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Abstract The information is transmitted in neurons through axons, many of whom
have myelin-covered sections, whose main purpose is to increase the speed of elec-
trical signal transmission. Modeling the myelinated axons in a realistic way, by
maintaining the physical meaning of components may lead to complex systems,
described by high-dimensional systems of PDEs, whose solution is computation-
ally demanding. Analysis of larger neuronal circuits including multiple myelinated
axons therefore requires the generation of equivalent low-order models to control
complexity. Such models must preserve the physical interpretation and properties
of the original system including its passivity and stability. The axons port-based
structure makes them suitable to be modeled as port-Hamiltonian systems. This pa-
per uses a structure-preserving reduction method for port-Hamiltonian systems to
reduce the description of a myelinated compartment into a model with comparable
accuracy with the previously used vector fitting technique. The reduced system is
synthesized into an equivalent passive circuit with no controlled sources and only
positive parameters, amenable for inclusion in standard neuronal simulators.

1 Introduction

A myelinated axon (Fig. 1) consists of myelinated sections through which the sig-
nal dissipates, which alternate with Ranvier nodes where the signal is regenerated
(”saltatory conduction”). To model the transmission of signals through this chain,
the phenomena occurring in the Ranvier nodes have to be coupled with those in the
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Fig. 1 Simplified geometrical
model of a myelinated axon,
as a chain of myelinated
compartments and Ranvier
nodes.
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myelinated sections (internodes). The underlying mechanisms of a Ranvier node are
well described by the Hodgkin & Huxley model [10], or its reduced versions [3].

The most popular approach to model the internodes is represented by the ”ca-
ble model”, described by parabolic 1D PDEs [14], i.e. the RC transmission line
equation. In a previous work [11], the authors reduced the internode model with
different methods, resulting in a hierarchical series of models of three spatial geom-
etry classes: 2.5D, 1D and 0D and three categories of models: analytical, numerical
and reduced order models. The most accurate model proved to be the analytical 1D
model reduced with the vector fitting (VF) technique. In [11] the error is computed
using a weighted norm, where the weights associated to frequencies are extracted
from the spectrum of the standard neuronal signal. This error is suitable to estimate
the global accuracy of neuronal signals, since in the typical neuronal spectrum the
low frequency components are much more significant than the high frequency ones.
The accuracy of the current reduction method is compared with the results in [11].

For the simulation of the saltatory conduction in a whole axon, the internodes
were replaced in [4] with the differential equation macromodel extracted from VF,
so the equivalent circuit had many controlled sources. This is acceptable when there
is no constraint on the reduced circuit, but in some environments dedicated to neu-
ronal simulations, such as NEURON [6], one can only create a circuit with no con-
trolled sources (or a small amount of controlled sources, modeled using Op-Amps)
and with positive parameters. In this work we synthesize the reduced system into an
equivalent circuit with only positive RLCs and no controlled sources (we call this
circuit ECi+). We now start from the numerical model, discretizing the transmission
line into several segments, each being minimally modeled with lumped parameters
(Fig. 2). The resulting circuit is a long network of RC sections having resistive
parameters describing longitudinal electrical conduction phenomena through axo-
plasm, and capacitive and transverse conductive effects through the cell membrane.

This particular model of a myelinated compartment, as a chain of RC cells, is
suitable for port-based network modeling, more precisely in the port-Hamiltonian
framework. Port-Hamiltonian (pH) systems are widely used in modeling, analysis
and control of (multi-)physical systems [16]. Extensive research is done on model
order reduction with preservation of properties and/or port-Hamiltonian structure
for linear [1], [12] and nonlinear systems [7], [15]. Among these techniques, the
time-domain moment-matching procedure is an efficient tool [2], [12]. The reduced
model is obtained by constructing a lower degree rational function that approximates
the given transfer function and matches it at various interpolation points in the com-
plex plane. This formulation is preferred to the direct reduction of the number of
cells of the segmented numerical model, which already is a reduced model.
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Fig. 2 The segmented model of an internode, a network of RC cells. The companion circuit is
generated by the spatial discretization with centered differences of the transmission line equation.

2 Port-Hamiltonian formulation and reduction

The pH representation is based on the energy state space, which represents a nat-
ural state space for the equations composing the mathematical models of physical
systems. The Hamiltonian gives the total stored energy of the system, whereas the
system has boundary ports to interact with the environment, through the exchange
of energy. The mathematical representation of a pH system is:{

ẋ = (J−R)∇xH(x)+Bu(t)
y = BT∇xH(x)

(1)

where x ∈Rn is the state vector; H : Rn→ [0,∞] is continuously differentiable – the
Hamiltonian, describing the internal energy of the system as a function of state; J =
−JT ∈Rn×n is the structure matrix (skew-symmetric) describing the interconnection
of energy storage elements in the system; R = RT ≥ 0 is the dissipation matrix
describing the energy loss in the system; and B∈Rn×m is the port matrix describing
how energy enters and exits the system through the m terminals.

Our approach is based on describing the myelinated compartment in Fig. 2 as a
pH system (1) and reducing the overall model with structure-preserving moment-
matching. We start from the circuit description of the original model (a SPICE
netlist) and generate the pH form of this system. Next, the system is reduced by
moment-matching. Finally, the equivalent reduced circuit is synthesized from the
state-space representation of the reduced system.

We consider the network in Fig 2 as a 2x2 system with input u =
[

u1(t)
R1

i2(t)
]T

and output y = [V1(t) u2(t)]
T. The state space vector consists of the charges of

the capacitors x = [q1,q2, . . . ,qn]
T, thus its derivative ẋ = [iC1 , iC2 , . . . , iCn ]

T is com-
posed of the currents through the capacitors. The Hamiltonian is defined as H(x) =
1
2 ∑

n
k=1

1
Ck

q2
k =

1
2 xTQx and its derivative with respect to the state variables is a vector

of voltages: ∇xH(x) = [uC1 ,uC2 , . . . ,uCn ]
T = Qx.

In this formulation, Q is a diagonal matrix Q = diag
(

1
Ck

)
, the structure matrix

J = 0 and the dissipative matrix R is tridiagonal, having on line k the elements− 1
Rk

,

1
Rk

+ 1
Rk+1

+Gk and − 1
Rk

. The port matrix is B =

[
1 0 . . . 0
0 . . . 0 1

]T

.
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3 System reduction

The reduction is based on a moment-matching technique, part of the family of in-
terpolatory methods [2]. A system described by the state matrices (A,B,C) has the
transfer function K(s) = C(sI−A)−1B, K : C→ C. Consider a point in the com-
plex plane that is not in the spectrum of A. The k-order moment of the system with
the transfer function K at s∗ ∈ C−σ(A) is defined as:

ηk(s∗) =
(−1)k

k!

[
dkK(s)

dsk

]
s=s∗

. (2)

For a fixed point s∗, a reduced-order system described by the transfer function
K̂ with the corresponding moments η̂k(s∗) matches the first n∗ moments of K if
ηk(s∗) = η̂k(s∗),k = 1,n∗, which in fact means it matches the coefficients of n∗

terms of the Taylor expansion of K [9]. The selection of the interpolation points is
important. Whereas selecting n∗ moments at a fixed s∗ may improve the approxi-
mation accuracy, selecting s1, . . . ,sr points for a reduced order r and matching the
0-order moments at these points better preserves input-output behaviours. Custom-
ary, s = 0 is chosen to preserve the step response of the given system.

For SISO systems the interpolation conditions are enforced pointwise, but in
the MIMO case – where K(s) is a m×m matrix-valued rational function – full
matrix interpolation would translate into m×m conditions at every interpolation
point s∗. This would result in an actual larger order of the reduced system than the
initially imposed r. Instead we only interpolate along certain directions bk (”right
tangential interpolation”). This relaxed notion of interpolation is adequate for an
optimal approximation [5]. For an imposed reduced order r we compute the matrix

ΠΠΠ =
[
(s1I−A)−1Bb1 (s2I−A)−1Bb2 . . . (srI−A)−1Bbr

]
where the vectors b1,b2, . . . ,br represent the tangential directions of interpolation.

Since the interpolation points sk and the tangential directions bk are dependent
on the reduced model, we use an iterative process to correct the interpolation points
and tangential directions until the interpolation conditions are met [7] .

The reduced matrices are computed as in [12]:

Jr =ΠΠΠ
TQJQΠΠΠ Qr =

(
ΠΠΠ

TQΠΠΠ
)−1

Rr =ΠΠΠ
TQRQΠΠΠ Br =ΠΠΠ

TQB
and they are used to construct the reduced system in the port-Hamiltonian form:{

ẋr = (Jr−Rr)Qrxr +Bru(t)
y = BT

r Qrxr
. (3)

Such reduced order system matches the 0-order moments of the original sys-
tem at the chosen interpolation points [13]. The reduction procedure is structure-
preserving, in the sense that the reduced system is still in the port-Hamiltonian form,
but the matrices have lost some of their properties, for instance Qr is not diagonal
anymore, Rr is not tridiagonal, but is still symmetric and positive definite, Br is now
likely full.
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Fig. 3 The circuit realization
T scheme for a 2×2 system.
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4 Synthesis of equivalent reduced circuit

There is extensive research on circuit realization of systems, either by direct inter-
pretation of the mathematical model or from the state-space form or the system’s
transfer function [17]. However, in most approaches the resulting circuit is not guar-
anteed to contain only physically-meaningful elements, due to the presence of neg-
ative R, L or C elements or it has a large number of controlled sources.

The transfer function of the reduced system is actually a 2×2 symmetrical ma-
trix of impedances. A possible circuit realization for this is a star (Fig. 3), where
the impedances of the subcircuits result directly from either the transfer function
components or the state-space matrices of the reduced system.

Each impedance ZT0, ZT1 and ZT2 can be realized through a pole-residue decom-
position as the sum of the impedances of r cells connected in series, each composed
of a capacitor in parallel with a conductance: Zxx = ∑

r
k=1 1/(Cks+Gk).

The standard general state-space representation of the reduced system (3) is:{
Cẋr =−Gxr +Bu(t)
y = Exr

.

The reduced states are the capacitors’ voltages in the reduced circuit. To simplify
realization, each state should be involved in only one equation. To that end, matrices
C and G are diagonalized to allow the equations to be separated. Their diagonaliza-
tion impacts the matrices B and E, which become full (likely already the case here).
In the reduced system this would translate into the circuit as controlled sources. To
avoid that, the two matrices are scaled so that all their values are either 1 or -1 and
consequently the outputs will be algebraic sums of all the states.

The computations lead to the following relations for the components Zxx, where
ckk and gkk (k = 1,r) are the diagonal values of C and G (after diagonalization) and
the denominator actually represents the scaling of B and E:

ZT0 :

{
Ck =

ckk
e1kbk2

Gk =
gkk

e1kbk2

ZT1 :

{
Ck =

ckk
e1k(bk1−bk2)

Gk =
gkk

e1k(bk1−bk2)

ZT2 :

{
Ck =

ckk
e2k(bk2−bk1)

Gk =
gkk

e2k(bk2−bk1)
.

In theory the capacitance Ck and the conductance Gk of a cell may have any sign.
But the CG pair signs differ only by the signs of the diagonal values of the matrices
C and G. Here C is the identity matrix, so clearly positive definite. G is a diagonal
matrix that comes from the original system matrix RQ, which is positive definite.
Since the reduction procedure guarantees passivity, it will preserve the definiteness
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Fig. 4 Synthesis of a component Zxx of order 3. (Left): The circuit with positive and negative
CG pairs, y = V(1). (Right): The circuit split into the ”positive” and ”negative” subcircuits, y =
V(1+)−V(1−) extracted as the voltage of a null current source that connects the two subcircuits.
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Fig. 5 The frequency responses of the original (50 cells) and reduced (order 5) systems.

of the system matrix. Hence G has only positive values on the diagonal. This means
that for every cell, Ck and Gk are either both positive or both negative.

Consider the synthesized circuit of Zxx as in Fig. 4 (left), where the first two cells
have positive values and the third has negative values. In Fig. 4 (right) the circuit
is split into the ”positive” and the ”negative” contributions [17]. For the negative
subcircuit the signs for both Ck and Gk are reversed and the same excitation is used
for both subcircuits. The initial circuit has the same output y = V(1) as the circuit
after splitting, computed as the difference of two voltages y = V(1+)−V(1−).

5 Results and Conclusions

Figure 5 shows the frequency responses of the two components of the original (50
cells) and reduced (order 5) systems. The response of the transfer component (1,2)
is very far from the original system’s, but the values are so small that this graph is
in fact not relevant accuracy-wise, because the reduction procedure has an implicit
minimization of the H2 norm. This is proved by almost identical step responses.
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Fig. 6 (Left): The relative error vs. the order of the reduced model for pH and VF methods;
errrel =

∫ fM
fm w( f )

∥∥Zorig( f )−Zred( f )
∥∥

2 d f/Z0, frequency f ∈ [ fm, fM ] = [100,107] Hz, logarith-
mically spaced, w( f ) is the weight function, Z0 is the d.c. impedance of the line [11]. (Right): The
reproduced output of the reduced circuit (order 3) built in NEURON.

Fig. 7 The ECi+ circuit extracted from the reduced system of order 3 and reproduced in NEURON.
The output is [V(l1p)−V(l1m);V(r3p)−V(r2m)].

The relative error is under 2% even for order 1 and is comparable with the one
obtained with vector fitting (Fig. 6 left) with the adaptive frequency sampling (AFS)
procedure described in [8].

The reduced circuit of order 3 is built in NEURON (Fig. 7) and the output is
reproduced in Fig. 6 (right). The input is a rectangular pulse in the left (i1 = I1p =
I1m) and open-circuit in the right (i2 = I2p = I2m = 0). The corresponding outputs
copy the shape of the input and the relative difference between the corresponding
peaks of the original circuit (50 cells) and the reduced one is between 2% and 3%.

This paper uses a structure-preserving reduction method for pH systems to re-
duce a myelinated compartment in the model of a neuron. The automatic procedure
starts from the netlist of the original model and generates its port-Hamiltonian form.
The pH system is reduced using an interpolatory method through moment-matching,
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resulting in a reduced system that is still port-Hamiltonian, therefore preserving the
passivity and the stability of the original model. The relative error is acceptable even
for order 1 (less than 2%). This procedure allows for a trade-off between a good ap-
proximation error and the desired structure preservation. The choice of interpolation
points is a degree of freedom to be used for potentially improved accuracy in the
moment matching reduction. The state-space representation of the reduced system
is subsequently synthesized into an equivalent circuit with no controlled sources and
only positive RLCs (a ECi+ circuit). This circuit can be used in neuronal simulators
such as NEURON and further integrated into larger models. The current method
will further prove beneficial for the reduction of the entire myelinated axon, with
the nonlinear HH model of a Ranvier node included.
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