the multiple constant multiplication (MCM) problem. Finding
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to be NP-complete. We propose a new algorithm for the MCM problem, which produces solutions that
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bitwidths. We present our algorithm using a unifying formal framework for the best, graph-based
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1. Introduction

This article addresses the problem of efficiently computing a set of products ti x , for
i = 1, . . . , n, of a variable x with several known fixed-point constants ti multipli-
erless, that is, using exclusively additions, subtractions, and shifts. This problem is
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known as multiple constant multiplication (MCM). Avoiding costly multipliers is
particularly important in hardware implementations, for example, of digital signal
processing functionality such as filters or transforms. However, replacing constant
multiplications with additions and shifts can also be relevant in software imple-
mentations, for example, as optimization for speed, since integer multipliers often
have a significantly lower throughput than adders, but also for embedded proces-
sors, which may not feature a multiplication unit at all. The MCM problem can be
considered as a fundamental problem in computer arithmetic.

We propose a new algorithm for the MCM problem, which generates solutions
that are significantly better—in terms of the number of additions/subtractions of the
solution—than any of the previously published algorithms, that is at the same
time more generally applicable. To more clearly state our contribution and put it in
the context of previous work, we first introduce the problem in greater detail.

1.1. SINGLE CONSTANT MULTIPLICATION (SCM). The multiplication y = tx
of a variable x by a known integer or fixed-point constant t can be decomposed
into additions (adds), subtractions (subtracts), and binary shifts. The problem of
finding the decomposition with the least number of operations is known as the single
constant multiplication (SCM) problem, and is NP-complete, as shown in Cappello
and Steiglitz [1984]. Without loss of generality we will assume that the constants
are integers, since a fixed-point multiplication is equivalent to a multiplication by
an integer followed by a right shift. The SCM problem is related to but different
from the addition chain problem [Knuth 1969], which multiplies by a constant
using additions only. The permission of shifts fundamentally alters the problem as
well as the strategies for its solution.

The straightforward method for decomposing the multiplication into adds and
shifts translates 1’s in the binary representation of the constant t into shifts, and
adds up the shifted inputs. For example, for t = 71,

71x = 10001112x = x � 6 + x � 2 + x � 1 + x,

which requires 3 adds. Alternatively, the multiplication can be decomposed into
subtracts and shifts by translating 0’s into shifts, and subtracting from the closest
constant consisting of 1’s only (i.e., of the form 2n − 1).

71x = 10001112x = (x � 7 − x) − x � 5 − x � 4 − x � 3

Taking the best of these two methods yields in the worst and average cases a solution
with b

2 + O(1) adds/subtracts, where b is the bitwidth of t .
A better digit-based method decomposes into both adds and subtracts by recoding

the number into the canonical signed digit (CSD) representation [Avizienis 1961],
which allows negative digits 1. Using CSD, the previous example can be improved
to use only 2 add/subtract operations.

10001112x = 1001001CSDx = x � 6 + x � 3 − x

Using CSD, the worst-case cost remains b
2 + O(1), but the average case is now

improved to b
3 + O(1) [Wu and Hasan 1999].

The optimal decomposition in terms of add/subtract operations is in general not
obtained with CSD, and its worst-case and average costs are unknown. Dempster
and Macleod [1994] designed an exhaustive search algorithm to find the optimal
decompositions for constants up to 12 bits. The authors also showed that using shifts
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FIG. 1. Average number of add/subtract operations required for multiplying by a constant of different
bitwidths.

FIG. 2. Multiplication by 45 using 3 adds/subtracts (CSD, top) and 2 adds/subtracts (optimal, bottom).
The vertices represent add/subtract operations labeled with their outputs, and the edges represent shifts
labeled with the corresponding scaling (a 2-power). Negative scaling indicates that a subtraction is
performed.

no larger than b + 1 is sufficient to yield optimal solutions for 12-bit constants.
Their work has been extended by Gustafsson et al. [2002] to constants up to 19
bits, again yielding optimal results regardless of shift constraints. Although the
asymptotic worst-case cost of the optimal decomposition remains an open research
problem, it appears to be asymptotically better than O(b), as shown in Figure 1. The
plot compares the three decomposition methods by showing the average number of
adds/subtracts (y axis) obtained for 300 uniformly distributed random constants of
bitwidths from 2 to 19 (x axis).

Consider the smallest constant for which the CSD decomposition is suboptimal,
namely, 45. Figure 2 shows its CSD (three add/subtract operations) and optimal
(two add/subtract operations) decompositions both visualized as graphs. We ob-
serve that the optimal decomposition uses a different graph topology than the CSD
decomposition. Intuitively, digit-based methods such as CSD produce suboptimal
results because they only consider one type of graph topology. The exhaustive search
methods in Dempster and Macleod [1994] and Gustafsson et al. [2002], on the other
hand, consider all possible graph topologies to find optimal decompositions.

1.2. MULTIPLE CONSTANT MULTIPLICATION (MCM). An extension of SCM is
the problem of multiplying a variable x by several constants t1, . . . , tn in parallel
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4 Y. VORONENKO AND M. PÜSCHEL

FIG. 3. (Multiple constant) multiplier block.

FIG. 4. Average number of add/subtract operations required for multiplying by each of the 12-bit
coefficients in a set of given size.

in a so-called multiplier block, shown in Figure 3. Since intermediate results of
the constant decompositions may be shared, a multiple constant multiplier block
may be decomposed into fewer operations than the sum of the single constant
decompositions’ operation counts. The problem of finding the decomposition with
fewest operations is known as multiple constant multiplication (MCM).

The potential savings from sharing intermediate results increase with the number
of constants, which is illustrated in Figure 4. The plot compares the number of
add/subtract operations (y axis) for varying sizes n (x axis) of sets of 12-bit constants
using separate optimal SCM decompositions and using RAG-n, the heuristic MCM
algorithm from Dempster and Macleod [1995]. Since MCM is a generalization of
SCM, it is also NP-complete.

The MCM problem is particularly relevant for the multiplierless implementation
of digital finite impulse response (FIR) filters [Bull and Horrocks 1991], but also
for matrix-vector products with a fixed matrix, including linear signal transforms
[Püschel et al. 2004; Chen et al. 2002; Liang and Tran 2001] such as the discrete
Fourier transform or discrete cosine transform, for example. In an n-tap FIR filter,
every input sample is multiplied by all n taps. Discrete Fourier and trigonometric
transform algorithms, on the other hand, involve 2 × 2 rotations, which require
simultaneous multiplication by two constants.

Figure 5 is an example of a multiplier block which implements the parallel mul-
tiplication by 23 and 81 using only 3 add/subtract operations, although the separate
optimal decompositions of 23 and 81 each require 2 add/subtract operations.
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FIG. 5. Multiplier block with constants 23 and 81.

The different problem of multiplexed multiple constant multiplication was con-
sidered in Tummeltshammer et al. [2004]. In this case, the multiplier block contains
multiplexers that are switched by control logic to achieve multiplication by differ-
ent constants; this way sequential multipliers can be fused. We will not consider
this problem in this article.

Existing Algorithms. The existing MCM algorithms can be divided into four
general classes:

—digit-based recoding;
—common subexpression elimination (CSE) algorithms;
—graph-based algorithms; and
—hybrid algorithms.

Digit-based recoding includes simple methods like CSD and the binary method
mentioned earlier. They generate the decomposition directly from the digit repre-
sentation of the constant. These methods are the fastest and the worst-performing;
however, newer work by Coleman [2001] uses different number systems to yield
considerably better solutions. The main advantage of digit-based recoding is their
low computational cost, typically linear in the number of bits. As a consequence,
these methods can be easily applied to constants with thousands of bits.

Common subexpression elimination (CSE) algorithms are direct descendants
of digit-based recoding methods. The basic idea is to find common subpatterns in
representations of constants after the constants are converted to a convenient number
system such as CSD. Examples for this method include Pasko et al. [1999], Lefèvre
[2001], and Hartley [1996]. The disadvantage, however, is that the performance
of these algorithms depends on the number representation. Further, even though
the considered CSE problem is NP-complete [Garey and Johnson 1979; Downey
et al. 1980], its optimal solution does in general not provide the optimal MCM
solution. More recently, Dempster and Macleod [2004] have proposed searching
over alternative number representations to find considerably improved solutions
using a CSE algorithm.

Graph-based algorithms are bottom-up methods that iteratively construct the
graph (as in Figure 5) representing the multiplier block. The graph construction
is guided by a heuristic that determines the next graph vertex to add to the graph.
Graph-based algorithms offer more degrees of freedom by not being restricted to a
particular representation of the coefficients, or a predefined graph topology (as in
digit-based algorithms), and typically produce solutions with the lowest number of
operations. Examples of graph-based algorithms include Bull and Horrocks [1991],
RAG-n [Dempster and Macleod 1995], and Bernstein [1986]. This article proposes
a new graph-based algorithm.
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Hybrid algorithms combine different algorithms, possibly from different classes.
For example, Choo et al. [2004] construct the multiplier block graph with fixed
topology to compute the so-called differential coefficients, and then switch to a
CSE algorithm for multiplication by the differential coefficients.

Today, to the best of our knowledge, RAG-n yields solutions with the smallest
number of add/subtract operations among all algorithms. Graph-based algorithms
are expected to outperform other methods, since they have the fewest restrictions.
However, RAG-n relies on a lookup table of optimal single constant decompositions,
which is currently limited to 19 bits, as mentioned before.

Contribution of This Article. This article first presents a general formal frame-
work that captures the common structure of graph-based MCM algorithms. A cru-
cial component in this framework is our notion of “A-distance,” an extension of
the concept of adder distance introduced in Dempster and Macleod [1995], and its
exact or heuristic estimation. We use the framework to develop a new graph-based
MCM algorithm that outperforms the best available algorithms with respect to the
number of add/subtract operations in the obtained multiplier blocks. In particu-
lar, we achieve up to a 20% lower average operation count than the best previous
algorithm, RAG-n. At the same time, our new algorithm is not bitwidth limited
like RAG-n, and can thus be used to generate multiplier blocks for all practically
relevant bitwidths. Finally, we perform a detailed runtime analysis of our new al-
gorithm and other graph-based algorithms used for benchmarks. This analysis was
not provided in the original papers.

Other Optimization Metrics. Besides reducing the number of add/subtract op-
erations, it is often desirable to optimize for other metrics, for example, the critical
path of the MCM block, or the register pressure in the generated code. Examples
of such work include Dempster et al. [2002] and Kang et al. [2001]. This article
does not consider this type of optimization; however, the structure of our algorithm
enables its adaptation to other target metrics.

Organization. This article is organized as follows. Section 2 gives the mathe-
matical background and notation used throughout the article. Section 3 puts existing
graph-based algorithms for the MCM problem into a framework that identifies their
common structure. Our new algorithm is presented in Section 4, including a dis-
cussion of its main properties. A crucial subroutine of our algorithm estimates the
so-called A-distance, which is explained in Section 5. Section 6 presents a runtime
analysis of both our and competing algorithms and shows various experimental
results with generated MCM blocks. The results show that our algorithm outper-
forms the best available methods at the cost of a higher computation time. Finally,
we offer conclusions in Section 7.

2. Background

In this section we formally state the problem of multiple constant multiplication,
describe the graphical representation of multiplier blocks, and the corresponding
mathematical notation used in this article. The notation introduced in this article is
summarized in Table I and will be used in following sections to develop a unifying
framework for existing and our new graph-based algorithms.
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TABLE I. SUMMARY OF THE NOTATION USED IN THE ARTICLE

Notation Meaning Defined in
A Upper case letters denote sets
a Lower case letters denote integers
U ∪ V Union of sets U and V
U − V Difference of sets U and V Eq. (3)
U − a Difference of sets U and {a} Eq. (3)
U + a Union of sets U and {a} Eq. (4)
a + b Addition of two integers
a − b Subtraction of two integers
U V Set of all products Eq. (8)
U
V Set of all integer quotients Eq. (9)
dist(U, a) A-distance of a from set U Def. 2.4
Cn Set of complexity-n constants Def. 2.3
Ap(a, b) A-operation Def. 2.1
A∗(a, b) Vertex fundamental set Def. 2.5
A∗(U, V ) Vertex fundamental set Def. 2.6
Aodd A-operation with odd outputs Sect. 2
R Ready set Sect. 3.1
S Successor set of R Eq. (10)
Sn Set of distance-n constants with respect to R Eq. (11)
T Targets set Sect. 3.1
B(R, s, t) Benefit Eq. (15)
B(R, s, t) Weighted benefit Eq. (16)
Hmaxb(R, S, T ) Maximum benefit heuristic Sect. 4.3
Hcub(R, S, T ) Cumulative benefit heuristic Sect. 4.3
dist(U, a) � d d is an estimate for dist(U, a) Sect. 5.6
Est(z) Auxiliary cost measure of a constant z Eq. (21)
Est(Z ) Minimum auxiliary cost measure for a set Z Eq. (22)

A-Operation. A multiplier block implements the parallel multiplication by
a given set of constants which we call fundamentals, following Dempster and
Macleod [1994], or simply constants. The implementation uses adds, subtracts,
and shifts, but to streamline the search process we consolidate these operations into
a single parameterized operation called an A-operation.

We define an A-operation as an operation on fundamentals. An A-operation
performs a single addition or subtraction, and an arbitrary number of shifts which
do not truncate nonzero bits of the fundamental. Since two consecutive shifts can
be merged, the most general definition is given next.

Definition 2.1 (General A-Operation). Let l1, l2 ≥ 0 be integers (left shifts),
r ≥ 0 be an integer (right shift), and let s ∈ {0, 1} (sign). An A-operation is an
operation with two integer inputs u, v (fundamentals) and one output fundamental,
defined as

Ap(u, v) = |(u � l1) + (−1)s(v � l2)| 	 r (1)

= |2l1u + (−1)s2l2v|2−r ,

where � is a left binary shift, and 	 is a right binary shift, and p = (l1, l2, r, s) is
the parameter set or the A-configuration of Ap. To preserve all significant bits of
the output, 2r must divide 2l1u + (−1)s2l2v .

Without loss of generality, we restrict the discussion to positive fundamen-
tals only. The absolute value in the definition of A, besides enforcing positive
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8 Y. VORONENKO AND M. PÜSCHEL

FIG. 6. A-operation: u and v are the input fundamentals and w is the output fundamental.
A-operations directly connected to the input of the multiplier block have u = v = 1.

fundamentals, enables the subtraction to be done in only one direction, which sim-
plifies the definition.

We represent an A-operation graphically as shown in Figure 6. Note that the
result w is written inside the node, even though the right shift by r has already been
applied to w . The reason for this notation is that what matters later in the considered
MCM algorithms is the unique odd fundamental at each node. Also, the final right
shift by r will be fused in the full A-graph with a subsequent left shift in the next
A-operation. Originally, the final right shift r in the A-operation was not used;
however, it is necessary to obtain the full range of possible outputs. For example,
for odd u and v and l1 = l2 = 0, u + v is even and a right shift can be applied to
obtain a new odd fundamental that may not be possible to obtain otherwise with
only one A-operation.

All MCM algorithms impose constraints on theA-configuration. In particular, an
upper bound on the left shifts l1 and l2 is necessary to make the set of choices finite. In
practice, it is sufficient to limit these shifts by the bitwidth of the target constants.
Experimental results from Dempster and Macleod [1994], Lefèvre [2003], and
Gustafsson et al. [2002] show that allowing larger shifts does not improve upon the
optimal solutions1 obtained with the former limits. However, in the general case,
the smallest obtained theoretical limit on the shifts sufficient to obtain optimal
multiplier blocks is larger [Dempster and Macleod 1994]. Additional insights are
given in Lefèvre [2003]. Although the authors do not compute this particular bound
(cinf in their notation), they prove that optimal multiplier blocks cannot have shifts
larger than a certain finite value (csup in their notation). The results of Lefèvre [2003]
and Dempster and Macleod [1994] are not directly comparable, since Lefèvre did
not take into account right shifts.

Some constraints on p may lead to different problem classes. For example, if
we restrict l1 = l2 = r = s = 0, then the SCM problem reduces to the well-
known problem of finding the shortest addition chain [Knuth 1969], since the
A-operation in this case is an ordinary addition. However, even a lesser restriction,
like s = 0, which disallows subtractions can require major changes to the MCM
algorithm. Thus, it is crucial that the A-operation and A-configuration constraints
are explicitly defined for any MCM algorithm.

Since in this work we are only interested in reducing the number of add/subtract
operations in a multiplier block, we will refer to A-operations also as add/subtract
operations, although in reality they include also shifts.

The rationale for neglecting shifts is that in hardware, shifts can be implemented
as wires which require virtually no area, and in software, some CPUs (e.g., Intel

1 With respect to the number of add/subtract operations.
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XScale) support combined add/shift and subtract/shift instructions which execute
as fast as a single add or subtract. If desired, minimization of the number of shifts
can be incorporated as a secondary criteria in our MCM algorithm.

A-Graph. As we have already seen in Figures 2 and 5, the structure of a
multiplier block can be represented as a directed graph. We call such graph an
A-graph, since it is built out of the A-operations shown in Figure 6. The vertices of
an A-graph are labeled with their respective fundamentals; hence the input vertex
has label 1. The edges are labeled with a 2-power scaling factor equivalent to
the performed shift. Negative edge values are used to indicate subtractions at the
following vertex.

Formal Problem Statement. Now we can formally state the problem of con-
structing multiplier blocks.

Definition 2.2 (MCM Problem). Given a set of positive target constants T =
{t1, . . . , tn} ⊂ N. Find the smallest set R = {r0, r1, . . . , rm} with T ⊂ R such that
r0 = 1, and for all rk with 1 ≤ k ≤ m there exist ri , r j with 0 ≤ i, j < k, and an
A-configuration pk such that

rk = Apk (ri , r j ). (2)

The set of A-graph fundamentals R and the set of A-configurations pk uniquely
define an A-graph for an MCM block with m = |R| − 1 add/subtract operations.

The number of A-operations in an optimal solution for a given set T is called
the A-complexity of T . If any A-graph for T is given, optimal or not, we refer to
its number of required A-operations as the cost of this graph.

All constants can be divided into complexity classes.

Definition 2.3 (Complexity-n Constants). We denote by Cn the set of all con-
stants with complexity n, that is, those for which an optimal SCM solution requires
exactly n A-operations. For example, C0 = {2a | a ≥ 0} because precisely all
2-power constants require a single left shift and no adds/subtracts.

Although the sets Cn are infinite, we will always limit our discussion to constants
up to certain bitwidth b, which is always explicitly stated. The set of complexity n
constants obeying this constraint is then finite and, by abuse of notation, will also
be denoted Cn .

Next, we introduce the notion of A-distance, the key component in our proposed
algorithm.

Definition 2.4 (A-Distance). Let c ∈ N be a constant, and let R ⊂ N be a set
of constants (fundamentals of an A-graph). Then, the A-distance of c from the set
R, denoted dist(R, c), is the minimum number of extra A operations required to
obtain c, given R.

The A-distance corresponds to the notion of “adder distance” in Dempster and
Macleod [1995].

For example, dist({1}, T ) is equal to the complexity of T , and for all c ∈ Cn ,
dist({1}, c) = n.

For simplicity, we write in this article the difference of two sets U and V as

U − V = U\V, and for one element U − a = U\{a}. (3)
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10 Y. VORONENKO AND M. PÜSCHEL

For visual appeal we will also use a + for the union of a set with a single element,
that is,

U + a = U ∪ {a}. (4)

To express the degree of freedom in the output of an A-operation when different
A-configurations are chosen, we define next the vertex fundamental set.

Definition 2.5 (Vertex Fundamental Set). The set of all possible outputs (not
equal to the inputs) of an A-operation with fixed inputs (u and v) under different
A-configurations is called the vertex fundamental set, written as

A∗(u, v) = {Ap(u, v) | p is a valid configuration } − u − v . (5)

The definition of valid A-configurations p will be introduced later for each
discussed algorithm.

It is useful to extend the definition of A∗ to sets of inputs.

Definition 2.6. If U, V ⊂ N are sets of fundamentals, then

A∗(U, V ) =
⋃
u∈U
v∈V

A∗(u, v) − U − V . (6)

From this definition it follows that for sets U , V , and W :

A∗(U ∪ V, W ) = (A∗(U, W ) − V ) ∪ (A∗(V, W ) − U )
= A∗(U, W ) ∪ A∗(V, W ) − U − V (7)

Further, we define the product of sets U , V in the usual way as

UV = {uv | u ∈ U, v ∈ V } , (8)

and their quotient as

U
V

=
{u

v
| u ∈ U, v ∈ V, v divides u

}
. (9)

Odd Fundamental Graphs. Any A-graph can be converted into an A-graph
of equal cost which has only odd fundamentals [Dempster and Macleod 1994].
Such graphs are called odd fundamental graphs. As an example, the graph in
Figure 5 is an odd fundamental graph. This reduction is possible because any even
constant can be obtained from an odd constant by a suitable shift. Odd fundamental
graphs are important because they reduce the degree of freedom in choosing graph
fundamentals, without affecting the cost of the graph.

To obtain odd fundamental graphs, the validA-configuration must be constrained
to allow at most one nonzero left shift l1 or l2, and if l1 = l2 = 0, to force r to be
the unique right shift that produces an odd value. We will sometimes use Aodd to
indicate these constraints. For given u and v , the only free parameters in Aodd are
s and the nonzero left shift (either l1 or l2), in contrast to the general A-operation
where l1, l2, r , and s can vary. Thus, the space of valid A-configurations p is
considerably reduced.

Algorithms that useAodd preprocess all target constants with a suitable right shift
to make them odd.
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Multiplierless Multiple Constant Multiplication 11

Algorithm 1 High-Level Structure of Graph-Based MCM Algorithms

Given the target set of constants T . Compute (synthesize) the set R = {r1, . . . , rm}, with T ⊂ R, as
given in Definition 2.2.

SynthesizeMultiplierBlock(T)
1: R ← {1}
2: while T = ∅ do

3: compute the successor set S of R
4: select s ∈ S based on a heuristic
5: Synthesize(s)

Synthesize(s)
1: R ← R + s
2: T ← T − s

3. Overview of MCM Algorithms

Using the notation introduced in the previous section, we put existing graphical
MCM algorithms into a common context and identify their common structure.
Then we discuss the most important algorithms in greater detail.

3.1. GENERAL FRAMEWORK. Existing graph-based algorithms for multiplier
block synthesis share the same high-level structure, that is shown in Algorithm 1
and explained in the following. As said before, it is necessary that the notion
of A-operation considered by the algorithm is precisely defined, including all
constraints.

The input to Algorithm 1 is the target set T of constants. The set R used in the
algorithm is called the ready set. It is initialized in step 1 with the first fundamental 1
and iteratively augmented in the loop in step 2 with additional fundamentals. Upon
termination, namely, when T ⊂ R, then R is output as the solution. In each iteration
of the loop in step 2, an element of the successor set S of R is chosen as the next
fundamental based on a heuristic. Formally,

S = {s | dist(R, s) = 1} = A∗(R, R) (10)

is the set of all constants of distance 1 from R. Even though S depends on R, we
do not write SR or S(R) to simplify the notation. In Algorithm 1 we do not specify
whether or how S is computed, which is discussed later.

Once s ∈ S is chosen, it is added to R, and, if s ∈ T , removed from T . We
call this process synthesizing s. Alternatively, the algorithm may use a heuristic to
choose constants s at a higher distance.

s ∈ Sn = {s | dist(R, s) = n} (11)

In this case, all n − 1 intermediate fundamentals have to be synthesized as well.
We call Sn the distance-n set (of R). Clearly, S1 = S. Although S does not have to
be explicitly enumerated and stored, some algorithms do so.

The procedure is repeated until the target set is empty, that is, all of the target
constants are synthesized.
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12 Y. VORONENKO AND M. PÜSCHEL

The heuristic used in step 4, which determines the next fundamental or the next
vertex in the A-graph to be synthesized, is highly dependent on the A-operation
used within an MCM algorithm. Further, the heuristic is what differentiates the
various algorithms and determines their performance.

In the following we discuss the three most important graph-based MCM algo-
rithms, each of which is an instantiation of Algorithm 1.

3.2. BULL-HORROCKS ALGORITHM (BHA). Bull and Horrocks [1991] de-
signed four MCM algorithms: add, add/subtract, add/shift, and add/subtract/shift
decompositions. Here we discuss the latter, since it addresses the problem consid-
ered in this work. We refer to this algorithm as BHA.

The A-operation considered in BHA imposes constraints on the configuration
by requiring r = 0, and Ap(u, v) ≤ min(T ). In words, right shifts are not allowed
and as intermediate fundamentals, only numbers smaller than the current min(T )
are synthesized. This also imposes an implicit bound on the shifts l1 and l2 in the
A-configuration.

The heuristic synthesizes targets T in ascending order. Since targets are removed
from T in the synthesize step, the next target to be synthesized is always min(T ).

The heuristic used in BHA keeps track of the so-called “error”

ε = min(T ) − max(R). (12)

If ε ∈ R, then the candidate target can be directly synthesized, and the algorithm
proceeds. Otherwise, two successors s1 and s2 that minimize the error are synthe-
sized, chosen as follows:

s1 = arg min
s∈S, s≤ε

(ε − s), and

s2 = max(R) + s1

In particular, when ε ∈ S, then s1 = ε and s2 = ε + max(R) = min(T ), that is, the
candidate target is synthesized.

The algorithm considers only the magnitude of the error, and the binary repre-
sentation of constants is not taken into account, unlike CSE algorithms.

3.3. BULL-HORROCKS MODIFIED ALGORITHM (BHM). Dempster and Macleod
[1995] improved BHA and called it the Bull-Horrocks modified algorithm (BHM).

The A-operation considered in BHM is Aodd. Accordingly, all targets T are
preprocessed by right shifts to become odd. The A-configuration constraints are
relaxed to allow fundamentals larger than constants in T , namely, up toAodd

p (u, v) ≤
2 max(T ), which stimulates the use of subtractions.

The heuristic in BHM is changed from BHA in the following way. First, the
targets are synthesized in order of increasing A-complexity, which is obtained
from a precomputed lookup table, or estimated by, for example, the CSD cost.
Second, the error in Eq. 12 is allowed to be negative. Finally, because Aodd is
used and all elements of R are odd, minimization applies left shifts to candidate
successors.

Let minc(T ) denote the next candidate target (target of minimal complexity or
cost), and let rc ∈ R denote the closest (magnitude-wise) fundamental to minc(T ),
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FIG. 7. The three cases considered by the RAG-n heuristic. The dashed circle means that S2 is not
computed explicitly.

namely, rc = minc(T ) ± ε. Then the chosen successors s1 and s2 are determined as
follows.

(s1, k) = arg min
s∈S

0≤k≤�log2 ε�
|ε − s � k|, (13)

s2 = rc ± s1 � k

Just as in BHA, two successors are synthesized per iteration unless ε ∈ R.
Due to these modifications, BHM performs consistently better than BHA in terms

of the number of A-operations in the generated A-graphs.

3.4. N-DIMENSIONAL REDUCED ADDER GRAPH (RAG-N). RAG-n [Dempster
and Macleod 1995] is a graph-based MCM algorithm that requires a precomputed
table of optimal SCM decompositions which are obtained by exhaustive search
using the method in Dempster and Macleod [1994].

The target A-operation in RAG-n is Aodd, and as in BHM, all targets T are first
right-shifted to become odd. The A-configuration constraints are less restrictive
than in BHM, with the only constraint being Ap(x, y) ≤ 2b+1, where b is the
maximum bitwidth of the targets. The RAG-n heuristic considers three different
cases, graphically illustrated in Figure 7, and discussed next.

(1) Optimal case. If T ∩ S = ∅, then there is a target in the successor set, and it
is synthesized. If the entire set T is synthesized this way, then the solution is
optimal, since it is impossible to use less than one A-operation for each odd
target. Thus, this case is called optimal.

(2) Heuristic case A. If T ∩ S = ∅ and T ∩ S2 = ∅, then there is a target at an
A-distance of 2 from R. This target is synthesized along with the distance-1
intermediate fundamental.

(3) Heuristic case B. If no distance-1 or distance-2 targets are available, then RAG-n
synthesizes the target of least complexity using the precomputed optimal SCM
table. In this case, three or more constants are synthesized.

RAG-n computes the entire set S and then finds the intersection S ∩ T to de-
tect distance-1 targets. Distance-2 targets, on the other hand, are detected using a
heuristic distance test only. This test is less expensive than a full computation of
S2 but does not detect all distance-2 numbers. We express this in Figure 7 by using
a dashed circle for S2.

The last case (heuristic case B) uses the precomputed SCM decomposition to
decompose a target. In general, this does not lead to any subexpression-sharing.
With the current methods, the largest available optimal SCM table is restricted to
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constants of up to 19 bits [Gustafsson et al. 2002], which also limits the applicability
of RAG-n.

RAG-n applied to a single constant set will always yield an optimal decom-
position if the constant resides in the precomputed optimal SCM lookup table.
Constants not in the lookup table are only synthesized at all (optimal or not) if they
have complexity 1 or 2, that is, have a distance 1 or 2 from the initial R = {1}.
Since RAG-n uses the lookup table, it can only be considered applicable to target
sets with 2 or more constants. Other MCM algorithms, including BHA, BHM, and
the proposed new algorithm, can be applied to the SCM problem directly.

3.5. HYBRID GRAPH-BASED ALGORITHMS. The common structure of graph-
based algorithms makes it possible to easily mix different algorithms to obtain
hybrids. For example, in any given iteration, one can change the heuristic or use a
different algorithm to synthesize a target.

For example, RAG-n itself is a hybrid with three components. When its optimal,
distance-1 test fails, the algorithm switches to a distance-2 heuristic, and when this
also fails, RAG-n reverts to a lookup table to synthesize a fundamental. Similarly,
RAG-n can be easily modified to use a CSE-based algorithm, instead of a lookup
table, to synthesize the targets not detected by its distance-1 and distance-2 tests.

4. New Algorithm

This section first describes limitations of the existing algorithms introduced in
Section 3, and then presents in detail the proposed new algorithm. The heuristic
in the new algorithm assumes that there is a function that will compute exactly
or estimate the A-distance. This is a nontrivial problem and will be addressed
separately in Section 5.

4.1. LIMITATIONS OF EXISTING GRAPH-BASED ALGORITHMS. BHA was de-
signed more than a decade ago, when workstation computers had several orders of
magnitude less computing power, and thus uses a computationally modest heuris-
tic by today’s standards. Although BHM improved on BHA, the heuristic was not
changed significantly. So it can be expected that on today’s computers we can im-
prove on BHA and BHM by choosing a computationally more complex and thus
more precise heuristic.

Although RAG-n performs reasonably well, one main disadvantage is its depen-
dence on a precomputed table of optimal single constant add/subtract/shift decom-
positions. First, this table takes a time exponential in the number of bits to construct.
Second, the best available method to compute this table [Gustafsson et al. 2002]
works only up to 19 bits (even though one could also use a good suboptimal table,
which was not investigated). Finally, the size of the table is also exponential in the
number bits (it must have an entry for every odd constant). For instance, the table
for all odd constants up to 32 bits requires 231 > 109 entries. Thus, RAG-n is not
applicable to large bitwidths.

Another shortcoming of RAG-n (as will as of BHA and BHM) is that the heuristic
does not try to select intermediate fundamentals to jointly optimize for all target
constants. This often results in suboptimal answers, even in very simple cases. For
example, RAG-n applied to the target set T = {23, 81} synthesizes a multiplier
block that uses four A-operations without any subexpression-sharing (both 23 and
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81 are complexity-2 constants). In contrast, Figure 5 shows a better solution with
only three operations produced by our algorithm.

4.2. NEW ALGORITHM. The main idea behind our new algorithm is to use a
better heuristic for synthesizing intermediate fundamentals. Our algorithm is com-
putationally more expensive than BHA, BHM, and RAG-n, since it explores a very
large space of possible intermediate vertices. Unlike RAG-n, it does not require a
pregenerated optimal SCM lookup table. Thus, our algorithm is storage efficient
and in its applicability only limited by the computation time.

Target A-Operation. The A-operation in our algorithm is Aodd with the same
A-configuration constraint as RAG-n, namely, allowing Ap(u, v) ≤ 2b+1, where b
is the maximal bitwidth of constants in T . When describing the algorithm we will
use for simplicity A to denote Aodd with the aforementioned constraint.

Outline of the New Algorithm. Our algorithm follows the general structure of
Algorithm 1 and is shown in Algorithm 2. The heuristic is split into two parts: the
optimal and the heuristic part, similarly to the RAG-n algorithm. The optimal part
is practically identical to the optimal part in RAG-n, but in Algorithm 2 we give a
more detailed explanation of how to efficiently construct the successor set S. The
heuristic part uses S and the A-distance tests and estimators developed in Section
5 to select the new successors s to be added to R. Unlike in RAG-n, our heuristic
part only adds a single successor to R at each iteration.

When we talk about a single iteration of the algorithm (e.g., later in its analysis),
we refer to the outer loop consisting of steps 5–18.

Next, we discuss Algorithm 2 in greater detail.

Construction of S and the Optimal Part. The optimal part of our algorithm is
equivalent to the optimal part of RAG-n. Recall that the optimal part of RAG-n
synthesizes at each iteration all distance-1 targets, namely, S ∩ T .

To avoid computing in each iteration the entire set S which can become rather
large, we compute it incrementally. This necessitates an additional set: the worklist
W . When a constant is synthesized, it is added to W , first without being accounted
for, neither in R nor in S. In steps 9–10 we then perform an incremental update of
R and S based on W . The update of R is straightforward (step 9).

Rnew = R ∪ W

The update formula for S is derived as follows, using Eqs. 7 and 10:

Snew = A∗(Rnew, Rnew) = A∗(Rnew, R ∪ W )
= A∗(Rnew, R) ∪ A∗(Rnew, W )
= A∗(R ∪ W, R) ∪ A∗(Rnew, W )
= A∗(R, R) ∪ A∗(W, R) ∪ A∗(Rnew, W ) − W
= S ∪ A∗(R, W ) ∪ A∗(Rnew, W ) − W

Since A∗(R, W ) ⊂ A∗(Rnew, W ), we get

Snew = (S ∪ A∗(Rnew, W )) − W, (14)

which is step 10 in Algorithm 2.
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16 Y. VORONENKO AND M. PÜSCHEL

Algorithm 2 New MCM Algorithm.
Given the target set of constants T . Compute the set R = {r1, . . . , rm}, with T ⊂ R, as given in
Definition 2.2 in Section 2. There is a degree of freedom in choosing the heuristic function H(R, S, T )
for the algorithm. We consider two alternatives Hmaxb and Hcub discussed in Section 4.3.

SynthesizeMultiplierBlock(T)
1: Right shift elements of T until odd
2: R ← {1}
3: W ← {1}
4: S ← {1}
5: while T = ∅ do

6: {optimal part}
7: while W = ∅ do

8: {update S and R}
9: R ← R ∪ W

10: S ← (S ∪ A∗(R, W )) − W
11: W ← ∅
12: {if S contains targets, synthesize them}
13: for t ∈ S ∩ T do

14: Synthesize(t)
15: {heuristic part}
16: if T = ∅ then

17: s ← H(R, S, T )
18: Synthesize(s)

Synthesize(s)
1: W ← W + s
2: T ← T − s

Heuristic Part. When no more targets are found in S, the optimal part of the
algorithm cannot synthesize any constants. This means that all targets are more than
one A-operation away, and a heuristic function H(R, S, T ) is used to find the next
successor to add to R. Adding a successor to R creates new successors, possibly
enabling the optimal part to subsequently synthesize new targets.

We have developed two different heuristic functions Hmaxb and Hcub, discussed
next.

4.3. HEURISTICS. We present two heuristic functions H considered in our algo-
rithm, called maximum benefit and cumulative benefit. Both heuristics assume that
one can compute or estimate the A-distance. This is a nontrivial problem, and the
next section is dedicated to A-distance computation/estimation.

Heuristic 1: Maximum Benefit. The obvious and natural heuristic that comes
to mind, assuming that it is possible to compute or estimate the A-distance, is to
pick the successor s ∈ S closest to the target set. However, it is useful to also
take into account the current estimate of the distance between R and T . Thus, to
build our heuristic, we first define the benefit function B(R, s, t) to quantify to what
extent adding a successor s to the ready set R improves the distance to a fixed, but
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arbitrary, target t .

B(R, s, t) = dist(R, t) − dist(R + s, t) (15)

(Recall that we write R + s for R ∪ {s}.) If dist is exact, then B is at most 1. For
targets farther away, however, the A-distance can only be estimated, and with these
estimated distances the benefit can be larger than 1. Moreover, for remote targets
the estimate becomes less accurate (refer to Section 5), but also less important. We
take this into account by introducing the weighted benefit function

B(R, s, t) = 10− dist(R+s,t)(dist(R, t) − dist(R + s, t)), (16)

where the weight factor 10− dist(R+s,t) is exponentially decreasing as the distance to
t grows. Initially, we always favored closer targets, which is equivalent to having
a very large exponent base, but later it was experimentally found that 10 slightly
improves the solutions obtained with our second heuristic.

The maximum benefit heuristic Hmaxb(R, S, T ) used in our algorithm picks the
successor s ∈ S that maximizes the weighted benefit over all targets t ∈ T .

Hmaxb(R, S, T ) = arg max
s∈S

(
max
t∈T

B(R, s, t)
)

(17)

Maximizing B tends to give preference to the successors closest to T , but between
two successors that are equally far from T , it prefers the one with the greater benefit
value.

Heuristic 2: Cumulative Benefit. The key observation about the benefit function
is that benefits for different targets t can be summed to enable joint optimization for
all targets. This leads to the second and, as it turns out, superior cumulative benefit
heuristic, formally defined as

Hcub(R, S, T ) = arg max
s∈S

(∑
t∈T

B(R, s, t)

)
. (18)

The cumulative benefit heuristic adds up the weighted benefits with respect to all
targets in T instead of taking the maximum, and thus accomplishes joint optimiza-
tion for all targets.

Remarks. In a sense, our first heuristic Hmaxb corresponds to a maximum norm
‖ · ‖∞, and the second heuristic Hcub to the 1-norm ‖ · ‖1 (of course, a proper norm
would require an underlying vector space). We had also considered the equivalent
of the 2-norm ‖ · ‖2, but it did not produce results significantly different from Hcub.

4.4. TERMINATION AND DISTANCE FUNCTION ADMISSIBILITY. The inner loop
(steps 7–14 in Algorithm 2) of the optimal part is guaranteed to terminate, since
there is a finite number of targets and at each iteration, either a target is synthesized
or the optimal part finishes.

The heuristic part, on the other hand, does not synthesize target constants. Since
one constant at-a-time is synthesized, it would have to be a distance-1 target. How-
ever, if the test for the optimal part fails, that is, T ∩ S = ∅, it is guaranteed that
no distance-1 targets exist. Thus, the heuristic part only synthesizes intermediate
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18 Y. VORONENKO AND M. PÜSCHEL

vertices, and the algorithm is not guaranteed to terminate unless the heuristic H
meets certain conditions.

For Hmaxb and Hcub, the termination is guaranteed if for an arbitrary ready set R ⊇
{1}, the corresponding successor set S, and any t ∈ T , the A-distance estimation
function dist is admissible, as defined next.

Definition 4.1 (Admissible A-Distance Estimation Function). We call an A-
distance estimation function dist admissible if the following holds:

(1) dist(R, t) is a finite nonnegative integer;
(2) dist(R, t) = 0 iff t ∈ R;
(3) dist(R, t) > 0 iff t /∈ R;
(4) for an arbitrary set U , dist(R ∪ U, t) ≤ dist(R, t); and
(5) if t /∈ R, then there exists s ∈ S such that

B(R, s, t) = dist(R, t) − dist(R + s, t) > 0 or dist(R + s, t) < dist(R, t).

THEOREM 4.2 (ALGORITHM TERMINATION). Algorithm 2 with the heuristic
H = Hmaxb or H = Hcub terminates if dist is admissible.

PROOF. Consider the sum of estimated distances to all unsynthesized targets
D = ∑

t∈T dist(R, t). The admissibility conditions 1–3 in Definition 4.1 imply that
D is finite, D > 0 for T = ∅, and that D = 0 iff T = ∅, namely, when all targets
are synthesized.

Both heuristics choose a successor with positive benefit if it exists.2 According
to condition 5 of Definition 4.1, such a successor s always exists and

dist(R + s, t) < dist(R, t).

Thus, the intermediate fundamental chosen by the heuristic will decrease by at least
1 distance estimate, and since according to condition 4, estimates cannot increase
with an addition of new elements to R, the sum D will also decrease.

Since at each iteration D is decreased, eventually it will become 0. Then, accord-
ing to condition 2, all targets are synthesized and the algorithm terminates. Observe
also that D is the maximum number of iterations of the heuristic part. The optimal
part decreases D by at least 1 for each synthesized target, and the heuristic part
decreases D by at least 1 for each synthesized intermediate constant, thus D is also
the maximum number of synthesized constants or |R|.

Obviously, if dist is exact and not an estimate, it is admissible.

4.5. ALGORITHM PROPERTIES. Let n = |T |, and let b be the maximal bitwidth
of all constants in T . We derive the worst-case sizes ofA∗, namely, R (i.e., the worst-
case solution) and S, as well as C1 and C2. These bounds are necessary for runtime
analysis of theA-distance computation in Section 5, hence of the algorithm. Table II
summarizes these bounds. We will also identify scenarios in which the algorithm
produces an optimal solution. Both worst-case set sizes and optimality hold under
the constraint Ap(u, v) ≤ 2b+1.

2 Although Hcub and Hmaxb use the weighted benefit B, it can be easily seen that if B(R, s, t) > 0, then
also B(R, s, t) > 0.
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TABLE II. WORST-CASE SET

SIZES FOR THE NEW

ALGORITHM

Set Worst-Case Size
A∗(u, v) O(b)
C1 O(b)
C2 O(b2)
T n
R O(nb)
S O(n2b3)

Worst-Case Size ofA∗. Aodd allows only one nonzero left shift l1 or l2, and since
the fundamental values are limited to 2b+1, the shifts can be between 0 and b + 1.
The only other parameter that can vary is s = {0, 1}. Therefore, for a fixed u and
v , there are at most O(4(b + 2)) = O(b) possible A-configurations, and hence at
most O(b) elements in A∗(u, v).

Worst Case Solution (|R|). As mentioned in the proof of Theorem 4.2, the size
of the solution is bounded as

|R| ≤ D =
∑
t∈T

dist(R, t). (19)

The A-distance estimation function presented in the next section is bounded by
the CSD cost of t . Therefore, for b bit constants (with a CSD cost of O(b)) and n
targets, the worst-case is

|R| = O(nb).

Worst-Case Size of S. Recall that S = A∗(R, R). The number of pairs in R
(with repetition) is at most

|R| +
(|R|

2

)
= O(nb) +

(
O(nb)

2

)
= O(n2b2).

Since for each r, r ′ ∈ R, A∗(r, r ′) contains O(b) elements, we have

|S| = O(n2b2 · b) = O(n2b3).

Sizes of C1 and C2. These principally infinite sets (see Definition 2.3) become
finite if we take into account the restriction of Ap(u, v) ≤ 2b+1 imposed by the
algorithm.

Each odd constant in C1 is in Ap(1, 1), since 1 is the only odd constant with
complexity zero. Thus,

|C1| = |A∗(1, 1)| = O(b).

Each constant in C2 is either in Ap(1, c) or in Ap(c, c) for a suitable c ∈ C1. Thus,

C2 = A∗(C1, 1) ∪
⋃
c∈C1

A∗(c, c).
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It is easy to see that A∗(c, c) = c · A∗(1, 1), and thus⋃
c∈C1

A∗(c, c) =
⋃
c∈C1

c · A∗(1, 1) = C1A∗(1, 1) = C1 · C1.

We have C2 = A∗(C1, 1) ∪ C1 · C1 and |C2| = O(b2).

Optimality. In certain situations Algorithm 2 produces an optimal solution, that
is, with the minimum possible number of A-operations.

THEOREM 4.3 (SINGLE CONSTANT OPTIMALITY). If the A-distance function
dist is exact, then Algorithm 2 with either Hcub or Hmaxb is optimal for a single
target (n = 1).

PROOF. Denote the single target with t . Then |R| ≤ dist({1}, t) from Eq. 19.
Since the distance function is exact, dist({1}, t) is the A-complexity of t and the
result follows.

THEOREM 4.4 (MULTIPLE CONSTANT OPTIMALITY). If the optimal part of Al-
gorithm 2 synthesizes the entire set T , then the solution is optimal.

PROOF. This was already shown for the RAG-n algorithm in Dempster and
Macleod [1995], which uses the same optimal part.

If after the first pass of the algorithm T is empty, then R contains all targets, and
the solution uses exactly n = |T | A-operations if T has distinct odd constants. It is
not possible to use less operations because each unique odd target requires at least
one A-operation.

Observe that n is also the lower bound for the number of A-operations for n odd
constants. Asymptotically, due to the optimal part of the algorithm, the number of
A-operations will approach n when b is fixed. Further discussion can be found in
Dempster and Macleod [1995].

5. Computing the A-Distance

The previous section described the proposed algorithm and the two heuristics Hcub
and Hmaxb, both of which are based on a function dist that computes or estimates
the A-distance. Our design of this dist function is described in this section.

First, we show that the A-distance computation is an NP-complete problem
to motivate the use of estimation. Second, we discuss the special cases in which
the A-distance can be computed exactly, and then describe a general method for
its estimation. Finally, we prove the admissibility (see Definition 4.1) of the pro-
posed distance function, which guarantees the termination of our algorithm through
Theorem 4.2.

THEOREM 5.1 (COMPLEXITY OF COMPUTING A-DISTANCE). The problem of
computing the A-distance under the constraint Ap(u, v) ≤ 2b+1 is NP-complete.

PROOF. We prove this by reducing the NP-complete problem of finding the
optimal decomposition for a single constant3 to the problem of A-distance compu-
tation in polynomial time.

3 The SCM problem with the shift constraint is still NP-complete.
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If the A-distance function is exact, then Algorithm 2 is optimal for a single
constant (see Theorem 4.3). The heuristic is invoked in the algorithm once per
iteration. There are O(nb) = O(b) iterations (n = 1 for a single constant) and
O(|S|) = O(n2b3) = O(b3) weighted benefits to compute per iteration. Thus
the A-distance is computed O(b4) times. Therefore, the optimal single constant
decomposition is reduced to A-distance computation in polynomial time. Hence,
A-distance computation is NP-complete.

Note that computing the A-distance without the shift constraint is a more general
problem and thus at least as hard.

We proceed by giving algorithms for computing the exact A-distance for dis-
tances ≤ 3, and then give a general method that estimates the A-distance > 3.

5.1. A-EQUATIONS AND EXACT A-DISTANCE TESTS. The algorithm for finding
the exact value of dist(R, t) is based on testing specific distances d for feasibility.
First, all possibleA-graph topologies that synthesize t using exactly d A-operations
are enumerated. Then, these topologies are converted to so-called A-equations
which relate values at the input, output, and intermediate nodes of the topology.
If it is determined that the equation has a solution, then the A-distance is ≤ d. If
we perform these tests in order of increasing distance d, the exact A-distance can
be determined. Since the number of graph topologies for a given distance grows
quickly [Gustafsson et al. 2002], this approach is feasible only for very small values
of d. We consider d = 1, 2, 3, and only estimate the large distances.

Before we start, we list to follow a few useful properties of the A-operation
A = Aodd including constraints (as defined in Section 4.2) used in our algorithm.
For other choices of the A-operation, the properties may not hold.

LEMMA 5.2. If w = Ap(u, v), then there exists an A-configuration p′ such
that u = Ap′(w, v).

PROOF. Using the definition of Ap.

w = |2l1u + (−1)s2l2v|2−r , p = (l1, l2, s, r )

Solving for u, we obtain

u = |2r w + (−1)s ′
2l2v|2−l1 = Ap′(w, v),

p′ = (r, l2, s ′, l1) for a suitable s ′.

The value of s ′ is 1 if s = 0, and either 0 or 1 if s = 1.

LEMMA 5.3. If w = Ap(u, v), then there exists an A-configuration p′ such
that w = Ap′(v, u).

PROOF. Obviously, the A-operation is symmetric, and it suffices to switch the
left shifts to obtain p′.

The following two corollaries follow immediately, using the definition of A∗
(Definition 2.5).

COROLLARY 5.4. For any u and v

A∗(u, v) = A∗(v, u).
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FIG. 8. Special distance cases handled by the heuristic. Solid circles denote available sets, and dashed
circles denote the sets that are not computed.

FIG. 9. Graph topologies for exact distance tests.

COROLLARY 5.5. If w ∈ A∗(u, v), then

u ∈ A∗(w, v) and u ∈ A∗(v, w),
v ∈ A∗(u, w) and v ∈ A∗(w, u).

We use these properties of A for solving A-equations that arise in designing the
distance tests.

To test for a specific A-distance dist(R, t) = d, we need all graph topologies
with d nodes, one or more inputs, and a single output (corresponding to t). We
construct these topologies from the cost (1)–(3) SCM topologies from Figure 5 in
Gustafsson et al. [2002] by splitting the single input node into multiple input nodes.

The tests for dist(R, t) proceed by assigning a value ri ∈ R to each input node,
assigning t to the output node, and solving for all possible values at the first successor
node. If any of those values do exist in S, then the test succeeds. We consider the
distances d = 1, 2, 3 separately next.

5.2. DISTANCE-1 TESTS. Figure 8(a) displays the case of a distance-1 target,
dist(R, t) = 1. For distance-1 there is only one possible topology, shown in
Figure 9(a).
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Although distance-1 targets can be detected with an A-equation-based test, it is
not necessary. The optimal part constructs the entire S (the set of distance-1 con-
stants) and immediately synthesizes all distance-1 targets, namely, the intersection
S ∩ T .

Assuming that S is sorted, the runtime of the test is dominated by set intersection,
which can be done in O(|T | log |S|) = O(n log(n2b3)) = O(n log(nb)) time.

5.3. DISTANCE-2 TESTS. Figure 8(b) shows the scenario where distance-2 tar-
gets exist. A distance-2 constant can be realized with two possible topologies,
shown in Figure 9(b). Next we construct an A-equation for each of the cases.

Case 1. The subgraph from s to t has a single input and a single output, and
hence is a multiplier block with one A-operation which multiplies by a complexity-
1 constant. Thus t can be expressed as t = c1s, where c1 ∈ C1. Alternatively, s = t

c1
,

which has a solution iff

t
C1

∩ S = ∅.

Since |C1| = O(b), and intersection with S (assumed to be sorted) gives another
factor of O(log |S|) = O(log(nb)), this test requires O(b log(nb)) time.

Case 2. Given t = Ap(s, r2), we obtain s = Ap′(t, r2) using Lemma 5.2, which
has a solution iff

A∗(t, R) ∩ S = ∅.

A∗ has O(b) elements (and takes the same amount of time to compute) for each pair
of inputs. Thus, for each O(nb) element in R we have to perform O(b) operations.
Intersection with (sorted) S gives another factor of O(log |S|) = O(log(nb)), and
the total time for this test is O(nb2 log(nb)).

5.4. DISTANCE-3 TESTS. Figure 8(c) shows the scenario where distance-3 tar-
gets exist. A distance-3 constant can be realized with 5 possible topologies, shown
in Figure 9(c).

Gustafsson et al. [2002] present all graphs in so-called reduced form, which
allows vertices to have an in-degree larger than 2. For topologies 2, 3, 4, and 5, we
have chosen to split these vertices into binary vertices. It is shown by the authors
that different splittings have equivalent possible outputs at the output vertex. We
have chosen splittings that minimize the runtime of the distance test.

Cases 1 and 2. In both of these cases, the subgraph from s to t has a single input
and a single output, hence is a multiplier block which multiplies by a complexity-2
constant. Cases 1 and 2 consider different complexity-2 constants, but both can
be covered if the target value is written as t = c2s, where c2 ∈ C2. Alternatively,
s = t

c2
, which has a solution iff

t
C2

∩ S = ∅.

There are O(b2) complexity-2 constants (see Table II). Test membership in S can
be done in O(log(nb)) operations, so this test requires O(b2 log(nb)) time.
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TABLE III. SET INTERSECTIONS COMPUTED FOR EXACT

DISTANCE TESTS AND COMPUTATION TIME PER TARGET

Distance Case Formula Time per Target
1 – t ∩ S O(log(nb))

2 1 A∗(R, t) ∩ S O(nb2 log(nb))
2 t

C1
∩ S O(b log(nb))

3 1,2 t
C2

∩ S O(b2 log(nb))

3 A∗
(

t
C1

, R
)

∩ S O(nb3 log(nb))

4 A∗(R,t)
C1

∩ S O(nb3 log(nb))

5 A∗(S, t) ∩ S O(n2b4 log(nb))

Case 3. The A-equation can be rewritten as Ap(s, r2) = t
c1

. Using Lemma 5.2
we get Ap′( t

c1
, r2) = s, which has a solution iff

A∗

(
t
C1

, R
)

∩ S = ∅.

Since |C1| = O(b), the time for this test is O(b ·nb ·b · log(nb)) = O(nb3 log(nb)).

Case 4. Given t = Ap(c1s, r2) and using Lemma 5.2, we obtain c1s =
Ap′(t, r2), or, alternatively, s = Ap′ (t,r2)

c1
, which has a solution iff

A∗(R, t)
C1

∩ S = ∅.

This test is similar to the second distance-2 test, but for each element of A∗(R, t)
it has to go through all elements of C1. Since there are O(b) constants in C1, the
required time is O(b · nb2 log(nb)) = O(nb3 log(nb)).

Case 5. Given t = Ap(s1, s2) and using Lemma 5.2, we obtain s2 = Ap′(s1, t),
which has a solution iff

A∗(S, t) ∩ S = ∅.

For each s1 ∈ S, we have to perform O(b log(nb)) operations. Thus the time for
this test is O(|S| · b log(nb)) = O(n2b4 log(nb)).

5.5. SUMMARY OF EXACT TESTS. Table III shows the set intersections that
need to be computed for each of the exact A-distance tests, and the corresponding
asymptotic runtime per each tested target. In all cases, the runtime per target is
equal to the worst-case set size times log(nb) overhead for the intersection with S,
assuming that S is sorted.

The preceding tests yield the exact value of dist(R, t). Adding a single ele-
ment to R can decrease the A-distance by at most 1; this implies that dist(R +
s, t), which is needed for calculating B(R, s, t), does not have to be computed
at all.

All given tests compute the set, call it X , of possible values at the successor
node s, and then check whether X ∩ S = ∅. For all s ∈ X ∩ S it holds that
dist(R + s, t) = dist(R, t) − 1.
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The algorithm requires an admissible distance function (Section 4.4). For A-
distances up to 3, we use the exact distance function which is admissible. For larger
distances we estimate the A-distance, explained next.

5.6. ESTIMATION (FOR DISTANCE-4 AND HIGHER). Figure 8(d) shows the sce-
nario where no targets of distance 3 or lower exist. We do not use an exact distance
computation in this case. However, the exact test is still feasible, and could be de-
signed with the method shown before from the 15 possible distance-4 topologies.

Our approach estimates distances of 4 or higher using several estimators, each
of which overestimates the exact distance. The final estimated distance is then the
minimum of these overestimates.

Recall that for the weighted benefit B(R, s, t), we need both dist(R, t) and
dist(R + s, t). For the exact tests described previously, dist(R, t) is computed,
and dist(R + s, t) for each successor is obtained as a side-effect. For estimation,
the converse is true. The distances dist(R, t) are obtained from dist(R + s, t) and
then cached, as explained in the following.

Initially, for targets t which are not covered by exact distance tests, the cached
value of dist(R, t) is set to the largest possible distance value. Each time the benefit
function has to be computed and the exact tests do not apply, dist(R, t) is obtained
from the cache, and dist(R + s, t) is estimated using the method given here. If a
particular successor s is chosen to be synthesized, the computed value of dist(R +
s, t) replaces dist(R, t) in the cache.

For exact tests, both the Hcub and Hmaxb heuristics only need a single dist(R, t)
computation for each target t . Estimation, on the other hand, is much more expensive
because it requires dist(R + s, t) for each of the O(|S|) = O(n2b3) successors s
for each target t .

Estimating dist(R + s, t). To estimate the A-distance, we try to find an answer
to the following two questions: What constant z do we need to reduce the distance
to a target? And how expensive is z?

To answer the first question, we construct solutions to the problem of synthesizing
t using two and three A-operations. These partial solutions are graph topologies, as
in the exact test cases in Figure 9(b) and 9(c), but have one of the inputs designated
as an unknown and unsynthesized constant z. Since besides a successor node s, we
also need z, the graphs must have at least 3 inputs. Note that there are exactly 4
topologies with 3 or more inputs in Figure 9: distance-2 topology 2, and distance-3
topologies 3, 4, and 5. These are the graph topologies used for distance estimation,
and Figure 10 repeats them showing also the designated unknown input z. Using
these topologies and Lemmas 5.2 and 5.3 (as we did for exact distance tests), we
can compute the set of all possible values of z.

To answer the second question we use a crude estimate for dist(R + s, z), called
a single constant auxiliary cost measure Est(z), as the cost.

For a given partial topology and a given value of z, an overestimated distance
can be obtained as

dist(R + s, t) ≤ dist(R + s, z) + dist(R + s + z, t)
= Est(z) + #ops − 1,

where #ops is the number of nodes (i.e., number of A-operations) in the topology,
and, since s is assumed to be available, 1 is subtracted.
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FIG. 10. Partial graph topologies for dist(R + s, t) estimation. z denotes the unsynthesized part.
Estimation proceeds by determining all possible values of z, finding the “cheapest” (we use CSD
cost), and adding the cost of the least expensive element to the number of operations in the topology
minus 1 (since s is assumed to be available).

However, since the value of z is unknown, we compute the set Z of all possible
values of z for a given partial topology as well as the values of s and t , and then
use the “cheapest” (with respect to Est) value, denoted Est(Z ).

dist(R + s, t) ≤ min
z∈Z

Est(z) + #ops − 1

= Est(Z ) + #ops − 1 (20)

There is a degree of freedom in choosing the auxiliary cost measure Est. However,
first we must ensure that the distance function is admissible, and then that it is
computationally efficient. For example, the constant complexity cannot be used,
because the resulting distance function will not be admissible. Among the possible
choices are the number of nonzero CSD bits (CSD cost) of the constant, or the
number of nonzero binary bits of the constant. We have chosen the CSD cost as an
auxiliary estimator.

Est(z) = CSD-Cost(z), (21)
Est(Z ) = min

z∈Z
Est(z) = min

z∈Z
CSD-Cost(z) (22)

Computing the CSD cost takes O(b) time, and we show later that the resulting
A-distance estimation function is admissible.

Using Eq. 20 for distance estimation and Lemma 5.2 to compute Z using com-
putations similar to the exact distance test, we obtain the following A-distance
overestimates for each case in Figure 10:

Case 1. dist(R + s, t) ≤ 1 + Est(A∗(s, t)) = E1.

Case 2. dist(R + s, t) ≤ 2 + Est(A∗(s, t
C1

)) = E2.

Case 3. dist(R + s, t) ≤ 2 + Est(A∗(C1s, t)) = E3.

Case 4. dist(R + s, t) ≤ 2 + Est(A∗(R,A∗(s, t))) = E4.

The estimates E provide an upper bound and thus can be larger than dist(R, t).
When all estimates are larger than dist(R, t), the benefit B(R, s, t) must be 0 (and
not negative), and therefore, as the final value for the estimate of dist(R + s, t) we
take the minimum of the four overestimates and dist(R, t).

dist(R + s, t) � min(dist(R, t), E1, E2, E3, E4) (23)

Here and further on we will use � to denote that the righthand size is an estimate.
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TABLE IV. SETS COMPUTED FOR DISTANCE

ESTIMATION AND ESTIMATION RUNTIME PER EACH

SUCCESSOR-TARGET PAIR

Case Set Z Set Size Est(Z ) Runtime
1 A∗(s, t) O(b) O(b2)
2 A∗(s, t

C1
) O(b2) O(b3)

3 A∗(C1s, t) O(b2) O(b3)
4 A∗(R,A∗(s, t)) O(nb3) O(nb4)

Table IV shows for each case the set Z (of z values) to compute, the worst-case
size of the set, and the runtime for computing Est(Z ) (“Est(Z ) runtime”) for each
successor-target pair, assuming that computing Est(z) takes O(b) time.

In our actual implementation of Algorithm 2, the fourth estimator is not used,
since it is the most expensive and only insignificantly improves the results. Further,
the sets required for the first three estimators do not change between iterations, thus
Est(Z ) can be computed once for each successor-target pair.

5.7. ESTIMATION ADMISSIBILITY. We already mentioned before that the exact
distance function is admissible.

The distance estimate using Eq. 23 obviously satisfies the admissibility condi-
tions 1–4 in Definition 4.1. However, it is not as obvious that condition 5 in this
definition is satisfied. We prove this in the following theorem.

Recall that the estimate for dist(R, t) is obtained from that for dist(R + s, t)
when s is chosen to be synthesized. Initially, all cached estimates are assumed
to be infinite. Therefore, at the first iteration we are guaranteed that the obtained
estimate d satisfies d < dist(R, t). The next theorem proves that this will con-
tinue to be the case for following iterations, so long as the given estimators are
used.

THEOREM 5.6. Let R, S, T be the ready set, successor set, and target set,
respectively. Let s ∈ S, and t ∈ T , and let dist(R+s, t) � d be the distance estimate
obtained from Eq. 23. Further, assume that d < dist(R, t) and thus B(R, s, t) > 0.
Then, at the next iteration, there exists s ∈ Snew (the new successor set of Rnew =
R + s) such that dist(R + s + s, t) = d − 1, namely, B(R + s, s, t) > 0.

PROOF. There are four cases to consider: d = E1, d = E2, d = E3, and
d = E4. We will show only the case d = E1; the proofs for the other cases are
analogous.

According to the Case 1 estimator A-equation,

t ∈ A∗(s, z).

Since d ≥ 3, Est(z) ≥ 2, that is, the CSD cost of z is at least 2. If one nonzero CSD
bit is removed from z, we get a new constant z with a CSD cost that is reduced by
1, and z can be written as

z = Ap(1, z) so that Est(z) = Est(z) − 1.

If this expression for z is substituted into the original A-equation, we obtain

t ∈ A∗(s,Ap(1, z)).

Using the definition of Aodd it can be easily shown that there exists an
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A-configuration p′ such that

t ∈ A∗(Ap′(s, 1), z).

However, Ap′(s, 1) ⊂ Snew, hence

t ∈ A∗(Snew, z).

Therefore there exists s ∈ Snew with t ∈ A∗(s, z), and using the Case 1 overestimate
dist((R + s) + s, t) ≤ 1 + Est(z) = 1 + Est(z) − 1 = d − 1.

In the proof, we assumed that an estimate d was obtained using E1, and found
that the value of E1 again will necessarily decrease. For the other estimates E2–E4
of d, however, at the next iteration only a different estimate might decrease.

We have experimented with more expensive estimators. Often, the proof does not
go through without an additional and even more expensive estimator that guarantees
admissibility.

6. Runtime Analysis and Experimental Evaluation

In this section we analyze the runtime of the new algorithm (i.e., Algorithm 2) and
its performance in terms of the average number of A-operations (add/subtract oper-
ations) in the synthesized solutions. We compare to the best-performing algorithms
from the literature. We also provide some measured sample runtimes of the new
algorithm. As before, we will use b to denote the constant bitwidth, and n = |T |
to denote the number of constants in the target set.

6.1. ALGORITHMS EVALUATED. We provide some details on the actual imple-
mentations of the algorithms used in our benchmarks. In some cases, we reimple-
mented and improved the published algorithms for fair comparison.

New Algorithm with Heuristic Hcub. We have implemented our Algorithm 2
in C++, and tried both the Hcub and Hmaxb heuristics from Section 4.3. Both have
the same computation cost, but Hcub consistently found better solutions. Thus,
we present the results of Hcub only, and for convenience the algorithm is simply
abbreviated as Hcub.

Optimal SCM. This method performs exhaustive search over all possible graph
topologies to find optimal single constant decompositions. It was originally de-
scribed in Dempster and Macleod [1994], and later improved in Gustafsson et al.
[2002] to handle constants up to 19 bits. We have reimplemented the algorithm in
C++ and cross-checked the generated constant complexities with the authors.

RAG-n. Described in Dempster and Macleod [1995] and discussed in Section 3,
RAG-n is currently the best published MCM algorithm of which we are aware. The
authors have kindly provided us with their MATLAB implementation, which, how-
ever, only handles constants up to 12 bits. For a fair comparison, we have reimple-
mented the algorithm in C++, and generated the lookup table up to 19 bits (using
Gustafsson et al. [2002]). We, further improved the algorithms by inserting our
complete A-distance test for distance 2, in which case the original implementation
used a heuristic only. All RAG-n results shown were produced using this improved
version.
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TABLE V. ASYMPTOTIC RUNTIME SUMMARY

Algorithm Runtime b n = |T |
Optimal [Gustafsson et al. 2002] �(2b) ≤ 19 1
RAG-n [Dempster and Macleod 1995] O(n2b3 log(nb)) ≤ 19 ≥ 2
BHM [Dempster and Macleod 1995] O(n3b4) any any
Lefèvre [Lefèvre 2001] O(n3b3) any any
Hcub O(n4b5 log(nb) + n3b6) any any
Hcub (distance-2 tests only) O(n3b5) any any

BHM. Also described in Dempster and Macleod [1995], BHM is an improved
version of BHA (i.e., the “add/subtract/shift” algorithm from Bull and Horrocks
[1991]). Both BHA and BHM are described in Section 3. We have implemented this
algorithm in C++ using the BHA pseudocode given in Bull and Horrocks [1991]
and the BHM improvements from Dempster and Macleod [1995].

Lefèvre. Described in Lefèvre [2001], this is one of the newer common
subexpression-elimination-based MCM algorithms. We did not discuss the details
of the algorithm in this article, since it is not graph-based. The algorithm uses
more sophisticated methods for identifying common subexpressions, but other-
wise is similar to Pasko et al. [1999]. The author has kindly provided us with his
implementation in Perl.

Note that we implemented every algorithm except the CSE-based one from
Lefèvre. This was facilitated by the general framework presented in this article,
which enables considerable code reuse. All four algorithms (i.e., ours, optimal
SCM, RAG-n, and BHM) require only about 1900 lines of C++ code. Our package
implementing these algorithms is available at www.spiral.net.

6.2. ASYMPTOTIC RUNTIME ANALYSIS. Table V summarizes asymptotic
bounds for the worst-case runtimes of the different MCM algorithms. Next we
describe how they were obtained.

Hcub. To derive the worst-case runtime of the new algorithm, we use the worst-
case bounds from Sections 4.5 and 5.

The algorithm executes three conceptually separate parts at each iteration: the
incremental successor set S construction, the optimal part, and the heuristic part.
To follow we show the runtime of each of these steps, and then compute the total
runtime using the O(nb) bound for the number of iterations.

—Successor set construction. The computation of S is done in increments and
distributed across iterations. The total number of successors when the algorithm
terminates is O(n2b3). We assume that S is kept sorted in order to do quick set
intersections, thus the total runtime is O(n2b3 log |S|) = O(n2b3 log(nb)).

—Optimal part. The only overhead of the optimal part over the computation
of S is checking for targets in the new successors, that is, the computation of
S′∩T . For n targets, the runtime per iteration is O(|T | log |S|) = O(n log(n2b3)) =
O(n log(nb)).

—Heuristic part. At each iteration we perform a series of exact tests and, if
applicable, distance estimators. Table III shows the per-target runtime for the exact
tests which have to be evaluated at every iteration. Table IV shows the distance
estimator runtime per successor-target pair which do not have to be recomputed
between iterations.
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TABLE VI. RUNTIME BREAKDOWN FOR THE NEW ALGORITHM

Per-Iteration Runtime Total Runtime
S computation – O(n2b3 log(nb))
Optimal part O(n log(nb)) O(n2b log(nb))
Heuristic part, exact distance tests O(n3b4 log(nb)) O(n4b5 log(nb))
Heuristic part, distance estimation – O(n3b6)
Total – O(n4b5 log(nb) + n3b6)

TABLE VII. RUNTIME BREAKDOWN FOR THE NEW ALGORITHM WITH

DISTANCE-2 TESTS ONLY

Per-Iteration Runtime Total Runtime
S computation – O(n2b3 log(nb))
Optimal part O(n log(nb)) O(n2b log(nb))
Heuristic part, exact distance tests O(n2b2 log(nb)) O(n3b3 log(nb))
Heuristic part, distance estimation – O(n3b5)
Total – O(n3b5)

The most expensive exact distance test is Case 5 of Table III with the runtime
of O(n2b4 log(nb)) per target, in which for n targets we obtain the per-iteration
runtime of O(n3b4 log(nb)) and since the worst-case number of iterations is O(nb),
the total runtime is O(n4b5 log(nb)).

The most expensive distance estimators that we use are Cases 2 and 3 of Table IV
with the runtime of O(b3) per each successor-target pair. As discussed earlier, we
do not use the Case 4 estimator. The sets Z computed for Cases 1–3 estimators do
not change between iterations, therefore, the estimator values have to be computed
only once per each successor-target pair. There are O(|T | · |S|) = O(n3b3) such
pairs, thus the total runtime is O(n3b3 · b3) = O(n3b6).

Table VI summarizes the per-iteration and total runtimes for the new algorithm.
As can be seen from the table, the total runtime of the algorithm is dominated
by the exact distance tests and distance estimators in the heuristic part and is
O(n4b5 log(nb) + n3b6).

If only distance-2 tests and estimators are used, the most expensive distance test
is distance-2 of Case 1 in Table III with the runtime of O(nb2 log(nb)) per target,
which for n targets yields the runtime of O(n2b2 log(nb)) per iteration.

The only available distance-2-based estimator is that of Case 1 of Table IV with
runtime of O(b2) per successor-target pair, yielding the total runtime of O(n3b3 ·
b2) = O(n3b5).

Table VII summarizes the per-iteration and total runtimes for the new algorithm
with distance-2 tests only. Note that the total runtime is now dominated by the
distance estimation and decreased to O(n3b5).

Optimal SCM. The optimal method for SCM performs an exhaustive search over
all possible decompositions, and thus has the highest runtime among all methods.
The method has to look at every constant of given bitwidth, so the runtime is �(2b).
Exact analysis was not provided in the original article. The size of the generated
lookup table is O(2b).

RAG-n. The authors of RAG-n did not provide a runtime analysis for the algo-
rithm, so we perform the analysis here.
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Since at each iteration at least one target is synthesized, the total number of
iterations in the worst-case is O(|T |) = O(n). The optimal part is equivalent to
Hcub with a runtime of O(n2b3 log(nb)). When the optimal part is not applicable,
the same distance-2 test as in our algorithm is invoked (which is our improvement
of the original, as stated in the beginning of this section). According to Section 5.1,
the per-iteration per-target runtime is O(nb2 log(nb)). At each iteration, the number
of targets is decreased by at least 1, thus the total runtime is

O((n + (n − 1) + (n − 2) + · · · ) · b2 log(nb)) = O(n2b2 log(nb)).

When the distance-2 test fails, RAG-n uses an O(1)-table lookup. Thus, the to-
tal runtime is dominated by successor set construction in the optimal part and
is O(n2b3 log(nb)). This differs from the original RAG-n article [Dempster and
Macleod 1995] in which the authors observed the heuristic part to be slower. The
reason is that our distance-2 test is more efficient.

BHM. For BHM, the runtime analysis was also not available. We do it this, first
obtaining a bound on the number of iterations.

The error ε starts as a b to follow bit number equal to one of the targets, and
at each iteration is reduced by at least a factor of four, namely, by 2 bits, until it
reaches 0 and a new target is selected. This gives a total of O( b

2 · |T |) = O(nb)
iterations.

At each iteration, the heuristic makes a pass through the entire set S according
to Eq. (13). Thus, the total runtime is O(|S| · b · nb) = O(n2b3 · nb) = O(n3b4). It
can be verified that the bound |S| = O(n2b3) derived for our algorithm still holds
(BHM uses an almost equivalent A-operation constraint, and |R| is still O(nb)).

BHM has a higher runtime than RAG-n, while Dempster and Macleod [1995]
stated otherwise, and created a hybrid RAG-n + BHM algorithm to make it faster.
The authors’ implementation of the distance-2 test was suboptimal, and with the
A-distance computation presented in this framework, RAG-n runs much faster.

Lefèvre. The asymptotic runtime of Lefèvre’s algorithm was provided to us by
the author; he also noted that the average runtime is lower.

6.3. EXPERIMENTAL EVALUATION. To evaluate the performance of different
algorithms, we ran a series of experiments on a large random sample of uniformly
distributed target sets and measured the average number of adds/subtracts in MCM
decompositions.

In the first experiment, we fix n (i.e., the number of constants in the target set)
and vary b (i.e., the bitwidth of constants). In the second experiment, we fix b and
vary n. In both experiments, we consider BHM, Lefèvre, RAG-n, and Hcub. In the
third experiment, we investigate the improvement of our algorithm over RAG-n.
The fourth experiment shows the gain obtained by using distance-3 tests compared
to only distance-2 tests in the algorithm. Finally, we show the actual runtime of our
algorithm on a 3.4 GHz Pentium 4 workstation.

Fixed Number of Constants. This experiment investigates the effect of changing
the constant bitwidth b on the number of A-operations for n = 1, 2, 10, and 20.
Figure 11 shows the average number of operations (y axis) versus b (x axis) for
100 uniformly drawn random target sets of size n.

For a single constant, RAG-n uses an optimal SCM decomposition, and there-
fore is not shown separately. Hcub is within 4% of an optimal decomposition at
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FIG. 11. Average number ofA-operations (adds/subtracts) vs. constant bitwidth b for a fixed number
of constants n. The average is taken over 100 uniformly drawn random target sets.

b = 19 bits, which is the largest bitwidth handled by the optimal algorithm. As the
number of bits increases, Hcub approaches BHM slightly because the A-distance
estimation used in Hcub gives increasingly less accurate results. This indicates that
for large bitwidths, a hybrid Hcub + BHM-based method might be beneficial. Refer
to Section 3.5 for a discussion of how hybrid algorithms can be implemented.

As the number of constants increases (i.e., n = 2, 10, 20), the performance
deterioration effect of A-distance estimation at large bitwidths is delayed, since
the joint optimization nature of Hcub outweighs the drawbacks of less accurate
A-distance estimations.

In particular, Hcub performs well for two constants. For bitwidths larger than
14 bits, it requires 10–15% fewer adds/subtracts than RAG-n, which is the best
of all other algorithms. Beyond 19 bits, where RAG-n is not applicable, Hcub uses
up to 17% fewer operations. Sets with 2 constants are an important case in linear
signal transforms such as the discrete Fourier transform and various discrete cosine
transforms.

For 20 constants, Hcub produces solutions with up to 17% fewer operations than
RAG-n, and 25% fewer operations than BHM, where RAG-n is not applicable.
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FIG. 12. Average number of A-operations (adds/subtracts) vs. number of constants n for a fixed
constant bitwidth b. Average is taken over 200 uniformly distributed random constant sets for b ≤ 22,
and over 50 sets for b ≥ 28.

Fixed Constant Bitwidth. This experiment investigates the effect of changing
n, the number of constants in the target set, for different fixed bitwidths b = 12,
16, 19, 22, 28, and 32. Figure 12 shows plots of the average number of operations
(y axis) versus n (x axis) for 200 uniformly drawn random target sets of size n for
b ≤ 22, and 50 sets for b ≥ 28.
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FIG. 13. Ratio of average number of A-operations in the solution produced by Hcub and BHM over
the average for RAG-n vs. n for a fixed constant bitwidth b. The average is taken over 100 uniformly
drawn random target sets.

Again, in all cases Hcub outperforms all other algorithms. For 12 bits, both RAG-n
and Hcub quickly converge to the optimal lower bound of n specified in Theorem 4.4.
For 16 bits, more constants are needed to converge, and starting with 19 bits, we
no longer see this behavior within the considered range of n. Note that this lower
bound holds for n distinct odd constants (i.e., after right-shifting), however, on
average the randomly drawn constant set contains slightly less than n unique odd
constants after right-shifting.

For 16 bits and more, Hcub performs clearly the best, improving up to 20% over
RAG-n for 16 and 19 bits. Beyond that, RAG-n is not applicable anymore, and the
gap between Hcub and the next-best algorithm (i.e., BHM) widens. For example, at
28 bits, Hcub requires up to 26% less operations than BHM.

Comparison With RAG-n. To evaluate the performance improvement relative to
BHM and RAG-n, we generated 100 randomly distributed constant sets, computed
their MCM decompositions using RAG-n, BHM, and Hcub, and then plotted the ratio
of average A-operation counts of the solutions produced by Hcub and BHM over
those produced by RAG-n versus n (see Figure 13) and versus b (see Figure 14).
In the latter case, an optimal SCM decomposition was used for n = 1.

Figure 13 fixes the bitwidth b = 12, 16, 19, and plots the ratio versus n, the
number of constants. The largest improvements of Hcub are observed for b = 19,
with up to 20% lower operation counts than RAG-n at n = 80. BHM performs
consistently worse than RAG-n.

Figure 14 fixes n = 1, 2, 10, 20, and plots the ratio versus b. Since for n = 1,
an optimal decomposition is used, the ratio for n = 1 is always greater than 1.
Otherwise, the average improvement over RAG-n tends to increase with b, but the
ratio does not increase monotonically.
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FIG. 14. Ratio of average number of A-operations in the solution produced by Hcub and BHM over
the average for RAG-n vs. b for a fixed constant set size n. The average is taken over 100 uniformly
drawn random target sets.

Effect of Distance-3 Tests. The runtime of Hcub can be reduced by removing
exact distance-3 tests and using only the estimator based on the distance-2 topology
(i.e., Case 1 of Table IV). As discussed earlier, this reduces the asymptotic runtime
to O(n3b5).

Figure 15 shows the ratio of averageA-operation counts of the solutions produced
by our algorithm with distance-2 tests only over our original variant with distance-
2 and distance-3 tests. The averages were computed from 100 uniformly drawn
random target sets.

For a single constant (n = 1), Hcub with distance-2 produces solutions with
6% to 15% higher operation counts. For b ≤ 19 the largest difference occurs
at n = 1 and eventually decreases to less than 3% for larger constant sets. For
b ≥ 22, however, the ratio initially rises and drops much more slowly. Since the
average complexity of constants goes up with b, the importance of more precise
distance tests should also increase, which is confirmed by the plot. Further, the plot
shows that for increasing n, the difference between both tests eventually vanishes.
The reason is that, intuitively, as the number of constants is increased, the precise
distance value to a single target becomes less important, since the main objective
is to optimize jointly for all targets.

Runtime. In Table VIII, we give a few average runtime examples of Hcub for
one target set of varying size and bitwidth on a 3.4 GHz Pentium 4 EM64T Xeon
workstation.

The runtimes are averages of 100 experiments, where each experiment was per-
formed with a different random constant set. The runtimes show that the scope of
parameters that should be sufficient for most applications is handled efficiently (by
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FIG. 15. Ratio of average number of A-operations in the solution produced by Hcub with distance-2
tests only over the average for Hcub with distance-3 and distance-2 tests vs. n for several fixed constant
bitwidths b. The averages are taken over 100 uniformly drawn random target sets.

TABLE VIII. AVERAGE RUNTIMES FOR Hcub IN SECONDS

b n = 1 n = 5 n = 10 n = 20 n = 50 n = 100
12 .002 (.0004) .003 (.002) .007 (.006) .012 (.012) .020 (.020) .063 (.063)
16 .002 (.001) .023 (.013) .060 (.038) .16 (.11) .64 (.60) 1.1 (1.0)
19 .007 (.002) .092 (.035) .29 (.14) .80 (.50) 3.6 (2.9) 13 (13)
22 .018 (.004) .28 (.071) 1.6 (.31) 3.9 (1.4) 16 (10) 60 (45)
28 .081 (.010) 1.9 (.20) 7.0 (1.0) 32 (6.0) 540 (60) 1800 (360)
32 .20 (.018) 4.2 (.35) 20 (1.8) 95 (11) 910 (150) 8500 (1040)

Average runtime for Hcub with distance-2 tests only is given in parenthesis. The averages are
taken over 100 experiments with random constant sets. Values less than .01 are rounded to a
single decimal digit.

as little as 8,500 seconds, i.e., about 2.5 hours for 100 constants of bitwidth 32
would be acceptable within a specialized hardware design for a digital filter).

Summary. In all performed experiments Hcub outperforms all other algorithms
in terms of the number of A-operations of the produced solutions. We achieve up
to 20% improvement over RAG-n, the previously best available algorithm, while
not being limited to 19-bit constants. The improvement comes at the expense of an
increased runtime.

Although not shown in this article, we measured the standard deviation of the
number of add/subtract operations for different algorithms on uniformly drawn
random constant sets. Interestingly, the Hcub algorithm had the smallest stan-
dard deviation, followed by RAG-n and BHM, and CSD had the highest standard
deviation.
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7. Conclusions

The main contribution of this article is a new MCM algorithm that achieves signifi-
cantly better results than previous methods, as we demonstrated for the cases most
relevant in practice: bitwidth b ≤ 32 and n ≤ 100 constants. However, asymptoti-
cally, the new algorithm produces solutions with no known better complexity than
O(nb) add/subtract operations, just like CSD and all other algorithms.

The A-distance computation and estimation framework developed in this article
should be useful for further research in this area. One direction could be to improve
the heuristic, which currently combines A-distances in a trivial way. Another direc-
tion would be to use our framework to optimize MCM blocks with respect to other
criteria, such as critical path, or to also minimize for the number of shifts required.

The big question that remains unanswered is the actual asymptotic worst-case
cost of SCM and MCM decompositions. However, the precise bounds remain un-
known, even for the simpler problem of addition chains.
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