
Digital Filter Synthesis Based on Minimal Signed Digit
Representation

In-Cheol Park

Dept. of Electrical Engineering and Computer Science
2nd Floor, Chips Building, EE, KAIST,

373-1 Guseong-dong Yuseong-gu Taejeon, Korea
+82-42-869-3461

icpark@ee.kaist.ac.kr

Hyeong-Ju Kang

Dept. of Electrical Engineering and Computer Science
2nd Floor, Chips Building, EE, KAIST,

373-1 Guseong-dong Yuseong-gu Taejeon, Korea
+82-42-869-8061

dk@ics.kaist.ac.kr

ABSTRACT
As the complexity of digital filters is dominated by the number of
multiplications, many works have focused on minimizing the
complexity of multiplier blocks that compute the constant
coefficient multiplications required in filters. The complexity of
multiplier blocks can be significantly reduced by using an
efficient number system. Although the canonical signed digit
representation is commonly used as it guarantees the minimal
number of additions for a constant multiplication, we propose in
this paper a digital filter synthesis algorithm that is based on the
minimal signed digit (MSD) representation. The MSD
representation is attractive because it provides a number of forms
that have the minimal number of non-zero digits for a constant.
This redundancy can lead to efficient filters if a proper MSD
representation is selected for each constant. In experimental
results, the proposed algorithm resulted in superior filters to those
generated from the CSD representation.

1. INTRODUCTION
Digital filters are frequently used in digital signal processing by
virtue of stability and easy implementation. Although
programmable filters based on digital signal processing cores can
take an advantage of flexibility, they are not suitable for recent
consumer applications demanding high throughput and low power
consumption. In such an application, therefore application
specific digital filters are frequently adopted to meet the
constraints of performance and power consumption. Number
systems have a great influence on the hardware complexity of
digital filters. Although the two's complement representation is
commonly used for digital computation, the signed digit
representation is frequently more efficient in digital filters where
signal values are multiplied by many constant coefficients.

The problem of designing digital filters has received a great
attention during the last decade, as the filters are suffering from a
large number of multiplications, leading to excessive area and

power consumption even if implemented in full custom integrated
circuits. Early works have focused on replacing multiplications by
decomposing them into simple operations such as addition,
subtraction and shift. As the coefficients of an application specific
filter are constant, the decomposition is more efficient than
employing general multipliers. The number of additions/
subtractions used to implement the coefficient multiplications in
this case dominates the complexity of filters. To reduce the
complexity, the coefficients can be restricted to powers-of-two or
expressed in canonical signed digit (CSD) representation to
minimize the number of additions/subtractions required in each
coefficient multiplication. On average, the CSD representation
can reduce 33% of non-zero digits compared with the binary
representation. To further reduce hardware complexity in the
applications requiring multiple constant multiplications (MCMs),
a common subexpression is searched among multiple constants
and implemented into one hardware block in order to share the
result of the subexpression in evaluating all the constants. Many
approaches have been proposed for the implementation of MCMs
[1], [2], [3], [6], [8], [10], [11], [12], [14], [15]. Previous
approaches have tried to select common subexpressions as many
as possible after representing the constants in the CSD
representation. Although the CSD representation is good for one
constant, it is not the best for multiple constants because the CSD
representation of a constant is unique and independent of the
other constants, leading to limited subexpressions for multiple
constants. For the multiple constant multiplications, it is more
efficient to use the minimal signed digit (MSD) representation
which has the same number of non-zero digits as the CSD
representation but provides multiple representations for a constant
[8], [15].

As the CSD representation is mathematically unique, it has
received much attention and there have been many methods of
converting a given binary number into the CSD representation
[5], [7], [9], [13], [16]. The uniqueness is significant in
developing algorithms, but not in implementing hardware units. In
general, the MSD representation providing multiple
representations that yield the same value is more flexible than the
CSD representation. This redundancy can result in smaller
hardware units than those generated from CSD representation, if
an appropriate MSD representation is selected for each constant.
In spite of this advantage, the MSD number system has not been
studied much because of the lack of formalism and there has been
no report on how to find all the MSD representations for a given

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

29.3

468

number except enumerating all cases. Recently, we developed an
efficient algorithm that can search all the MSD representations for
a number. Based on the algorithm we propose in this paper a new
digital filter synthesis algorithm that can exploit the redundancy
of MSD representation. Experimental results show that the
proposed algorithm provides more efficient multiplier blocks than
those generated from the CSD representation.

Table 1. Examples of MSD Representations.

171

0101010101

0011010101

0010110101

0010101101

0010101011

172

0101010100

0011010100

0010110100

0010101100

0101010101

0011010101

0010110101

0010101101

0011010011

0101010011

0010110011

173

0101010010

0011010010

0010110010

174

0101010001

0011010001

0010110001

175

0101010000

0011010000

0010110000

176

0101010001

0011010001

0010110001

177

0101010010

0011010010

0010110010

178

0101010101

0011010101

0101001101

0101010011

0010110101

0011001101

0011010011

0010110011

179

The rest of this paper is organized as follows. In Section 2, the
CSD representation and the MSD representation are introduced
and compared in more detail. In Section 3, we summarize the
MSD generation algorithm and the related theorems. The
proposed filter synthesis algorithm is explained in Section 4, and
experimental results obtained from several filter examples are
described in Section 5. Finally, concluding remarks are made in
Section 6.

2. CSD AND MSD REPRESENTATIONS
In this section, the CSD representation and the MSD
representation are explained and compared in terms of multiplier
block synthesis, and then the problem to be solved is defined.

CSD Representation: The CSD representation is a radix-2 signed
digit system with the digit set }1,0,1{ , where 1 denotes 1− .
Given a constant, the corresponding CSD representation is unique
and has two properties; the first is that the number of non-zero
digits is minimal and the second is that the product of adjacent
two digits is zero, that is, two non-zero digits are not adjacent.
Due to the first property, the CSD representation is widely used in
implementing MCMs because it guarantees the least number of
additions for a given constant multiplication. The second property
is called “property M” in [5]. If a signed digit representation of a
constant satisfies property M, it is the CSD representation.

MSD Representation: If the second property is relaxed in the
CSD representation, it is called minimal signed digit (MSD)
representation. As shown in Table 1 that includes the MSD
representations for constants ranging from 171 to 179, a constant
has not a unique MSD representation but many MSD
representations usually.

1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 10 0
0 0 1 0 0 1 0 1 0

1 0 1 0 10 1 0 1
0 1 0 1 1 0 10 0
0 0 1 0 0 1 0 1 0

Figure 1. Pattern extraction with CSD and MSD
representations.

Although the CSD representation is optimal for one constant, it is
difficult to consider the other constants in case of multiple
constants because a number is uniquely represented in CSD
representation. Since the MSD representation is a super set of the
CSD representation and provides a number of forms, the MSD
representation is more appropriate in finding common
subexpressions for multiple constants if a proper MSD form is
selected for each constant to be synthesized [8],[15]. Since the
representation method affects the number of additions (or
subtractions) in the decomposed multiplication block and the
number of common subexpressions that can be eliminated, it has
significant influence on the resulting area and power
consumption.

The most important step in solving the MCM problem is to extract
the most common patterns. An algorithm was proposed to search
the patterns in [12], but only the CSD representation was
considered there as shown in the left side of Figure 1. The CSD
representation is used because it has the minimum number of non-
zero digits. To cope with the demerit of the CSD representation
that it cannot exploit the flexibility of signed digit representation,
the MSD representation that provides multiple forms for a
constant can be applied. If each constant is represented with a
proper MSD form, more patterns can be extracted as shown in the
right side of Figure 1. In Figure 1, we regard 101 as the same
pattern of 101 because 101 can be evaluated by)101(− .

The problem to be solved is described as follows:

Problem. Given a set of filter coefficients, generate a
multiplier block that requires the minimal number of
adders/subtractors.

In this paper, the delay is specified by the number of adder-steps
that denotes the maximal number of adders/subtractors to be
passed through to produce any multiplication. For a set of
coefficients, mccc ,,, 21 L , the low bound of adder-steps, N,
required in implementing the multiplier block is given by

 { }ikN 2logmax= , where ik is the number of non-zero digits

in the CSD format of ic . The equality holds when each
multiplication is constructed by using a complete binary tree of
adders. One simple method of achieving N is to construct
coefficients individually by using a separate binary tree of adders
for each ic , meaning that adders associated with ic are not

shared with those of other jc ’s.

3. MSD GENERATION ALGORITHM
In this section, we present an algorithm to generate all the MSD
representation of a number. Basically, the MSD representations
are derived from the corresponding CSD representation that can

469

be obtained using the algorithm in [5]. We summarize only the
main theorems for the completeness of this paper. For a number
N, the CSD reperesentation and the MSD representation are
represented as 021 ccc nn L−− and 021 mmm nn L−− , respectively,

where the digit set is }1,0,1{ in both representations.

Definition 1. Given a sequence of 021 ccc nn L−− ,
)0,1(±=ic , the sequence possesses “property M” if

01 =−iicc , for 11 −≤≤ ni .

Theorem 1. [5] Among all the sequences of ic 's which
yield N, there is only one sequence that meets property
M and the unique sequence has the minimum number of
non-zero digits.

The unique representation of N that has the property M is usually
called the CSD representation. If there is only one MSD
representation, it is equivalent to the CSD representation.
However, since we are now searching for other MSD
representations, we assume hereafter that there is an MSD
representation, 021 mmm nn L−− , that is different from the CSD

representation, 021 ccc nn L−− .

Theorem 2. Assume that a number N has the CSD
representation 021 ccc nn L−− and an MSD representation

021 mmm nn L−− . If there is a portion ranging from k to l,
10 −≤<≤ nkl which satisfies the followings,

111111 ,,,,, −−−−++ =≠≠≠= llllkkkkkk mcmcmcmcmc L

then lk − is even and
+

− ==)10(1101101101 LL lkk ccc
1)01(011010101

+
− == LL lkk mmm ,

or
+

− ==)01(1101010111 LL lkk ccc
1)10(110010101

+
− == LL lkk mmm .

If 1−= nk , we can make the above case by expanding a digit,
0== nn mc . Similarly, we expand a digit, 011 == −− mc , if

0=l .

Corollary. Given a sequence of ic 's such as +)10(1 or
+)01(1 , the number of MSD representations that are

different from the sequence is equal to the number of
zero digits in the sequence.

This corollary gives a hint to count the number of MSD
representations. For the CSD representation of N, let the number
of such maximal sequences be t and the number of zero digits in
sequence i be iZ . The maximally possible number of MSD
representations, including the CSD representation, is given by

()∏ −

=
+

1

0
1t

i iZ . The number is obtained with assuming that the

1 0 1 0 1 0 1 0 01 10

Z2=2
O 2=1

Z1=1
O 1=0

Z0=1
O 0=0

(a)

1 0 1 0 1

10 0 11

10 01 1

101

10

101

101 1

(b)

 #M SD-2= #M SD-1 = 1

 #M SD0 = #M SD-1(Z0+1-O 0) + #M SD-2O 0

 = 2
 #M SD1 = #M SD0(Z1+1-O 1) + #M SD-1O 1

 = 4
 #M SD2 = #M SD1(Z2+1-O 2) + #M SD0O 2

 = 10
(c)

Figure 2. Counting the total number of MSD representations.
a) An example that has overlapped sequences. b) A graph
model to count the number. c) Counting procedure for the
graph.

sequences are disjoint. However, in practice, two sequences can be
overlapped with each other, as shown in Figure 2(a). A sequence
can be overlapped with two other sequences, an upper one and a
lower one. Since a sequence restricts the other sequences
overlapped, we have to subtract the cases in counting the number of
MSD representations. If each MSD representation of a sequence is
denoted as a node and an edge is drawn if two nodes can be applied
simultaneously, we can obtain a graph, as shown in Figure 2(b). In
the graph, each path from a node of the leftmost sequence to a node
of the rightmost sequence corresponds to an MSD representation of
N. Therefore the total number of MSD representations can be
obtained by counting the number of paths. The dynamic
programming [4] can be used to count the total number of paths,
which results in a recursive equation given below.

() iiiiii OMSDOZMSDMSD
MSDMSD

21

12

1
,1

−−

−−

+−+=
==

where iO is 1 if sequence i is overlapped with sequence 1−i ,
otherwise 0.

From Theorem 2, it is induced that the only transformations needed
to convert the CSD representation to MSD representations are

011110 → and 110011 → . Figure 3 shows how a number of
MSD representations are achieved by repeatedly applying the short
transformations. The overall algorithm developed from that fact is as
follows. First, a number is represented in CSD using one of the
algorithms presented in [5], [7], [9], [16]. As the CSD
representation is also an MSD representation, it is registered as the
first MSD representation. Next, a pattern of either 110 or 011 is
searched starting from the most significant digit and transformed

470

1 10 10 10 10

1 10 10 10 10

1 10 10 10 10

1 10 10 10 10

1 10 10 10 10
Figure 3. Decomposition of a long conversion into several short
conversions.

to 011 or 110 respectively. For each transformation, a new MSD
representation is generated. The transformation is repeatedly applied
to the new MSD representations found in the previous
transformations until there is no such a pattern. To avoid
duplications, the pattern is searched in an MSD representation from
the next position of the digit where a transformation is applied to
generate the MSD representation. The detailed explanation of the
algorithm and related terms are described below.

Definitions
N : an n bit number to find all MSD representations.
MSDi : the i-th MSD representation found.
S : a set including the MSD representations found.
|S| : the number of MSD representations in S.
SearchMSD : the MSD representation where a new one is being
searched.
SP[i] : the digit position where the transformation is applied to
generate i-th MSD representation.
SearchPoint : the digit position where the search is being done.

The algorithm
Step 1. Convert N into the CSD presentation. It is named MSD0. S =
{MSD0}. |S| = 1. SearchMSD = 0. SP[0] = n-1.
Step 2. SearchPoint = SP[SearchMSD].
Step 3. If SearchPoint < 1, go to Step 6.
Step 4. If the digits from position SearchPoint to SearchPoint-2 in
MSDSearchMSD are 110 or 011 , make a new MSD by changing

110 to 011 or 011 to 110 , respectively. The new MSD is
named MSD|S|. SP[NumMSD] = SearchPoint-2. Insert the new
MSD into S. Increment |S|. Decrement SearchPoint by 2. Go to Step
3.
Step 5. Decrement SearchPoint. Go to Step 3.
Step 6. Increment SearchMSD. If SearchMSD is the same as |S|,
end. Otherwise, go to Step 2.

As an example, Figure 4 shows the procedure of finding all the
MSD representations of 180. The circled number means the order of
MSD representations generated by the proposed algorithm. The first
MSD representation numbered as 0 is equivalent to the CSD
representation of 180. The inverse triangle of each MSD
representation denotes the first SearchPoint, SP[i] of the
representation.

01 10 10 0100

0 110 10 0100

01 10 00 1001

0 1 10 10 0100

0 110 100 1000

1

2

3

4

Figure 4. The MSD generation procedure for 180.

4. DIGITAL FILTER SYNTHESIS
ALGORITHM
In this section, we explain the proposed multiplier block synthesis
algorithm. Before starting the explanation, we briefly introduce
the previous filter synthesis algorithm proposed by Hartley [12],
which is based on the CSD representation. The algorithm is
selected for comparison, because it produces the best results
among a number of CSD-based algorithms [10],[11],[12],[14].

Hartley’s method is to combine sub-expressions that are common
to multiple coefficients. The first step is to convert the coefficients
into CSD representations, as the CSD representation guarantees
the minimal number of non-zero digits for each coefficient. And
then it searches a pair of two non-zero digits that are the most
common among all possible pairs.

The selected pair is removed from the corresponding CSD
coefficients and replaced by a new identifier assigned to the pair.
The first identifier is 2 and the next is 3. Beginning from 2, the
identifier increases by one for the next selected pair. The selecting
procedure is repeated until there is no common sub-expression.
Although Hartley’s method is effective in finding maximally
common sub-expressions, it is a greedy algorithm that can be
easily trapped into a local minimum. It is not easy to apply
Hartley’s algorithm to the MSD representation as the
representation of each coefficient has to be determined before
applying the algorithm, which is another difficult work to be
solved.

In Hartley’s method, common sub-expressions are searched and
combined after all coefficients are expressed in CSD
representation, whereas in the proposed algorithm coefficients are
considered and synthesized one by one, e.g., a coefficient is
selected and synthesized sequentially one at a time.

The first step is to generate all MSD representations for each
coefficient. Then a coefficient is selected for synthesis, which can
be implemented using a minimal number of adders, that is, a
coefficient with the minimal number of non-zero digits is selected
for the first synthesis. The intermediate sums that can be
obtainable from the adders used for the synthesized coefficients
are registered as partial sums. Among not-yet synthesized
coefficients, we select a coefficient that can be implemented with
minimal additional adders. Therefore the next coefficient to be
synthesized is the one that can be implemented with using
previously defined partial sums. The following is the flow of our
algorithm where cSet is the set of coefficients that are to be
synthesized and patSet is the set of patterns of partial sums used
to synthesize the selected coefficient.

471

Step 1. Even coefficients are made odd by dividing by a power of
2. Negative coefficients are converted to positive ones. The
coefficients that have the same value with another coefficients are
removed. The remaining coefficients are inserted into cSet.

Step 2. Obtain all CSD and MSD representations of the elements
in cSet.

Step 3. Insert 1 into patSet.

Step 4. If there is an element in cSet that has the same MSD
representation with shifted value of an element in patSet, it is
removed from cSet. If no element is in cSet, end. Repeat this step
until there is no such an element in cSet.

Step 5. If there is an element in cSet that has the same MSD
representation with a shifted combination of two elements in
patSet, it is removed and inserted into patSet. If no element is in
cSet, end. Repeat this step until there is no such an element in
cSet.

Step 6. If there is an element in cSet that has the same MSD
representation with a shifted combination of three elements in
patSet, it is removed and inserted into patSet. One combination of
two partial sums is inserted into patSet. If no element is remained
in cSet, end. If no element is removed from cSet in Steps 4, 5, and
6, go to Step 7. Otherwise, go to Step 4.

Step 7. For each element in cSet, make a shifted combination of
two partial sums in patSet, and check if the pattern of the shifted
combination is included in an MSD representation of the element.
We select a combination that maximally matches to an MSD
representation. After doing this for all remaining elements, we
select an element which has the most matched combination of two
partial sums. The pattern of the combination is registered as a new
partial sum. A new element obtained by removing the selected
combination is inserted into cSet. Go to Step 4.

When combining elements, shifting of elements is allowed, but
there must be no conflict between them, i.e., no digit place where
two or more elements have non-zero digits simultaneously is
allowed. Step 1 is the preparation of our algorithm. The division
or multiplication by a power of 2 can be implemented by wiring
and the negation can be implemented by replacing the adders with
the subtractors. We can use positive, odd numbers in place of
negative or even numbers, and the original negative or even
coefficients can be produced from the positive, odd numbers with
a little hardware overhead. Step 2 generates the CSD
representation and all of the MSD representations for each
coefficient. The MSD representations are created with the
algorithm in Section 3. In Step 3, 1 is inserted into patSet because
it needs no adder. In Step 4, the elements in cSet that are already
in patSet are removed because they are already made. In Step 5
the elements that can be synthesized with only one adder are
selected and synthesized. In Step 6, the elements that need two
adders are synthesized. In Step 7 we modify a coefficient by
including the most matched combination of partial sums into
patSet when there is no element that can be synthesized with one
or two adders.

5. EXPERIMENTAL RESULTS
The proposed algorithms are applied to several FIR filters and
compared with previous algorithms. The specification of those

filters is summarized in Table 2, where fp and fs are normalized
passband frequency and stopband frequency respectively, #tap is
the number of taps, and Width is the word size in fixed-point
integer representation. The coefficients of test filters are generated
with the fp, fs, and #tap using the Remez algorithm in MATLAB
and are converted to integer numbers with rounding. The
passband and stopband frequency of the first filter in Table 2 are
quoted from the example in [6]. We assume transposed-form
filters because they can accept the subexpression sharing.

Table 2. Test Filter Specification.

Filter Passband Stopband #tap Width
1 0.15 0.25 40 12
2 0.15 0.25 60 14
3 0.15 0.20 60 14
4 0.15 0.20 100 16
5 0.10 0.15 60 14
6 0.10 0.15 100 16
7 0.10 0.12 100 16
8 0.10 0.12 120 18

In Table 3, the results obtained by the previous and proposed
algorithms are shown. The column denoted as simple represents
the results obtained by constructing a separate adder tree for each
coefficient. The simple method requires a lot of adders but
provides the fastest results requiring the minimal number of
adder-steps. The next two columns show the results of previous
CSD-based algorithms. Among them, Hartley’s method provides
better results. Comparing to the simple method, Hartley’s method
significantly reduces the number of adders needed to synthesize
the filters at the cost of a little increase of delay for some filters.

The next two columns describe the results obtained by applying
the proposed algorithm. The MSD-based algorithm provides fast
results that need the minimal number of adders. It can reduce the
number of adders by 10% even compared to Hartley’s method
without increasing the number of adder-steps. The CSD-based
results are included to show the effectiveness of the proposed
algorithm. In this case, only the CSD representations are
considered in the proposed algorithm. Although the algorithm is
proposed for the MSD-representation, the CSD-based results are
comparable with the Hartley’s results. This implies the proposed
algorithm is as effective as Hartley’s algorithm for the CSD
representation.

6. CONCLUSION
In this paper, we have presented a new digital filter synthesis
algorithm that is based on the MSD representation. Starting from
the CSD representation, all the MSD representations are
discovered by repeatedly applying simple transforms,

011110 → and 110011 → . The proposed filter synthesis
algorithm is to select one coefficient at a time and synthesize it
using previously synthesized patterns, which is different from the
conventional method that searches sub-expressions common to
multiple constants. To show the effectiveness of the proposed
algorithm, several filters are synthesized and compared with those
generated from previous algorithms. The experimental results

472

show that the proposed algorithm yields better results than the
conventional ones obtained from the CSD representation. In
addition, when the proposed algorithm is restricted to the CSD
representation in making multiplier blocks, the results are worse
than those generated by allowing the MSD representation. This
means the MSD representation is more appropriate in filter
synthesis than the CSD representation.

7. ACKNOWLEDGMENTS
This work was supported (in part) by the Korea Science and
Engineering Foundation through the MICROS center at KAIST,
Korea.

8. REFERENCES
[1] A. G. Dempster and M. D. Macleod, “Use of minimum adder

multiplier blocks in FIR digital filters,” IEEE Trans. Circuits
Syst. Ⅱ, vol. 42, no. 9, pp. 569-577, 1995.

[2] D. R. Bull and D. H. Horrocks, “Primitive operator digital
filters,” IEE Proc. G, vol. 138, no. 3, pp. 401-12, 1991.

[3] D. Li, J. Song, and Y. C. Lim, “A polynomial-time algorithm
for designing digital filters with power-of-two coefficients,”
in Proc. 1993 IEEE Int. Symp. on Circuits and Systmes,
1993, pp. 84-87.

[4] E. Horowitz and S. Sahni, Fundamentals of Computer
Algorithms, Computer Science Press, 1978.

[5] G. W. Reitweisner, “Binary arithmetic,” in Advances in
Computers, F. L. Alt, Ed., vol. 1, chapter 5, pp. 232-308.
Academic Press, New York, 1960.

[6] H. Samueli, “An improved search algorithm for the design of
multiplierless FIR filters with powers-of-two coefficients,”
IEEE Trans. Circuits Syst., vol. 36, no. 7, pp. 1044-1047,
1989.

[7] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall,
1993.

[8] J. T. Kim, Design and implementation of computationally
efficient FIR filters, and scalable VLSI architectures for
discrete wavelet transform, Ph.D. thesis, Korea Advanced
Institute of Science and Technology, 1998.

[9] K. Hwang, Computer Arithmetic Principles, Architecture,
and Design, John Wiley and Sons, Inc., 1979.

[10] M.Potkonjak, M. B. Srivastava, and A. Chandrakasan,
“Efficient substitution of multiple constant multiplication by
shifts and additions using iterative pairwise matching,” in
Proc. 31st ACM/IEEE Design Automation Conf., 1994, pp.
189-194.

[11] M. Mehendale, S. D. Sherlekar, and G. Venkatesh,
“Synthesis of multiplier-less FIR filters with minimum
number of additions,” in Proc. IEEE/ACM Int. Conf. on
Computer Aided Design, 1995, pp. 668-671.

[12] R. I. Hartley, “Subexpression sharing in filters using canonic
signed digit multipliers,” IEEE Trans. Circuits Syst. Ⅱ, vol.
43, no. 10, pp. 677-688, 1996.

[13] R. Hashemian, “A new method for conversion of a 2’s
complement to canonic signed digit number system and its
representation,” in Proc. Asilomar Conf. Signals, Syst.,
Computers, 1997, pp. 904-907.

[14] R. Paško, P. Schaumont, V. Derudder, S. Vernalde, and D.
Ďuračková, “A new algorithm for elimination of common
subexpressions,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 1, pp. 58-68,
1999.

[15] T. S. Chang, C. S. Kung, and C. W. Jen, “ A simple
processor core design for DCT/IDCT,” IEEE Trans. Circuits
Syst. Video Technol., vol. 10, no. 3, pp. 439-447, 2000

[16] Y. C. Lim, J. B. Evans, and B. Liu, “Decomposition of
binary integers into signed power-of-two terms,” IEEE
Trans. Circuits Syst., vol. 38, no. 6, pp. 667-672, 1991.

Table 3. Experimental Results for FIR Filters.

Simple Potknjak[11] Hartley[13]
Proposed algorithm

MSD-based
Proposed algorithm

CSD-based Filter
#adders #adder-

steps #adders #adder-
steps #adders #adder-

steps #adders #adder-
steps #adders #adder-

steps
1 33 3 22 4 19 3 16 3 17 3
2 54 3 30 4 25 3 23 4 24 3
3 77 3 48 5 35 3 35 3 37 3
4 131 3 82 4 55 4 51 4 55 4
5 88 3 54 4 37 4 34 4 38 4
6 140 3 87 5 55 4 50 4 52 5
7 173 3 95 5 71 4 70 4 83 4
8 246 3 136 6 96 4 91 4 104 5

Avg. 240% - 141% - 100% - 94% - 104% -

473

