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ABSTRACT 
As the complexity of digital filters is dominated by the number of 
multiplications, many works have focused on minimizing the 
complexity of multiplier blocks that compute the constant 
coefficient multiplications required in filters. The complexity of 
multiplier blocks can be significantly reduced by using an 
efficient number system. Although the canonical signed digit 
representation is commonly used as it guarantees the minimal 
number of additions for a constant multiplication, we propose in 
this paper a digital filter synthesis algorithm that is based on the 
minimal signed digit (MSD) representation. The MSD 
representation is attractive because it provides a number of forms 
that have the minimal number of non-zero digits for a constant. 
This redundancy can lead to efficient filters if a proper MSD 
representation is selected for each constant. In experimental 
results, the proposed algorithm resulted in superior filters to those 
generated from the CSD representation.  

1. INTRODUCTION 
Digital filters are frequently used in digital signal processing by 
virtue of stability and easy implementation. Although 
programmable filters based on digital signal processing cores can 
take an advantage of flexibility, they are not suitable for recent 
consumer applications demanding high throughput and low power 
consumption. In such an application, therefore application 
specific digital filters are frequently adopted to meet the 
constraints of performance and power consumption. Number 
systems have a great influence on the hardware complexity of 
digital filters. Although the two's complement representation is 
commonly used for digital computation, the signed digit 
representation is frequently more efficient in digital filters where 
signal values are multiplied by many constant coefficients. 

The problem of designing digital filters has received a great 
attention during the last decade, as the filters are suffering from a 
large number of multiplications, leading to excessive area and 

power consumption even if implemented in full custom integrated 
circuits. Early works have focused on replacing multiplications by 
decomposing them into simple operations such as addition, 
subtraction and shift. As the coefficients of an application specific 
filter are constant, the decomposition is more efficient than 
employing general multipliers. The number of additions/ 
subtractions used to implement the coefficient multiplications in 
this case dominates the complexity of filters. To reduce the 
complexity, the coefficients can be restricted to powers-of-two or 
expressed in canonical signed digit (CSD) representation to 
minimize the number of additions/subtractions required in each 
coefficient multiplication. On average, the CSD representation 
can reduce 33% of non-zero digits compared with the binary 
representation. To further reduce hardware complexity in the 
applications requiring multiple constant multiplications (MCMs), 
a common subexpression is searched among multiple constants 
and implemented into one hardware block in order to share the 
result of the subexpression in evaluating all the constants. Many 
approaches have been proposed for the implementation of MCMs 
[1], [2], [3], [6], [8], [10], [11], [12], [14], [15]. Previous 
approaches have tried to select common subexpressions as many 
as possible after representing the constants in the CSD 
representation. Although the CSD representation is good for one 
constant, it is not the best for multiple constants because the CSD 
representation of a constant is unique and independent of the 
other constants, leading to limited subexpressions for multiple 
constants. For the multiple constant multiplications, it is more 
efficient to use the minimal signed digit (MSD) representation 
which has the same number of non-zero digits as the CSD 
representation but provides multiple representations for a constant 
[8], [15].  

As the CSD representation is mathematically unique, it has 
received much attention and there have been many methods of 
converting a given binary number into the CSD representation 
[5], [7], [9], [13], [16]. The uniqueness is significant in 
developing algorithms, but not in implementing hardware units. In 
general, the MSD representation providing multiple 
representations that yield the same value is more flexible than the 
CSD representation. This redundancy can result in smaller 
hardware units than those generated from CSD representation, if 
an appropriate MSD representation is selected for each constant. 
In spite of this advantage, the MSD number system has not been 
studied much because of the lack of formalism and there has been 
no report on how to find all the MSD representations for a given 
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number except enumerating all cases. Recently, we developed an 
efficient algorithm that can search all the MSD representations for 
a number. Based on the algorithm we propose in this paper a new 
digital filter synthesis algorithm that can exploit the redundancy 
of MSD representation. Experimental results show that the 
proposed algorithm provides more efficient multiplier blocks than 
those generated from the CSD representation. 

Table 1. Examples of MSD Representations. 

171

0101010101

0011010101

0010110101

0010101101

0010101011

172

0101010100

0011010100

0010110100

0010101100

0101010101

0011010101

0010110101

0010101101

0011010011

0101010011

0010110011

173

0101010010

0011010010

0010110010

174

0101010001

0011010001

0010110001

175

0101010000

0011010000

0010110000

176

0101010001

0011010001

0010110001

177

0101010010

0011010010

0010110010

178

0101010101

0011010101

0101001101

0101010011

0010110101

0011001101

0011010011

0010110011

179

 

The rest of this paper is organized as follows. In Section 2, the 
CSD representation and the MSD representation are introduced 
and compared in more detail. In Section 3, we summarize the 
MSD generation algorithm and the related theorems. The 
proposed filter synthesis algorithm is explained in Section 4, and 
experimental results obtained from several filter examples are 
described in Section 5. Finally, concluding remarks are made in 
Section 6. 

2. CSD AND MSD REPRESENTATIONS 
In this section, the CSD representation and the MSD 
representation are explained and compared in terms of multiplier 
block synthesis, and then the problem to be solved is defined. 

CSD Representation: The CSD representation is a radix-2 signed 
digit system with the digit set }1,0,1{ , where 1 denotes 1− . 
Given a constant, the corresponding CSD representation is unique 
and has two properties; the first is that the number of non-zero 
digits is minimal and the second is that the product of adjacent 
two digits is zero, that is, two non-zero digits are not adjacent. 
Due to the first property, the CSD representation is widely used in 
implementing MCMs because it guarantees the least number of 
additions for a given constant multiplication. The second property 
is called “property M” in [5]. If a signed digit representation of a 
constant satisfies property M, it is the CSD representation.  

MSD Representation: If the second property is relaxed in the 
CSD representation, it is called minimal signed digit (MSD) 
representation. As shown in Table 1 that includes the MSD 
representations for constants ranging from 171 to 179, a constant  
has not a unique MSD representation but many MSD 
representations usually. 

1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 10 0
0 0 1 0 0 1 0 1 0

1 0 1 0 10 1 0 1
0 1 0 1 1 0 10 0
0 0 1 0 0 1 0 1 0  

Figure 1. Pattern extraction with CSD and MSD 
representations. 

Although the CSD representation is optimal for one constant, it is 
difficult to consider the other constants in case of multiple 
constants because a number is uniquely represented in CSD 
representation. Since the MSD representation is a super set of the 
CSD representation and provides a number of forms, the MSD 
representation is more appropriate in finding common 
subexpressions for multiple constants if a proper MSD form is 
selected for each constant to be synthesized [8],[15]. Since the 
representation method affects the number of additions (or 
subtractions) in the decomposed multiplication block and the 
number of common subexpressions that can be eliminated, it has 
significant influence on the resulting area and power 
consumption.  

The most important step in solving the MCM problem is to extract 
the most common patterns. An algorithm was proposed to search 
the patterns in [12], but only the CSD representation was 
considered there as shown in the left side of Figure 1. The CSD 
representation is used because it has the minimum number of non-
zero digits. To cope with the demerit of the CSD representation 
that it cannot exploit the flexibility of signed digit representation, 
the MSD representation that provides multiple forms for a 
constant can be applied. If each constant is represented with a 
proper MSD form, more patterns can be extracted as shown in the 
right side of Figure 1. In Figure 1, we regard 101  as the same 
pattern of 101  because 101 can be evaluated by )101(− . 

The problem to be solved is described as follows:  

Problem. Given a set of filter coefficients, generate a 
multiplier block that requires the minimal number of 
adders/subtractors. 

In this paper, the delay is specified by the number of adder-steps 
that denotes the maximal number of adders/subtractors to be 
passed through to produce any multiplication. For a set of 
coefficients, mccc ,,, 21 L , the low bound of adder-steps, N, 
required in implementing the multiplier block is given by 

 { }ikN 2logmax= , where ik is the number of non-zero digits 

in the CSD format of ic . The equality holds when each 
multiplication is constructed by using a complete binary tree of 
adders. One simple method of achieving N is to construct 
coefficients individually by using a separate binary tree of adders 
for each ic , meaning that adders associated with ic  are not 

shared with those of other jc ’s. 

3. MSD GENERATION ALGORITHM 
In this section, we present an algorithm to generate all the MSD 
representation of a number. Basically, the MSD representations 
are derived from the corresponding CSD representation that can 
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be obtained using the algorithm in [5]. We summarize only the 
main theorems for the completeness of this paper. For a number 
N, the CSD reperesentation and the MSD representation are 
represented as 021 ccc nn L−−  and 021 mmm nn L−− , respectively, 

where the digit set is }1,0,1{  in both representations. 

Definition 1. Given a sequence of 021 ccc nn L−− , 
)0,1( ±=ic , the sequence possesses “property M” if 

01 =−iicc , for 11 −≤≤ ni .  

Theorem 1. [5] Among all the sequences of ic 's which 
yield N, there is only one sequence that meets property 
M and the unique sequence has the minimum number of 
non-zero digits. 

The unique representation of N that has the property M is usually 
called the CSD representation. If there is only one MSD 
representation, it is equivalent to the CSD representation. 
However, since we are now searching for other MSD 
representations, we assume hereafter that there is an MSD 
representation, 021 mmm nn L−− , that is different from the CSD 

representation, 021 ccc nn L−− . 

Theorem 2. Assume that a number N has the CSD 
representation 021 ccc nn L−−  and an MSD representation 

021 mmm nn L−− . If there is a portion ranging from k to l, 
10 −≤<≤ nkl  which satisfies the followings, 

111111 ,,,,, −−−−++ =≠≠≠= llllkkkkkk mcmcmcmcmc L  

then lk − is even and  
+

− == )10(1101101101 LL lkk ccc  
1)01(011010101

+
− == LL lkk mmm , 

or  
+

− == )01(1101010111 LL lkk ccc  
1)10(110010101

+
− == LL lkk mmm . 

If 1−= nk , we can make the above case by expanding a digit, 
0== nn mc . Similarly, we expand a digit, 011 == −− mc , if 

0=l . 

Corollary. Given a sequence of ic 's such as +)10(1  or 
+)01(1 , the number of MSD representations that are 

different from the sequence is equal to the number of 
zero digits in the sequence.  

This corollary gives a hint to count the number of MSD 
representations. For the CSD representation of N, let the number 
of such maximal sequences be t  and the number of zero digits in 
sequence i  be iZ . The maximally possible number of MSD 
representations, including the CSD representation, is given by 

( )∏ −

=
+

1

0
1t

i iZ . The number is obtained with assuming that the 

1 0 1 0 1 0 1 0 01 10

Z2=2
O 2=1

Z1=1
O 1=0

Z0=1
O 0=0

(a)

1 0 1 0 1

10 0 11

10 01 1

101

10

101

101 1

(b)

  #M SD-2= #M SD-1 = 1

  #M SD0 = #M SD-1(Z0+1-O 0) + #M SD-2O 0

           = 2
  #M SD1 = #M SD0(Z1+1-O 1) + #M SD-1O 1

           = 4
  #M SD2 = #M SD1(Z2+1-O 2) + #M SD0O 2

           = 10
(c)  

Figure 2. Counting the total number of MSD representations. 
a) An example that has overlapped sequences. b) A graph 
model to count the number. c) Counting procedure for the 
graph. 

sequences are disjoint. However, in practice, two sequences can be 
overlapped with each other, as shown in Figure 2(a). A sequence 
can be overlapped with two other sequences, an upper one and a 
lower one. Since a sequence restricts the other sequences 
overlapped, we have to subtract the cases in counting the number of 
MSD representations. If each MSD representation of a sequence is 
denoted as a node and an edge is drawn if two nodes can be applied 
simultaneously, we can obtain a graph, as shown in Figure 2(b). In 
the graph, each path from a node of the leftmost sequence to a node 
of the rightmost sequence corresponds to an MSD representation of 
N. Therefore the total number of MSD representations can be 
obtained by counting the number of paths. The dynamic 
programming [4] can be used to count the total number of paths, 
which results in a recursive equation given below. 

( ) iiiiii OMSDOZMSDMSD
MSDMSD

21

12

1
,1

−−

−−

+−+=
==

 

where iO is 1 if sequence i  is overlapped with sequence 1−i , 
otherwise 0. 

From Theorem 2, it is induced that the only transformations needed 
to convert the CSD representation to MSD representations are 

011110 →  and 110011 → . Figure 3 shows how a number of 
MSD representations are achieved by repeatedly applying the short 
transformations. The overall algorithm developed from that fact is as 
follows. First, a number is represented in CSD using one of the 
algorithms presented in [5], [7], [9], [16]. As the CSD 
representation is also an MSD representation, it is registered as the 
first MSD representation. Next, a pattern of either 110  or 011  is 
searched starting from  the most significant digit and transformed  
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1 10 10 10 10

1 10 10 10 10

1 10 10 10 10

1 10 10 10 10

1 10 10 10 10  
Figure 3. Decomposition of a long conversion into several short 
conversions. 

to 011  or 110  respectively. For each transformation, a new MSD 
representation is generated. The transformation is repeatedly applied 
to the new MSD representations found in the previous 
transformations until there is no such a pattern. To avoid 
duplications, the pattern is searched in an MSD representation from 
the next position of the digit where a transformation is applied to 
generate the MSD representation. The detailed explanation of the 
algorithm and related terms are described below. 

Definitions 
N : an n bit number to find all MSD representations. 
MSDi : the i-th MSD representation found. 
S : a set including the MSD representations found. 
|S| : the number of MSD representations in S. 
SearchMSD : the MSD representation where a new one is being 
searched. 
SP[i] : the digit position where the transformation is applied to 
generate i-th MSD representation.  
SearchPoint : the digit position where the search is being done. 

The algorithm 
Step 1. Convert N into the CSD presentation. It is named MSD0. S = 
{MSD0}. |S| = 1. SearchMSD = 0. SP[0] = n-1. 
Step 2. SearchPoint = SP[SearchMSD]. 
Step 3. If SearchPoint < 1, go to Step 6. 
Step 4. If the digits from position SearchPoint to SearchPoint-2 in 
MSDSearchMSD are 110  or 011 , make a new MSD by changing 

110  to 011  or 011  to 110 , respectively. The new MSD is 
named MSD|S|. SP[NumMSD] = SearchPoint-2. Insert the new 
MSD into S. Increment |S|. Decrement SearchPoint by 2. Go to Step 
3. 
Step 5. Decrement SearchPoint. Go to Step 3. 
Step 6. Increment SearchMSD. If SearchMSD is the same as |S|, 
end. Otherwise, go to Step 2. 

As an example, Figure 4 shows the procedure of finding all the 
MSD representations of 180. The circled number means the order of 
MSD representations generated by the proposed algorithm. The first 
MSD representation numbered as 0 is equivalent to the CSD 
representation of 180. The inverse triangle of each MSD 
representation denotes the first SearchPoint, SP[i] of the 
representation. 

 

01 10 10 0100

0 110 10 0100

01 10 00 1001

0 1 10 10 0100

0 110 100 1000

1

2

3

4

 

Figure 4. The MSD generation procedure for 180. 

4. DIGITAL FILTER SYNTHESIS 
ALGORITHM 
In this section, we explain the proposed multiplier block synthesis 
algorithm. Before starting the explanation, we briefly introduce 
the previous filter synthesis algorithm proposed by Hartley [12], 
which is based on the CSD representation. The algorithm is 
selected for comparison, because it produces the best results 
among a number of CSD-based algorithms [10],[11],[12],[14].  

Hartley’s method is to combine sub-expressions that are common 
to multiple coefficients. The first step is to convert the coefficients 
into CSD representations, as the CSD representation guarantees 
the minimal number of non-zero digits for each coefficient. And 
then it searches a pair of two non-zero digits that are the most 
common among all possible pairs. 

The selected pair is removed from the corresponding CSD 
coefficients and replaced by a new identifier assigned to the pair. 
The first identifier is 2 and the next is 3. Beginning from 2, the 
identifier increases by one for the next selected pair. The selecting 
procedure is repeated until there is no common sub-expression. 
Although Hartley’s method is effective in finding maximally 
common sub-expressions, it is a greedy algorithm that can be 
easily trapped into a local minimum. It is not easy to apply 
Hartley’s algorithm to the MSD representation as the 
representation of each coefficient has to be determined before 
applying the algorithm, which is another difficult work to be 
solved. 

In Hartley’s method, common sub-expressions are searched and 
combined after all coefficients are expressed in CSD 
representation, whereas in the proposed algorithm coefficients are 
considered and synthesized one by one, e.g., a coefficient is 
selected and synthesized sequentially one at a time. 

The first step is to generate all MSD representations for each 
coefficient. Then a coefficient is selected for synthesis, which can 
be implemented using a minimal number of adders, that is, a 
coefficient with the minimal number of non-zero digits is selected 
for the first synthesis. The intermediate sums that can be 
obtainable from the adders used for the synthesized coefficients 
are registered as partial sums. Among not-yet synthesized 
coefficients, we select a coefficient that can be implemented with 
minimal additional adders. Therefore the next coefficient to be 
synthesized is the one that can be implemented with using 
previously defined partial sums. The following is the flow of our 
algorithm where cSet is the set of coefficients that are to be 
synthesized and patSet is the set of patterns of partial sums used 
to synthesize the selected coefficient. 
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Step 1. Even coefficients are made odd by dividing by a power of 
2. Negative coefficients are converted to positive ones. The 
coefficients that have the same value with another coefficients are 
removed. The remaining coefficients are inserted into cSet.  

Step 2. Obtain all CSD and MSD representations of the elements 
in cSet. 

Step 3. Insert 1 into patSet. 

Step 4. If there is an element in cSet that has the same MSD 
representation with shifted value of an element in patSet, it is 
removed from cSet. If no element is in cSet, end. Repeat this step 
until there is no such an element in cSet. 

Step 5. If there is an element in cSet that has the same MSD 
representation with a shifted combination of two elements in 
patSet, it is removed and inserted into patSet. If no element is in 
cSet, end. Repeat this step until there is no such an element in 
cSet. 

Step 6. If there is an element in cSet that has the same MSD 
representation with a shifted combination of three elements in 
patSet, it is removed and inserted into patSet. One combination of 
two partial sums is inserted into patSet. If no element is remained 
in cSet, end. If no element is removed from cSet in Steps 4, 5, and 
6, go to Step 7. Otherwise, go to Step 4. 

Step 7. For each element in cSet, make a shifted combination of 
two partial sums in patSet, and check if the pattern of the shifted 
combination is included in an MSD representation of the element. 
We select a combination that maximally matches to an MSD 
representation. After doing this for all remaining elements, we 
select an element which has the most matched combination of two 
partial sums. The pattern of the combination is registered as a new 
partial sum. A new element obtained by removing the selected 
combination is inserted into cSet. Go to Step 4. 

When combining elements, shifting of elements is allowed, but 
there must be no conflict between them, i.e., no digit place where 
two or more elements have non-zero digits simultaneously is 
allowed. Step 1 is the preparation of our algorithm. The division 
or multiplication by a power of 2 can be implemented by wiring 
and the negation can be implemented by replacing the adders with 
the subtractors. We can use positive, odd numbers in place of 
negative or even numbers, and the original negative or even 
coefficients can be produced from the positive, odd numbers with 
a little hardware overhead. Step 2 generates the CSD 
representation and all of the MSD representations for each 
coefficient. The MSD representations are created with the 
algorithm in Section 3. In Step 3, 1 is inserted into patSet because 
it needs no adder. In Step 4, the elements in cSet that are already 
in patSet are removed because they are already made. In Step 5 
the elements that can be synthesized with only one adder are 
selected and synthesized. In Step 6, the elements that need two 
adders are synthesized. In Step 7 we modify a coefficient by 
including the most matched combination of partial sums into 
patSet when there is no element that can be synthesized with one 
or two adders. 

5. EXPERIMENTAL RESULTS 
The proposed algorithms are applied to several FIR filters and 
compared with previous algorithms. The specification of those 

filters is summarized in Table 2, where fp and fs are normalized 
passband frequency and stopband frequency respectively, #tap is 
the number of taps, and Width is the word size in fixed-point 
integer representation. The coefficients of test filters are generated 
with the fp, fs, and #tap using the Remez algorithm in MATLAB 
and are converted to integer numbers with rounding. The 
passband and stopband frequency of the first filter in Table 2 are 
quoted from the example in [6]. We assume transposed-form 
filters because they can accept the subexpression sharing. 

Table 2. Test Filter Specification. 

Filter Passband Stopband #tap Width 
1 0.15 0.25 40 12 
2 0.15 0.25 60 14 
3 0.15 0.20 60 14 
4 0.15 0.20 100 16 
5 0.10 0.15 60 14 
6 0.10 0.15 100 16 
7 0.10 0.12 100 16 
8 0.10 0.12 120 18 

 

In Table 3, the results obtained by the previous and proposed 
algorithms are shown. The column denoted as simple represents 
the results obtained by constructing a separate adder tree for each 
coefficient. The simple method requires a lot of adders but 
provides the fastest results requiring the minimal number of 
adder-steps. The next two columns show the results of previous 
CSD-based algorithms. Among them, Hartley’s method provides 
better results. Comparing to the simple method, Hartley’s method 
significantly reduces the number of adders needed to synthesize 
the filters at the cost of a little increase of delay for some filters. 

The next two columns describe the results obtained by applying 
the proposed algorithm. The MSD-based algorithm provides fast 
results that need the minimal number of adders. It can reduce the 
number of adders by 10% even compared to Hartley’s method 
without increasing the number of adder-steps. The CSD-based 
results are included to show the effectiveness of the proposed 
algorithm. In this case, only the CSD representations are 
considered in the proposed algorithm. Although the algorithm is 
proposed for the MSD-representation, the CSD-based results are 
comparable with the Hartley’s results. This implies the proposed 
algorithm is as effective as Hartley’s algorithm for the CSD 
representation. 

6. CONCLUSION 
In this paper, we have presented a new digital filter synthesis 
algorithm that is based on the MSD representation. Starting from 
the CSD representation, all the MSD representations are 
discovered by repeatedly applying simple transforms, 

011110 →  and 110011 → . The proposed filter synthesis 
algorithm is to select one coefficient at a time and synthesize it 
using previously synthesized patterns, which is different from the 
conventional method that searches sub-expressions common to 
multiple constants. To show the effectiveness of the proposed 
algorithm, several filters are synthesized and compared with those 
generated from previous algorithms. The experimental results 
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show that the proposed algorithm yields better results than the 
conventional ones obtained from the CSD representation. In 
addition, when the proposed algorithm is restricted to the CSD 
representation in making multiplier blocks, the results are worse 
than those generated by allowing the MSD representation. This 
means the MSD representation is more appropriate in filter 
synthesis than the CSD representation. 
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Simple Potknjak[11] Hartley[13] 
Proposed algorithm 

MSD-based 
Proposed algorithm 

CSD-based Filter 
#adders #adder-

steps #adders #adder-
steps #adders #adder-

steps #adders #adder-
steps #adders #adder-

steps 
1 33 3 22 4 19 3 16 3 17 3 
2 54 3 30 4 25 3 23 4 24 3 
3 77 3 48 5 35 3 35 3 37 3 
4 131 3 82 4 55 4 51 4 55 4 
5 88 3 54 4 37 4 34 4 38 4 
6 140 3 87 5 55 4 50 4 52 5 
7 173 3 95 5 71 4 70 4 83 4 
8 246 3 136 6 96 4 91 4 104 5 

Avg. 240% - 141% - 100% - 94% - 104% - 
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