
MACACO: Modeling and Analysis of Circuits for
Approximate Computing

Rangharajan Venkatesan, Amit Agarwal, Kaushik Roy and Anand Raghunathan
School of Electrical and Computer Engineering, Purdue University

{rvenkate,agarwa19,kaushik,raghunathan}@purdue.edu

Abstract—Approximate computing, which refers to a class of tech-
niques that relax the requirement of exact equivalence between the
specification and implementation of a computing system, has attracted
significant interest in recent years. We propose a systematic methodol-
ogy, called MACACO, for the Modeling and Analysis of Circuits for
Approximate Computing. The proposed methodology can be utilized to
analyze how an approximate circuit behaves with reference to a con-
ventional correct implementation, by computing metrics such as worst-
case error, average-case error, error probability, and error distribution.
The methodology applies to both timing-induced approximations such
as voltage over-scaling or over-clocking, and functional approximations
based on logic complexity reduction. The first step in MACACO is
the construction of an equivalent untimed circuit that represents the
behavior of the approximate circuit at a given voltage and clock period.
Next, we construct a virtual error circuit that represents the error in
the approximate circuit’s output for any given input or input sequence.
Finally, we apply conventional Boolean analysis techniques (SAT solvers,
BDDs) and statistical techniques (Monte-Carlo simulation) in order to
compute the various metrics of interest. We have applied the proposed
methodology to analyze a range of approximate designs for datapath
building blocks. Our results show that MACACO can help a designer to
systematically evaluate the impact of approximate circuits, and to choose
between different approximate implementations, thereby facilitating the
adoption of such circuits for approximate computing.

I. INTRODUCTION

Recent years have witnessed a surge of interest in a group of tech-
niques that could be collectively classified as approximate computing,
wherein the requirement of exact numerical or Boolean equivalence
between the specification and implementation of a computing plat-
form is relaxed in order to achieve improvements in performance or
energy efficiency [1] [2] [3]. Approximate computing is motivated by
the large and growing class of applications that demonstrate inher-
ent error resilience, such as DSP, multimedia (images/audio/video),
graphics, wireless communications, and emerging workloads such
as recognition, mining, and synthesis. These applications usually
process large, redundant data sets that contain significant noise, by
utilizing statistical or probabilistic computations. The requirement of
numerical exactness on their outputs is relaxed due to several factors:
(i) the limited perceptual capability of humans (e.g., audio, video,
graphics), (ii) a golden result is difficult to define or does not exist
(e.g., web search, data analytics), or (iii) users are willing to accept
less-than-perfect results.

Approximate computing in hardware is based on designs of hard-
ware building blocks whose implementation does not exactly match
the specification, either due to the impact of timing-induced errors
(e.g., voltage over-scaling or over-clocking), or due to functional
approximation (e.g., implement a slightly different Boolean function
that has a faster or more power-efficient implementation). Although
approximate computing techniques have shown significant promise,
moving them to the mainstream will require several issues to be
addressed, foremost among which is the issue of modeling and
analysis of accuracy. Several approximate designs have been proposed
that compromise accuracy in different ways; unfortunately there is no

simple and systematic analysis methodology to compare them with
conventional designs or with each other. For example, a designer may
ask the following questions: “How do I compare between different
approximate designs for my circuit?”, “How do I ensure that a given
approximate implementation meets my accuracy requirements?”, or
“How do I ensure that there are no bugs in an approximate imple-
mentation?”. Traditional verification techniques (combinational and
sequential equivalence checking) are geared towards verifying exact
Boolean equivalence of the specification and implementation, and do
not directly address the above questions.

We take a first step towards addressing the aforementioned chal-
lenge, by proposing a systematic methodology for the analysis of
approximate circuits, and applying it to analyze several approximate
implementations of data path building blocks. We start by noting a
couple of requirements for such an analysis framework.

• Approximate circuits may be evaluated using multiple metrics.
For example, some designers may wish to evaluate the worst-
case error, i.e., the largest possible difference between the
approximate output and a correct version for all possible inputs.
In other scenarios, the error probability, i.e., the probability that
the output differs from the correct one, may be of relevance.
Finally, the distribution of the errors (for all possible inputs) may
be of interest in some cases. Therefore, the analysis framework
should be flexible enough to support multiple analysis modes
(worst-case error, average-case error, error distribution, etc.).

• Several approximate circuit designs utilize voltage over-scaling
or over-clocking, resulting in timing errors. Therefore, we need
to consider timing information in our analysis framework, i.e.,
we cannot directly apply techniques from the functional verifica-
tion domain. Timing-faithful circuit simulation is not an option
in many cases since exhaustive enumeration of all inputs or input
pairs may be required.

We propose MACACO, a flexible and efficient methodology for the
analysis of approximate circuits that meets both these requirements.
First, we convert timing-induced approximations into the functional
domain. Given a circuit that is subject to over-clocking or voltage
over-scaling at a specific clock frequency and supply voltage, we
generate an equivalent untimed circuit that represents the functional
behavior of the over-scaled or over-clocked circuit. Next, we construct
a virtual circuit for error analysis by instantiating the equivalent
untimed circuit and the golden circuit, and comparing their outputs
to quantify the error. This virtual error circuit computes the error
between the approximate and correct implementations for any given
sequence of inputs. Our methodology then utilizes conventional
verification tools — Boolean satisfiability (SAT) solvers and Binary
Decision Diagrams (BDDs) — to perform error analysis. To compute
the worst-case error, we utilize a SAT solver to maximize the output
of the virtual error circuit. To compute the average-case error, error
probability or error distribution, we construct a BDD for the output of

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 667

U
X

Control

Segmented Sum

FA FA FA FA FA FA

M
U

Add Correction Term
Low-Overhead

0

Add Correction Term F
F

F
F+

Approximate Sum

Correction Term

Accumulator

(a) Dynamic Segmentation with Error Compensation

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 0 11 1 0 0 1

1 1 1 1 1

(b) Truth Table based ap-
proximation

All bits set to “1”

10110011 10011010

01101001+ 00010011

100011100 10011111

Normal Operation

Sum

Input

Operands

Accurate Part Approximate Part

MSB LSB Starting

Point

Operating

direction

Operating

direction

(c) Reverse Carry Propagation

Fig. 1: Approximate circuit design techniques, illustrated using adders

the virtual error circuit and utilize a traversal of the BDD to compute
the relevant statistics. For cases where BDDs cannot be constructed
(e.g., larger bitwidth multipliers), we utilize statistical Monte-Carlo
sampling to estimate these metrics. The proposed approach may also
be used with other decision diagrams [4]–[7] that are better suited to
dealing with pathological cases for BDDs.

We apply the proposed analysis methodology to a range of imple-
mentations of common arithmetic units. In the case of adders, which
are the most fundamental building block, we evaluate the behavior of
three different conventional architectures under voltage over-scaling
- ripple carry adder, carry look-ahead adder, and Han-Carlson adder.
We also evaluate three architectures that are specifically designed
for approximate computing, based on dynamic segmentation with
error compensation, reverse carry propagation, and truth table based
approximation. Our results reveal interesting insights into the behav-
ior of these approximate arithmetic units and the trade-offs between
them. For example, our analysis identifies that functional correlation
between the output bits reduces the maximum error introduced by
over-scaling, explaining the empirical observation that the average-
case error in practice is much smaller than the worst-case. For some
designs, we also observe that voltage over-scaling introduces errors of
certain specific values much more frequently than others, leading to
the possibility of low-complexity error detection and correction. We
believe that systematic analysis frameworks such as the one proposed
in this paper can significantly facilitate the adoption of approximate
computing techniques.

The rest of this paper is organized as follows. In Section II, we
present a brief overview of research on approximate computing.
Section III focuses on the design of approximate arithmetic units,
classifying the techniques into timing-based and functional approxi-
mation. Section IV presents the MACACO methodology. Section V
evaluates a range of approximate arithmetic circuits using MACACO,
and Section VI concludes the paper.

II. RELATED WORK

A number of previous research efforts have demonstrated the
benefits of approximate computing through techniques at various
levels of design abstraction [8]–[22]. The flexibility to compute an ap-
proximate result is translated into improved efficiency (performance
or power) in hardware using two common techniques: (i) timing-
induced approximation, wherein a circuit is subject to voltage over-
scaling or over-clocking, or (ii) functional approximation, wherein
the Boolean function is slightly altered to result in a simplified
implementation. These techniques have been applied to design ap-
proximate versions of various datapath building blocks [13]–[18].
Circuit synthesis techniques [19], [20] based on sizing and multi-Vt

libraries make circuits behave more gracefully under voltage over-
scaling. More recent work has focused on the systematic synthesis

of approximate circuits at the logic level [21], [22].
In summary, approximate circuits sacrifice 100% correctness in

return for disproportionate benefits in performance or power con-
sumption. These circuits are often evaluated for limited sets of
inputs, or in the limited context of a specific application. The
primary contribution of this work is a systematic methodology for
the modeling and analysis of approximate circuits. The proposed
technique can be used to analyze circuits resulting from any of the
design techniques described above. The proposed methodology can
also benefit techniques that utilize circuit-level error detection and
correction to recover from errors due to elimination of guard bands
or voltage over-scaling [23]. In this case, the proposed methodology
would compute the error probability that is required to analyze the
performance overheads of error correction.

III. APPROXIMATE CIRCUITS: PRELIMINARIES

Design techniques for approximate circuits follow two broad strate-
gies - Over-scaling based approximation (over-clocking or voltage
over-scaling, resulting in timing induced errors), and Functional ap-
proximation. In over-scaling based approximation, the circuits are de-
signed to operate correctly under normal conditions. Approximations
are introduced by voltage over-scaling (without changing the clock
frequency) to gain benefits in terms of energy. Equivalently, frequency
can be increased (without changing the voltage) for performance gain.
Depending on the architecture, the number of paths that fail to meet
the delay constraint varies and different circuits behave differently
under over-scaled conditions. For instance, in the case of a ripple
carry adder, there are fewer long paths and the output fails gradually
with over-scaling [9]. On the other hand, a tree adder such as the
Han-Carlson adder has a large number of critical paths and fails
drastically. In addition, there are circuits specifically designed for
better scalability [13]–[18].

Fig. 1 provides illustrative examples of approximate adders. Fig. 1a
demonstrates the operation of the Dynamic segmentation with Error
Compensation (DSEC) technique, which applies to accumulators
such as the ones used in Multiply-Accumulate (MAC) units [16].
Dynamic segmentation involves dividing the accumulator stage into
smaller bit width adders depending on the degree of over-scaling.
Error compensation keeps track of the carries across sections of
the segmented adder that have been ignored in each cycle, and a
correction cycle is introduced to adjust the accumulator value in order
to compensate for the error due to ignored carries.

In the case of functional approximation, circuits are designed to
be error prone even in the absence of voltage over-scaling. The
principle is to accept errors in rare cases for significant reductions
in the logic complexity or length of the critical path. Fig. 1b shows
the truth table of a functional approximation for a full adder [17].
Changing the truth table at the indicated positions allows for a

668

simplified implementation with lower power consumption, lower area
and higher performance at the cost of approximation. Another kind of
functional approximation is reverse carry propagation [13]. As shown
in Fig. 1c, approximations are introduced only in the LSBs. The adder
is partitioned in such a way that the LSBs fail initially with over-
scaling which ensures that error introduced is of small magnitude.

IV. MACACO: MODELING AND ANALYSIS OF APPROXIMATE

CIRCUITS

An analysis framework for approximate circuits should provide
information regarding
• Worst-case error over all possible inputs.
• Probability of occurrence of errors.
• Error value distribution.
• Conditions for occurrence of undesirable errors i.e., errors of

large magnitude or errors with high probability.
In previous work, such information is obtained through simulation

on a limited set of vectors or in the context of a specific application.
These ad hoc approaches cannot be used to compute worst-case
error, which requires exhaustive enumeration, and are not scalable
since the number of vectors to be simulated becomes too large.
It is desirable to leverage Boolean analysis techniques, which are
very efficient at implicit exhaustive enumeration, to the problem of
approximate circuit analysis. However, this task is complicated by the
fact that formal verification methods are not directly applicable when
the timing behavior of the circuit (delays of the gates) needs to be
considered. We address this challenge in the proposed methodology.

Fig. 2 presents an overview of the MACACO methodology for the
analysis of approximate circuits. The proposed methodology consists
of three key steps:
• Equivalent untimed circuit generation: We first transform

the timing-dependent nature of the approximate circuit into the
functional domain, so that Boolean analysis techniques may be
used. The Equivalent Untimed ciRcuit gEnerAtor (EUREkA)
takes the approximate circuit, the target clock frequency and
the delay model of the cell library, and generates a functional
equivalent of the original circuit for the given voltage and clock
period. This step is described in detail in Section IV-A.

• Virtual error circuit generation: In this step, we construct
a virtual error circuit that models the error of the approximate
circuit, by comparing the output of the equivalent untimed circuit
from the previous step with the output of a fully correct reference
circuit. This step is further described in Section IV-B.

• Error analysis: In this step, we apply conventional verification
tools (SAT, BDDs) as well as statistical Monte-Carlo simulation,
to perform error analysis using the virtual error circuit. This step
is further described in Section IV-B.

A. Modeling Approximate Circuits using Equivalent Untimed Cir-
cuits

In this section, we first describe the impact of timing-induced
approximation on a circuit’s output. We then describe how this
effect may be captured using equivalent untimed circuit, describe
our algorithm for the generation of equivalent untimed circuit, and
demonstrate it using a suitable example.

Under timing-induced approximation, the output of a combina-
tional circuit becomes a function of the current as well as previous
input values. The current inputs would propagate to the output
through non-critical paths (paths that are shorter than the clock
period), while the previous inputs would affect the output through

Logic Synthesis
Standard

Cell Library

RTL Description

Design Constraints
y

Delay Model

Synthesized

Netlist
STA

Compute AT and RTy
EUREkA Engine

Compute AT and RT

Duplicate Nodes

Wiring

Frequency

Equivalent Untimed

Ci it

Generate Virtual Error Circuit

Circuit

Reference

Circuit

Generate Pseudo

Boolean Constraints

Analysis?

Decide Threshold

G t BDD i t
Monte Carlo Based

SAT Solver

Boolean Constraints

Compute

BDD Package

Generate BDD input

Compute

Error Probability

Simulation

Compute

Error Probability

Compute

Maximum Error

o ob b y

Generate

Error Profile

Generate

Error Profile

Fig. 2: Overview of MACACO

critical paths (paths that are longer than the clock period). For
example, consider the circuit shown in Fig. 3a. The delays of the
individual gates (normalized with respect to an inverter’s delay) are
shown inside the gates. The arrival time for the output of each gate
is shown inside a circle. The maximum delay of the circuit is 10.
If the clock period is 8, Path 1 and Path 2 are not critical and the
values of inputs IN0 and IN1 from the current cycle can propagate
to the output. On the other hand, the current cycle values of inputs
IN3 and IN4 do not have sufficient time to propagate to the output.
Therefore, the previous cycle’s values of IN3 and IN4 would influence
the current output. Also, note that inputs IN5 and IN6 can propagate
to the output through Path 7 but cannot propagate through Path 6. In
this case, both the current and previous values of the inputs would
affect the current output. In general, if It represents the current inputs
to the circuit, and D represents the net delay of the circuit, and T
represents the clock period, then the outputs Out(t+T) depend on
inputs It, I(t−T),, I(t−rT) where r = d(D/T)e − 1.

Let us now generalize the discussion from the above example.
Consider a circuit C with only one critical path P having delay D
that is greater than clock period T. Assume that every gate along
P has a fanout of exactly one. Clearly, the current primary input
values cannot propagate to the output through path P. The output
would be determined by the previous primary input value that had
propagated through path P and the current primary input values that
propagate to the output through other non-critical paths. Therefore,
by substituting the current primary input value with the previous
primary input value along path P and retaining the current primary
input values along other paths, we obtain a circuit C’ whose output is
equal to the output of circuit C under scaled conditions. We refer to C’
as the equivalent untimed circuit of C, since the untimed simulation
of circuit C’ would be equivalent to timed simulation of the original
circuit under the specified clock period T. Next, consider the case
when the gates along path P in circuit C have fanout greater than
one. In this case, there are nodes (primary inputs or output of a gate)
along path P such that the value of the node corresponding to the
current input values can propagate to the output through certain paths
but cannot propagate through path P. In this case, we duplicate the
gates with fanout greater than one such that every gate along P has
a fanout of one [24] and then obtain the equivalent untimed circuit
as described earlier.

669

Algorithm 1 EUREkA Engine
Input: C: Synthesized Netlist

T : Clock Period
Library with Delay models

Output: C’: Equivalent untimed Circuit
Begin
Parse circuit();
Topological sort();
STA(); {Compute arrival and required Times}
for each outi ε outputs such that ATi > T do

duplicate outi as outi’;
DUPLICATE DFS(outi , 0, outdi);

end for
End

DUPLICATE DFS(Nl, Dil, Pl) {Nl = Node in original circuit}
for each fanin Nj of Nl do {Pl = reproduced or duplicated Node of Nl}
Dij ← Dil + gate delay(Nl) {Dil = Depth of Nl from outi}
if (ATi + Dij > T) then {condition for node to be critical}

if (markdj is set) then {checking if the node is already duplicated}
Set Pl as fanout of Nd

j
Return;

else
Duplicate Nj as Nd

j ;
Rename the duplicated node;
Set Pl as fanout of Nd

j
Set markdj ;
DUPLICATE DFS(Nj , Dij , Nd

j)
end if

else
if (markcj is set) then {checking if the node is already reproduced}

Set Pl as fanout of Nr
j

Return;
else

Reproduce Nj as Nr
j ;

Set Pl as fanout of Nr
j

Set markcj ;
DUPLICATE DFS(Nj , Dij , Nr

j)
end if

end if
end for

Let us now consider a circuit C with multiple critical paths. Assume
that D < 2T , implying that output Out(t+T) of the approximate
circuit would depend only on It, I(t−T). We can divide the paths in
the circuit into critical paths whose delay is greater than T and non-
critical paths whose delay is less than T. In this case, we duplicate
the gates which are part of a critical path, but also have a fanout
to a gate in a non-critical path, to obtain a circuit Cd. This ensures
that the value of any node in the circuit Cd can either propagate
through all the paths to the output or cannot propagate through any
path connecting the node to the output. By applying previous input
values to the primary inputs in the critical paths and current input
values to the primary inputs along the non-critical paths, we obtain
the required equivalent untimed circuit.

In the general case when (r − 1)T < D < rT for some integer
r, gates need to be duplicated such that the gates that are part of a
path with delay d such that (i − 1)T < D < iT where 2 < i < r,
does not fanout to a gate that is part of a path with delay d′ such
that (j − 1)T < d′ < jT where 0 < j < i.

Algorithm 1 describes the procedure for generating the equivalent
untimed circuit. This algorithm was inspired from the algorithm
presented in [24] for redundancy removal. For ease of explanation,
we assume that D < 2T (the algorithm directly extends to general
case). In order to generate the equivalent untimed circuit, we employ
a modified Depth First Search (DFS) to find and duplicate the portion
of the circuit which violates the time constraint and then connect it to
the original circuit for further analysis. In our algorithm, each node
of a circuit can be visited through a critical path or a non-critical
path. Hence we associate two marker variables, markc and markd,

with each node. Each node is visited at most twice in the entire
process i.e., our algorithm implicitly considers all paths in the circuit
without enumerating them. A node is duplicated and markd is set
if it is visited for the first time through a critical path. If a node
is visited through a non-critical path for the first time, the node is
simply reproduced and markc is set. If a marked node is visited again
through a critical (non-critical) path, then if markd (markc) is set, the
node is not duplicated (reproduced) and the parent node (fanout of
the current node through the current path) is linked to the duplicated
(reproduced) node.

In general, when (r− 1)T < D < rT for some r > 1, we would
require r markd variables, 1 markc variable and each node would be
visited at most r + 1 times. The equivalent untimed circuit obtained
using our algorithm would have utmost r ∗n nodes leading to space
and run time complexity of O(n+w) , where n is the number of gates
and inputs in the circuit, and w is the number of wires in the circuit.

(a) Approximate circuit

(b) Equivalent untimed circuit

Fig. 3: Generation of the equivalent untimed circuit

Let us consider the generation of the equivalent untimed circuit for
the circuit shown in Fig. 3a. Let ATl represent the arrival time of a
node Nl. Depth of a node along a particular path is defined as the
time required for the value at a node to propagate to the output. Dil

represents the depth of Nl from the output, outi, under consideration.
Along a path, a node Nl is said to be critical if ATl +Dil > T . It
may be noted that reproducing a node simply regenerates the original
circuit. Only the critical nodes are duplicated. Thus, if there is no
critical path, all the nodes will be marked as markc and the original
circuit will be reproduced. Fig. 3b shows the equivalent untimed
circuit generated using our algorithm. We start from the output node
out. This node satisfies the constraint for duplication. Then we visit
the nodes along Path 1. After reaching the input IN0, the algorithm
returns to node a and visits IN1, which is also reproduced. When
the algorithm returns to node c from node b, only a link is created
between node a and c, without revisiting the nodes as the markc
label is already set. Our algorithm continues to visit all the nodes
in depth-first manner. Consider the point when the algorithm reaches
node IN2 from node e. All the nodes from e to out are duplicated but

670

IN2 is reproduced which means that the current cycle’s value of input
IN2 will affect the output. Next, consider the point when we reach
node i. The algorithm then visits node k and inputs IN5 and IN6,
which are duplicated. Then, the algorithm returns to node j and then
revisits node k, IN5 and IN6, but they are reproduced this time. In
this way, we obtain the equivalent untimed circuit efficiently without
enumerating the paths in the circuit.

Given a circuit C with maximum delay D operating at clock period
T (T < D), the output becomes a function of the current and
previous input values. Our algorithm generates an equivalent untimed
circuit that captures the functional relationship between the current
and previous input values such that the output of untimed simulation
of the equivalent untimed circuit is equal to that observed from timed
simulation of the original circuit C.

B. Analysis of approximate circuit behavior

In this section, we describe how the untimed equivalent circuit
is analyzed to compute the various metrics of interest, such as
maximum error, error distribution, error probability, etc. We propose
three different techniques to analyze an approximate circuit - a SAT
Solver based approach to compute the maximum or worst-case error,
a BDD based approach to compute the complete error distribution
or error probability, and a statistical approach based on Monte-
Carlo sampling to enable scalability. We note that other Boolean
analysis techniques (e.g., different decision diagrams) or statistical
techniques (e.g., stratified sampling) may also be employed within
our framework.

1) SAT based analysis: For computing the worst-case error, we
use a pseudo-Boolean SAT solver, which is basically a combination
of a SAT solver and an ILP solver. We use part of the circuit shown
in Fig. 4 and generate CNF formula corresponding to the reference
circuit, the equivalent untimed circuit and the subtractor and an
objective function that maximizes the error. The input to the SAT
solver is given by:

Objective : Maximize Error

Constraints : CNFref. ∧ CNFapprox. ∧ CNFsubt. (1)

Note that the construction of the objective function should take into
account the number representation scheme that is used in the circuit
(sign-magnitude, 2’s complement, etc.).

!∀∀#∃%#%&∀∋(&)

∗∋+∋∀∋,−∋)./∀−0/%)

.
1
2
3
4
∀4
%1
∀)

5
)

!∀∀1∀)

!60/748∋,%)

9,:2∋;)./∀−0/%)

<&∀∋(&18;)

<&)

=
0
>
%∀
4
−%
1
∀)

.0∀∀∋,%)?,30%()

≅∀∋7/10()?,30%()

9(∋;)+1∀)Α1∀(%Β−4(∋))

∋∀∀1∀)4,48Χ(/()

Fig. 4: Virtual error circuit
2) BDD based analysis: In most applications, knowledge of the

worst-case error alone will not suffice, since its probability of
occurrence could be negligible. For such a scenario, we propose a
BDD based technique to generate an error distribution that would
provide information about probability of occurrence of errors of
different magnitudes. To compute the error distribution efficiently, we
use the virtual error circuit shown in Figure 4, which checks if the
error introduced by approximation is greater than a given threshold.
The BDD representation is obtained for the output of the virtual error

circuit after fixing the threshold to a constant value. We, then, traverse
the BDD and count the number of paths from the root to the leaf 1 and
obtain the number of input vectors that satisfy the comparator output.
In other words, we obtain the number of input vectors corresponding
to error of magnitude less than a chosen threshold. By repeating
this procedure for different thresholds, we obtain the cumulative
distribution function (CDF) of the error. The derivative of the CDF
gives us the Probability Distribution Function (PDF). BDDs are
known to be very large for pathological classes of circuits. There
has been considerable research effort like BMDs [4], PBDDs [5],
ZBDDs [6], and OKFDDs [7] that are efficient at representing many
circuits for which BDDs are not feasible. They can also be used
within our framework to obtain the error distribution of approximate
circuits.

3) Monte-Carlo analysis: In our Monte-Carlo analysis, we per-
form RTL simulations to compute the error profile of the given
circuit at different frequencies of operation. For a given frequency,
we choose different thresholds for error to perform our analysis.
Since there are exponentially many test vectors, we used statistical
techniques to compute the number of vectors required for a given
confidence level and margin of error using the following equation:

n =
[(z2 ∗ p ∗ q) +ME2]

ME2 + (z2∗p∗q)
N

(2)

where n is the number of samples required, z is the critical standard
score computed based on the confidence level, p is the population
proportion which depends on the threshold, q = 1 − p, ME is the
margin of error, and N is the population size given by N = 22I

where I is the number of inputs to the circuit. For the number of
samples computed above, Monte-Carlo simulations are performed for
different thresholds to obtain a error distribution for a given operating
voltage and frequency

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup and present
the results of applying the MACACO methodology to different
architectures of 32-bit adders and 8-bit Wallace Tree multiplier
(WTM) under different levels of over-scaling. We also analyze
functionally approximate circuits using different truth table based
approximate adders (TTA) [17] and reverse carry propagation (RCP)
based adder [13]. DSEC [16] was evaluated using 16-bit accumulator.
We compare the run times for using different analysis techniques to
analyze these circuits.

A. Experimental Setup

In our implementation, we synthesized our circuits using Synopsys
Design Compiler [25]. Our algorithm for generating the untimed
equivalent circuit was implemented in C++. We used minisat [26]
SAT solver in our maximum error analysis. For generating the
error distribution of various approximate circuits, we used CUDD
BDD package [27] and gate level Monte-Carlo simulation using
Modelsim [28]. All our simulations were carried out on a Linux PC
with a 2.66 GHz Intel CoreTM 2 Quad Processor and 4GB RAM.

B. Error Profiling

In this section, we generate the error distribution using the
proposed framework and hence study the performance of various
approximate circuits. We assume that all the inputs are equi-probable
and there is no correlation between the current and the previous input
values. Fig. 5 plots the probability of occurrence of various error
values with scaling of frequency for different types of adders- Ripple

671

50
30100−60 −40 −20 0 20 40 60

−25

−20

−15

−10

−5

0

% Scaling% Error

lo
g
 o

f
p
ro

b
a
b
ili

ty

(a) RCA32

40

20

0
−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

% Scaling
% Error

P
ro

b
a

b
ili

ty

(b) CLA32

10
5

0
−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

% Scaling
% Error

P
ro

b
a

b
ili

ty

(c) HC32

Fig. 5: Error distribution for various kinds of 32 bit adders

Carry Adder (RCA), Carry Look-ahead Adder (CLA) and Han-
Carlson Adder (HCA). The error probability was found to increase
with scaling as the number of critical paths that fail to meet the delay
constraint increases. The error distribution of the circuit depends on
the path delay distribution, which determines the number of outputs
failing for a particular delay constraint, the probability of activation
of individual paths and the functional correlation between different
outputs. An interesting insight from our analysis is that although
the MSB fails first,(suggesting large errors), the errors observed are
frequently much smaller. This is because, when more than one output
bit fails, the erroneous values are correlated to the correct values (as
the current input can propagate through shorter paths) and there is
a correlation between the erroneous bits as they may share certain
paths. For instance, when 2 MSB bits fail, there could be an error
compensation effect which reduces the overall error introduced.

In the case of RCA, the probability of error increases very
slowly as the number of outputs that fail with over-scaling is small.
The occurrence of peak near zero error, even at 50% over-scaling,
indicates that the error introduced by over-scaling is of very small
magnitude for a large number of input combinations. This is due to
the functional correlation between the output bits which causes error
compensation as explained above. In the case of CLA, the graph
flattens out with over-scaling, and it was found that 90% of the time,
the errors were found to be less than 30% at all levels of scaling as
shown in Fig. 5b. It may also be noted that the probability of positive
errors is different from that of negative errors due to assymetry
introduced by over-scaling. In the case of Han-Carlson adder, carry
merge operations are performed on the even bits only. The generate
and propagate signals of the odd bits are transmitted down the prefix
tree. As a result, most of the odd bits start failing even when the clock
period is reduced by a smaller amount. This leads to occurrence of
peaks near the 50% error point and probability of zero error reduces
drastically. HCA, thus, shows very poor scalability. Also note that
most of the probability is lumped around the 3 peaks shown in Fig. 5c.

40

20

0−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

% Scaling
% Error

P
ro

b
a
b
ili

ty

Fig. 6: Error distribution for 8-bit Wallace
tree multiplier

These regions together
account for more than
90% probability. This
knowledge can help in
the design of suitable er-
ror correction schemes
to improve scalability.

Fig. 6 shows the er-
ror distribution for the
8-bit WTM with 16-bit
RCA at the last stage.
The critical path of the

WTM goes through the RCA which makes it more scalable. When

the frequency was scaled by 13%, the error was found to be less than
12.5% for 94% of the input vectors.

−1 −0.6 −0.2 0.2 0.6 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized Error

P
ro

b
a
b
ili

ty

Adder1

Adder2

Adder3

Adder4

Fig. 7: Truth table based approximation

In addition to
these circuits, where
approximation is
achieved through
over-scaling, there
are other circuits
which are functionally
approximate. Fig. 7
presents the error
distribution for various
truth table based
approximate adders. In
these adders, the errors
are introduced in the design of the full adder circuit. The error
distribution is mainly decided by the number of inputs for which
the errors are introduced, and error compensation between the sum
and the carry bits of the full adder. Adder1 has a much better
distribution because the errors are introduced in the sum bit only for
2 inputs and one of them is compensated by the errors introduced
in the carry bit. On the other hand, in the case of Adder3, the sum
bit is erroneous for 3 inputs and the error introduced in the carry bit
exacerbate the error due to the sum bit. Adder2 has error introduced
in the sum bit for 2 inputs without any compensation in the carry
bit while in Adder4, the errors are introduced in the sum bit for 3
inputs with compensation in the carry bit for 2 of them.

C. Maximum Error Computation

For certain approximate circuits, we need to verify that the error
introduced is always bounded. In the case of RCA and other conven-
tional adders, the MSB fails initially thereby introducing an error of
50% of the maximum value. There are other kinds of approximate
circuits designed to ensure that the error is bounded. In this section,
we evaluate the scalability of DSEC and RCP. Fig. 8 shows the
variation in maximum error for different DSEC and RCP designs.
In Fig. 8a, 358 segmentation is one in which the accumulator is
divided into 3 stages - 3 bit adder for the MSBs, 5 bit adder for next
5 bits and 8 bit adder for the LSBs. As shown in Fig. 8a, different
segmentations allow for different levels of over-scaling. For instance,
358 segmentation has maximum delay but the error introduced by
over-scaling is bounded even when the delay is decreased to 50%.
On the other hand, 556 segmentation, which has a shorter critical
path, fails even with a small amount of over-scaling.

Another kind of functionally approximate adder is the one based on
reverse carry propagation. In this case, errors are introduced even in
the absence of over-scaling. With over-scaling, the lower order bits
fail initially and the overall magnitude of error introduced is very

672

small. Fig. 8b shows the results for different partitions of 32bit RCA
based adder. In FOR12, the length of the forward propagation path
corresponds to 12 MSBs. Different partitions allow different levels of
over-scaling. In certain cases, it was found that the failing output bits
were functionally correlated, which reduced the maximum error with
over-scaling. Also, the initial error introduced by RCP was found to
vary depending upon the partition.

14 18 22 26 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Delay (Normalized to inverter delay)

N
o
rm

a
liz

e
d
 E

rr
o
r

358

457

466

556

(a) DSEC

40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

Delay (Normalized to inverter delay)

N
o
rm

a
liz

e
d
 E

rr
o
r

FOR12

FOR10

FOR8

(b) RCP

Fig. 8: Variation of maximum error with delay

D. Runtime Comparison

TABLE I: Runtime comparison

Circuit Logic BDD Analysis MC Analysis SAT Analysis
Gates (Sec) (Sec) (Sec)

RCA 62 4 5.43 0.6
CLA 203 5 5.55 0.9
HCA 362 7 5.35 1
WTM 401 17 6.40 1.2
TTA3 160 0.48 4.34 0.1

3Average over different Truth Table Approximations

Table 1 compares the runtime of the BDD, Monte-Carlo (MC) and
the SAT based techniques for circuits of different logical complexity.
The Monte-Carlo analysis was carried out with sufficient number of
samples for a confidence level of 95%. In the BDD based analysis, the
runtime is decided by time taken to generate the BDD representation
of the virtual error circuit. Note that the BDD based framework is
much faster for analysis of approximate circuits where the BDD is
generated efficiently. However, in the case of multiplier, the run time
of BDD Analysis is higher than Monte-Carlo based technique. The
SAT based approach is much faster but has the limitation that it can
produce only the worst-case error.

In summary, the MACACO methodology can be used to analyze
• The trade-offs between various arithmetic unit architectures.
• The error magnitudes that occur with large probability.
• The error distribution for different levels of over-scaling.
• The effect of functional correlation between different failing bits

on the error due to approximation.

VI. CONCLUSION

Approximate computing techniques, which exploit the inherent
error-resilient nature of applications, have gained popularity in re-
cent years. However, there does not exist any methodology for
systematic analysis and verification of approximate circuits. The
proposed MACACO methodology is an initial step in this direction.
Future extensions of MACACO could include analysis of complete
hardware and software implementations, i.e., analysis of the effects of
approximation at the output of the algorithm. One possible approach
to this problem would be to use a divide-and-conquer strategy, i.e.,
consider the circuit as a network of approximate building blocks,
analyze the building blocks using the techniques proposed in this
work, and propagate error characteristics through the network. We

believe that such systematic analysis would significantly facilitate
future research efforts in this area, as well as the adoption of
approximate computing techniques.

REFERENCES

[1] M. Breuer, “Hardware that produces bounded rather than exact results,”
in DAC, 2010, pp. 871–876.

[2] N. Shanbhag, R. Abdallah, R. Kumar, and D. L. Jones, “Stochastic
computation,” in DAC, 2010, pp. 859–864.

[3] S. Chakradhar and A.Raghunathan, “Best-effort computing: re-thinking
parallel software and hardware,” in DAC, 2010, pp. 865–870.

[4] R. Bryant and Y. Chen, “Verification of Arithmetic Circuits with Binary
Moment Diagrams,” in DAC, 1995, pp. 535–541.

[5] D. Sahoo, S. Iyer, J. Jain, C. Stangier, A. Narayan, D. Dill, and
E. Emerson, “A Partitioning Methodology for BDD-Based Verification,”
in FMCAD, 2004, pp. 399–413.

[6] F. Aloul, M. Mneimneh, and K. Sakallah, “ZBDD-Based Backtrack
Search SAT Solver.” in IWLS, 2002, pp. 131–136.

[7] R. Drechsler and B. Becker, “Ordered Kronecker functional decision
diagrams-a data structure for representation and manipulation of Boolean
functions,” TCAD, vol. 17, no. 10, pp. 965 –973, 1998.

[8] R. Hegde and N. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999, pp. 30–35.

[9] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” TVLSI,
vol. 9, no. 6, pp. 813–823, 2001.

[10] K. V. Palem, “Energy aware algorithm design via probabilistic comput-
ing: From algorithms and models to Moore’s law and novel (semicon-
ductor) devices,” in CASES, 2003, pp. 113–116.

[11] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
Resilient System Architecture for probabilistic applications,” in DATE,
2010, pp. 1560–1565.

[12] V. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. Chakradhar,
“Scalable effort hardware design: exploiting algorithmic resilience for
energy efficiency,” in DAC, 2010, pp. 555–560.

[13] N.Zhu, W. L. Goh, W. Zhang, K. Yeo, , and Z. Kong, “Design of Low-
Power High-Speed Truncation-Error-Tolerant Adder and Its Application
in Digital Signal Processing,” TVLSI, vol. 18, no. 8, pp. 1225–1229,
2010.

[14] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: a new paradigm for arithmetic circuit design,” in DATE, 2008,
pp. 1250–1255.

[15] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in VLSI Design, 2011,
pp. 346–351.

[16] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta functions for approximate computing,” in DATE,
2011.

[17] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: Imprecise adders for low-power approximate computing,” in
ISLPED, 2011, pp. 409–414.

[18] J. Huang and J. Lach, “Exploring the fidelity-efficiency design space
using imprecise arithmetic,” in ASPDAC, 2011, pp. 579 –584.

[19] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution
for graceful degradation under voltage overscaling,” in ASPDAC, Jan
2010, pp. 825–831.

[20] L. Wan and D. Chen, “Dynatune: Circuit-level optimization for timing
speculation considering dynamic path behavior,” in ICCAD, 2009, pp.
172–179.

[21] M. R. Choudhury and F. Mohanram, “Approximate logic circuits for low
overhead, non-intrusive concurrent error detection,” in DATE, 2008, pp.
903 –908.

[22] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in DATE, 2010, pp. 957 –960.

[23] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T.Mudge, “Razor: A Low-Power
Pipeline Based on Circuit-Level Timing Speculation,” in MICRO, 2003,
pp. 7–19.

[24] K. Keutzer, S. Malik, and A. Saldanha, “Is redundancy necessary to
reduce delay?” TCAD, vol. 10, no. 4, pp. 427–435, 1991.

[25] Design Compiler Synopsys Inc. .
[26] Minisat, “http://minisat.se/.”
[27] CUDD, “http://vlsi.colorado.edu/ fabio/cudd/.”
[28] MODELSIM, “http://www.model.com/.”

673

