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Abstract
The paper presents a hierarchical series of computational models for myelinated axonal compartments. Three classes of
models are considered, either with distributed parameters (2.5D EQS–ElectroQuasi Static, 1D TL-Transmission Lines) or
with lumped parameters (0D). They are systematically analyzed with both analytical and numerical approaches, the main
goal being to identify the best procedure for order reduction of each case. An appropriate error estimator is proposed in order
to assess the accuracy of the models. This is the foundation of a procedure able to find the simplest reduced model having
an imposed precision. The most computationally efficient model from the three geometries proved to be the analytical 1D
one, which is able to have accuracy less than 0.1%. By order reduction with vector fitting, a finite model is generated with
a relative difference of 10−4 for order 5. The dynamical models thus extracted allow an efficient simulation of neurons and,
consequently, of neuronal circuits. In such situations, the linear models of the myelinated compartments coupled with the
dynamical, non-linear models of the Ranvier nodes, neuronal body (soma) and dendritic tree give global reduced models.
In order to ease the simulation of large-scale neuronal systems, the sub-models at each level, including those of myelinated
compartments should have the lowest possible order. The presented procedure is a first step in achieving simulations of
neural systems with accuracy control.

Keywords Neuron · Axon · Myelination · Dynamical model · Reduced order models · Accuracy control · EQS field ·
Analytical approach · Modal analysis · Numerical methods · FEM · FIT · BEM · FDM · Cable model · Neuronal circuits

1 Introduction

1.1 Myelinated axons

Myelination is an essential process in the formation of the
nervous system. It begins before birth and continues until
adolescence, resulting in increased neuronal performance,
primarily in the transfer of neural signals along axons.
Myelination consists of wrapping axons with an electri-
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cally insulating layer, built by a series of glial cells (called
Schwann cells). These cells have a lamellar shape and spiral
wrap around the axons (Fig. 1), being composed of myelin,
a protein-rich fat substance with good insulating properties.
The space between two myelinated sections is called a Ranvier
node. Having a high density of ion channels, these nodes
are essential in regenerating the neuronal signal, previously
attenuated during the transmission along myelinated com-
partments. The electrical phenomena occurring are linear
in the myelinated sections and nonlinear in the Ranvier
nodes. The neuronal signal transmitted along the myelinated
axons seems to jump from node to node, a phenomenon
called saltatory conduction. Among the first papers describ-
ing the saltatory conduction, Huxley and Stämpeli (1949)
also presents how the characteristic parameters of the nerve
fiber can be experimentally determined.

Although many consider the delay of internodal trans-
mission negligible to the delay of signal reconditioning in
the Ranvier nodes, it has been concluded that things are
not exactly so (Villapecellı́n-Cid et al. 2004). The main
objective of our study is the modeling in an accurate man-
ner of the signal transmission between two Ranvier nodes
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Fig. 1 The structure of myelinated axon (The Nervous System 2017)

through the myelinated section. The extraction of small size
models with acceptable accuracy is essential for the sim-
ulation of saltatory conduction and consequently for the
efficient simulation of impulse neural circuits, which are
very complex circuits in the central and peripheral nervous
system. In order to extract precise mathematical models of
myelinated compartments, an exact knowledge of their mor-
phology and material characteristics is necessary, as well
as the complete understanding of the physico-chemical and
bio-physiological phenomena that take place inside them.

1.2 Classification of neuronal models

The modeling of neurons and neuronal collections with
high accuracy, by capturing the essential aspects of their
functioning, and their efficient simulation have become
central issues in neuroscience. These topics are presented in
monographs of theoretical neuroscience (Izhikevich 2007;
Keener and Sneyd 2010; Graham et al. 2011), in manuals
of software simulators dedicated to neural systems (Bower
and Beeman 1998; Carnevale and Hines 2006), or in
articles describing various aspects such as: new neuronal
models (Rattay et al. 2013), measurement of characteristic
parameters (Van Geit et al. 2008), computational simulation
methods (Moore et al. 1975).

The diversity of neural models reflects the complexity
of the underlying problem of theoretical neuroscience. The
models have various forms: mathematical models described
with ordinary or partial derivative equations; electrical models
described as systems or electrical circuits with lumped or dis-
tributed parameters. Any of them may be linear or nonlinear.

In the linear case, the equations can be represented in the
frequency domain by applying suitable integral transforma-
tions (such as Fourier or Laplace) which allow the definition
of transfer functions (called circuit functions in an electrical
model, e.g. impedance, admittance, hybrid matrix), which
greatly facilitate the study (Timotin 2004).

The complexity of a compact model is defined by
its order, which is the number of state variables of
the state equations. The models with lumped parameters,
described by ODEs have a finite order, whereas models
with distributed parameters, described by PDEs and
transcendental transfer functions, have an infinite dimension
of the state space. The model is represented as a dynamic
input-output system, and it can be with a single input
and a single output (SISO), such as transmission models
for axons and dendrites, or multiple inputs and multiple
outputs (MIMO), e.g. the ones used in the study of neurons
with tree-like dendrites and axons. In order to describe the
behavior of a multi-terminal model, the circuits theory can
be used, to derive hybrid transfer matrices whose meanings
depend on the way each terminal is controlled, either in
current or in voltage. If the model is linear, the system
representation can be the standard state space system of
equations, with the matrices: A, B, C and D. This approach
is suitable since the transmission of neural signals occurs
unidirectionally. Since a typical neuron has an average of
10,000 synapses, it is obvious that the order reduction of its
models should be made by preserving its tree-like structure.
In particular, synapses, dendrites and axons are treated
as SISO-type systems, whereas soma is MISO (multiple-
inputs, single-output) and the axonal tree is SIMO (single-
input, multiple-outputs). Otherwise, if the neuron would
be treated as a MIMO system, it would result in tens of
millions of input-output connections, whose descriptions
would require important computing resources, even if they
had a low order.

The simplest models are therefore those of neuronal
signal transmission through axon or dendrite sections,
RC models of minimal order, having lumped parameters
describing longitudinal electrical conduction phenomena
through axoplasm, and capacitive and transverse conductive
effects through the cell membrane. In reality, these
phenomena are distributed, so the precise model is the so-
called “cable model”, described by 1D PDEs of parabolic
type (Lindsay et al. 1999). A common reduction method for
these 1D models consists of segmenting the studied section
into several compartments, each being minimally modeled
with lumped parameters. Typically this modeling uses 5-
10 compartments (Moore et al. 1978), so the global model
called “behavioral” has the same number of capacitors
included in the equivalent circuit.

Another category of models takes into account the
electrochemical phenomena that occur in the ion channels
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distributed in the cell membrane and which are active
and nonlinear by excellence. The reference model in this
category is Hodgkin-Huxley (HH) (Hodgkin and Huxley
1952), in which the dependence between the membrane
current and the transmembrane voltage is described by
four nonlinear ordinary differential equations, in which one
describes a linear capacitive effect, having as state quantity
the membrane voltage, and the other three describe the
degree of ion channels opening. Since it does not contain
any spatial variables to describe a spatial distribution,
we say that this model is lumped, of 0D type. The
simplified modeling of the membrane has received an
intense scientific attention, so that there are several non-
linear 0D models, of which the most commonly used are:
FitzHugh – Nagumo (FN) (1966), Frankenhaeuser – Huxley
(FH) (1964), Izhikevich (Iz) (2003). These models can be
regarded as low-order approximations of the HH model,
and are preferred in theoretical studies, precisely because of
their relative simplicity.

For the modeling of axons, the 1D model of myelinated
parts are linked to nonlinear 0D models of Ranvier nodes,
resulting in non-linear PDEs (Keener and Sneyd 2010).
This combination, in which the myelinated compartments
are segmented and replaced with the simplest model, is
the standard approach currently used to simulate saltatory
conduction (Fitzhugh 1962; Rattay et al. 2013; Brown
and Hamann 2014). This idea is implemented in most
neural simulators (GENESIS, NEURON, etc.) (Bower and
Beeman 1998; Carnevale and Hines 2006).

Other complicated models are reported in the literature,
describing various morphological or structural details of
neurons, such as the transition regions between Ranvier
nodes and the axon body, called paranodes and juxtanodes
(Brown and Hamann 2014; Ganapathy and Clark 1987) or
the layered structure of myelin (Stephanova 2001), or the
space between the neuron and this layer or between the
layers (Young 2015).

Further development of these models is done by
considering the spatial structure of neurons but also of
the extracellular distribution of potential, which means
the development of either 2D or 3D models. A first step
is modeling the tree structures (Lindsay et al. 1999).
For example, in Struijk et al. (1992), the spinal neurons
and their collateral deviations are studied, considering the
distribution of the extacellular potential estimated with
finite differences. The extracellular potential distribution is
also studied in Kuokkanen (2012), Joucla et al. (2014), and
Parasuram et al. (2016). This distribution is important from
several points of view: the interpretation of measurements
made with electrodes placed in the extracellular space,
the effect of partial demyelination and remyelination on
the extracellular potential, the effect of stimulation by
extracellular electrodes on the potential of action, as well as

for proper boundary conditions for our study. The problem
of a non-myelinated active conducting fiber found in an
infinite conducting homogeneous environment in which
the scalar electric potential is harmonic is addressed in
Clark and Plonsey (1966). The longitudinal component
of the internal and external current was determined
from the solution of the Laplace equation written in
cylindrical coordinates using Bessel functions integrals.
The extracellular potential and the current generated by a
myelinated active fiber placed in a conductive medium is
computed in Ganapathy and Clark (1987). The distribution
of transmembrane voltage is determined as a solution of the
Laplace equation in cylindrical coordinates. The distribution
of the potential expressed as an integral of Bessel functions
results after imposing the boundary conditions.

By combining the tree-like axon and dendrite models
with the model of neuronal cell body (soma), the multi-
terminal model of a single neuron is obtained. The next
major step in neural system modeling is the study of
neuronal collectivities. This step involves the modeling
of synapses (Morrison et al. 2008; Keener and Sneyd
2010; Graupner and Brunel 2010). But as the number of
simulated neurons grows, the problem becomes more and
more difficult to solve, so it requires the use of a superior
level of abstraction of single neuron behavior. This is
why new theories were developed, such as artificial neural
circuits (ANN), (Gurney 1997; Haykin 1999) and spiking
neural networks (SNN), Maass (1997) and Paugam-Moisy
and Bohte (2012). The goal is to model neural systems
with the complexity of those found in the human brain.
Simulations of networks with 16.7 million neurons with 4
billion synapses were performed (Digicortex 2017). If we
only refer to the myelinated compartments, their number,
virtually equal to that of the Ranvier nodes, is according to
Brain Facts and Figures (2017) of 1011 only in brain.

Without a multiscale approach, where shifting from one
level to another is done through a severe reduction of the
order, it is not possible to address the problem of brain
modeling (Robinson et al. 2005). This is the context, but
also the explanation for the importance given to order
reduction of myelinated compartments studied in this paper.

The following sections describe in a systematic way our
study referring to the 2.5D models (Section 2), 1D models
(Section 3) and 0D models (Section 4) of the myelinated
compartments without Ranvier nodes. Each section presents
one analytical and various numerical and model reduction
approaches. In Section 6 the obtained results are discussed
and compared so that an answer to the following questions
can be given: 1) For an imposed order and model type (2.5D,
1D, 0D), which reduction method is the most accurate? 2)
For an imposed error and model type, what method is able
to reduce the model to the smallest order and what is this
order? The answer to the second question is essential for the
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Fig. 2 The myelinated axon; up:
simplified geometrical model;
down: circuit mapping

continuation of this research, in which our goal will be to
connect the linear models of the myelinated compartments
with the nonlinear models of the Ranvier nodes.

2 Axisymmetric (2.5D) models

2.1 Conceptual 2.5Dmodel

The conceptual modeling of the axon starts from the
simplified geometrical model shown in Fig. 2, from which
the model of a cylindrical myelinated compartment is
extracted (Fig. 3). The model is described by the following
geometrical parameters: the cytoplasm radius – a, the outer
radius of the compartment – b, the length of the myelinated
compartment – L. A reference test case, with the following
values is considered: a = 7 μm; b = 10 μm; L =
0.25λ0 or λ0 or 4λ0, λ0 = 223 μm; σ1 = 1.0824 S/m; σ2 =
2.04·10−4 S/m; ε = 15.44·ε0. The model is analyzed in the
frequency range fm ≤ f ≤ fM , with the limits fm = 103

Hz, and fM = 107 Hz.
By carrying out a dimensional analysis of the material

constants σ , ε, μ, the following characteristic times of the
electromagnetic phenomena can be defined (Rapetti and
Rousseaux 2014):

– τe = ε/σ , the relaxation time of the charge and thus of
the electric field in a conductor;

– τm = μσL2, the diffusion time of the current and thus
of the magnetic field in a conductor;

– τem = L/c, having c2 = 1/(εμ), τ 2
em = τeτm, the

time in which an electromagnetic wave with velocity c

travels along the length L.

If we use the characteristic time τ (defined as duration,
period, or time constant) to describe the speed of the
analyzed phenomena, then it is possible to distinguish
between rapid and slow EM field regimes. By considering
the minimal and maximal values of the five characteristic
parameters (σ , ε, μ, L, τ ), we generated the map of
EM field regimes function of characteristic times. The
map indicates that the cytoplasm is operating in the
ElectroConduction (EC) region, whereas the membrane has
to be modeled with ElectroQuasiStatic (EQS) field.

2.2 Mathematical 2.5Dmodel

In both domains of the compartment model the electric field
is irrotational and thus an electric scalar potential can be
defined. Due to the axial symmetry of the domain, this
potential depends only on two spatial coordinates, the radius
r and the axial position x. We will denote by V1 the potential
that corresponds to the cytoplasm and by V2 the potential
that corresponds to the membrane:

V (r, x) =
{

V1, for 0 < r < a.
V2, for a < r < b.

Fig. 3 Simplified geometrical
model of the myelinated
compartment
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The field equations in the two sub-domains are:

EC :
⎧⎨
⎩

divJ = 0
curlE = 0 ⇒ E = −gradV1 ⇒ �V1 = 0
J = σ1E.

(1)

EQS :

⎧⎪⎪⎨
⎪⎪⎩

divJ = −∂ρ/∂t

divD = ρ

curlE = 0 ⇒ E = −gradV2 ⇒ �V2 = 0
J = σ2E,D = εE,

where ρ is a generalized function of space. Therefore,
�V2(s) = 0 in each subdomain, but not on the entire
computing domain since on the discontinuity surface r = a

the following interface conditions are met:

V1(a, x, t) = V2(a, x, t) ⇒ V1(a, x, s) = V2(a, x, s);
σ1

∂V1

∂n
= (σ2 + εs)

∂V2

∂n
. (2)

The solution V (x, r, t) for 0 < x < L, 0 < r < b, 0 <

t < tmax satisfies mixed boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V (0, r, t) = V1, 0 < r < a;
V (L, r, t) = V2, 0 < r < a;
V (x, b, t) = 0, 0 < x < L;
dV (0, r, t)/dn = 0, a < r < b;
dV (L, r, t)/dn = 0, a < r < b

and V (x, r, 0) = 0.

(3)

In reality, due to the ion pumps, in resting state (which
in the formulation above would affect the initial condition)
the potential has non-null value V0 = −70 mV. We
carried out the study for variations of the potential from
this state of equilibrium, so the obtained dynamical system
to be modeled and reduced is linear and not affine. These
boundary conditions define a linear multipolar Electric
Circuit Element (ECE, Ioan and Munteanu 1999) with
distributed parameters, with three terminals, one being the
ground and the other two voltage-controlled. Its dynamic
behavior is fully described by the symmetrical matrix of
operational admittances Y, which has only two independent
elements: the input admittance Y11(s) = Y22(s) and
the transfer admittance Y12(s) = Y21(s), both complex
functions of complex frequency s:

I(s) = Y(s)V(s),

with I(s) =
[

I1

I2

]
;V(s) =

[
V1

V2

]
;Y(s) =

[
Y11 Y12

Y21 Y22

]
.

Here the input signals are the Laplace transforms of
the terminals’ potentials: V1(s) = L[V (0, 0, t)], V2(s) =
L[V (L, 0, t)] and the output signals are the terminal’s
currents: I1(s) = L[I1(t)], I2(s) = L[I2(t)].

2.3 Analytical 2.5Dmodel

If the boundary conditions are slightly modified, so that on
x = 0 and x = L Neumann boundary conditions are set:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV
dx

∣∣∣
x=0

= I1(t)

πa2σ1
, 0 < r < a;

dV
dx

∣∣∣
x=L

= I2(t)

πa2σ1
, 0 < r < a;

V (x, b, t) = 0, 0 < x < L;
dV
dx

∣∣∣
x=0

= 0, a < r < b;
dV
dx

∣∣∣
x=L

= 0, a < r < b;
V (x, r, 0) = 0,

the solution can be analytically determined, using the
separation of variables. This change introduces a modeling
error, due to the assumption that the current is uniformly
distributed on each terminal, and therefore the terminal
is no longer strictly equipotential. In reality, it is very
likely that neither the potential nor the current density
be perfectly constant on the terminal. The simplifying
hypothesis of ignoring the radial variation of the current,
which allows the derivation of an analytical solution, is
acceptable, as this variation is expected to be small. The
obtained radial variation of the potential can be used to
compute an error estimator for the analytical method applied
to this model called “non-ECE” in what follows. Since is
excited in current, it will be characterized by an impedance
matrix Z = Y−1. The input impedance Z11 of the near
terminal is computed as the ratio between the central
potential V (0, 0, s) and the injected current I1(s) under the
assumption that the current of the far end terminal is null.
The transfer impedance Z21 is the ratio of the potential at
the center of the far end terminal V (L, 0, s) and the current
I1(s) injected into the near terminal, under the condition that
the far end terminal current is null (I2 = 0).

According to the proof in the Appendix it results that the
potential has the following values in the electrodes centers:

V1=V (0, 0)=
m∑

k=1

Fk

λk th(λkL)
R(0)= I1

πa

m∑
k=1

J1(λka)
B2

k

C2
k

‖λkRk‖2th(λkL)
(4)

V2=V (0, L)=
m∑

k=1

Fk

λksh(λkL)
R(0)= I1

πa

m∑
k=1

J1(λka)
B2

k

C2
k

‖λkRk‖2sh(λkL)
(5)

where m = 200 and Fk are the Fourier coefficients in
the Fourier-Bessel series expansion of ∂V

∂x

∣∣
x=0, λ is the

separation constant, R(r) is decomposing V (r, x) together
with X(x), J1 represents the first order Bessel function of
the first kind, Bk and Ck are integration constants.

They define the element’s impedances Z11 = V1/I1

and Z12 = V2/I1. The radial variation of the potential
on the near electrode is shown in Fig. 4. This variation is
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Fig. 4 The radial variation of
the potential at x = 0, computed
analytically and numerically
(FIT and FEM)

relatively negligible ε∞ = εm = (V (0, 0)−V (a, 0))/V1 =
(1.66537 − 1.66493)/1.66537 = 2.6 · 10−4 = 0.026%.

The computational estimation of the analytical value is
not affected only by this error but also by the method error
of truncating the series and its approximation with a finite
sum. Numerical tests show that the series (5) corresponding
to the far end electrode has an exponential convergence,
much faster than that corresponding to the near electrode
(4). Table 1 shows the partial sums and the last term added to
the sum of the analytical computation of potential V (0, 0).
We note that even from the first term six significant digits
are correct, and the fourth term adds another significant
digit. The truncation error (computed as εt = |Vm|/V1,
where Vm is the mth term added to the truncated sum) is so
small εt = V4/V1 = 6.13 · 10−6 � εm, that the error of
the analytical method εa = εm + εt is given by the method
error. Therefore, the summation of more than 2 terms in the
series is useless, since the gain in accuracy is covered by the
method error.

2.4 Numerical 2.5Dmodel

The EC field problem was solved with an in-house Finite
Integration Technique (FIT) code developed in MATLAB

Table 1 The convergence of the series for impedance Z11, in bold the
significant digits

m Partial sum Last term added

1 1.6653661913809199e+6 1.6653661913809199e+6

4 1.6653657945109792e+6 7.8181849318044057e+0

10 1.6653659660544212e+6 6.4287806450348339e-1

and with FEM (COMSOL) with three variants of boundary
conditions: ECEv (ECE with voltage controlled equipoten-
tial terminals), ECEc (current controlled equipotential ter-
minals), nonECEc (current controlled terminals, not equipo-
tential, on which Neumann BCs are imposed).

In order to have a relevant comparison we have used for
FIT and FEM the same discretization grid/mesh, regular
and orthogonal, with quadrilateral FEM cells. Both FIT
and FEM give in the case of the nonECEc boundary
conditions very similar results with the analytical solution,
as shown in Fig. 4, where the three curves overlap, which
validates both numerical methods. The relative difference
of V (0, 0) of FEM from the analytical solution is 5 ·
10−7. The values extracted from the ECE field problem
have six significant digits common to those extracted
from the nonECE field problem, which shows that the
nonECE method error compared to ECE is even lower than
εm = 0.026% estimated in the previous paragraph. The
advantage of numerical methods is that they also allow the
problem solving with ECE BCs. The difference between
FIT and FEM solutions is as small as in the case of
the nonECEc BCs. The two Dirichlet boundary conditions
ECEv and ECEc give almost identical results, with 10
identical decimals for FEM, and 12 for FIT, respectively,
which shows as expected that the excitation type (voltage or
current) is not relevant in the ECE models.

The final results of the FIT and FEM numerical
models were obtained by using component-wise Richardson
extrapolation, of the results obtained for two discretization
steps (0.5 μm and 1 μm). The errors obtained lead us to
consider the Richardson extrapolation for FEM as reference
for computing the method errors (Table 2).
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Table 2 Extrapolated values of conductances matrices (Y11 and Y12) in d.c., for FIT and FEM, with 3 BCs

GFEM-extrapolated ECEv ECEc nonECEc

G11 = Y11(0) 3.055380119410954e-6 3.055380119435735e-6 3.055379595174662e-6

G12 = Y12(0) −2.955775083424355e-6 −2.955775083450317e-6 −2.955775163682430e-6

GFIT-extrapolated

G11 = Y11(0) 3.055380366776102e-6 3.055380366775098e-6 3.055620224050163e-6

G12 = Y12(0) −2.955775284972939e-6 −2.955775284973135e-6 −2.956014815660698e-6

Rel. diff. between extrap. values ‖GFIT − GFEM‖/‖GFEM‖ ‖GFIT − GFEM‖/‖GFEM‖ ‖GFIT − GFEM‖/‖GFEM‖
G = Y(0) 7.4680e-8 7.4686e-8 7.9980e-5

The relative error is approximated by an expression of
type c · hp, where c and p are constants that describe
the convergence rate and h is the discretization step.
Considering two levels of mesh refinement, each halving
the step h comparing to the precedent, the convergence rate
p was derived. Table 3 holds the approximated constants
c and p for FIT and FEM, with two different boundary
conditions, ECE and nonECE. We can see that both FIT
and FEM have a quadratic convergence order, FEM in the
case of ECE having a relative error lower than FIT with
about 2 orders of magnitude. In theory, quadratic FEM
should have a higher convergence rate, but in practice it is
limited because the boundary condition is not smooth at all
being a non-continuous function (Jin 2015). Consequently,
the reference values for the extracted circuit functions were
given by the Richardson extrapolation of the FEM solution,
for p = 2. The resulted values seem to have at least 8 exact
significant figures. A better reference value may be obtained
by using FEM with an adaptive mesh refinement.

Details on numerical solution with FEM The two subdo-
mains with axial symmetry have rectangular shape in
the coordinates (r, x) and start from radius eps: D1 =
(eps, a) × (0, L); D2 = (a, b) × (0, L). They were meshed
with a regular grid of squares with a step of 0.5 μm. For the
axon radius of b = 10 μm, the radial mesh has (nxa+nxb-
1) = 15+7-1 = 21 nodes and for longitudinal length L =
0.25 · λ0 = 215 μm/4 = 54 μm, the mesh has nx = 109
nodes, so a total of n = 2289 nodes. The mesh contains 2230
quadrilateral elements and 2 × 2289 − 109 − 21 = 4448
edges. In FEM, the base functions (also known as trial func-
tions) for potential are second-order Lagrange polynomials,

Table 3 The values of the constants c and p

errrel = c · hp ECE(v or c) nonECE (c)

FIT c = 4535e+3 c = 2.96e+14

p = 1.95 p = 2.96

FEM c = 39e+3 c = 14067e+3

p = 2.00 p = 2.11

making each cell to have 9 degrees of freedom associ-
ated with the four vertices, edges’ centers and cell center.
The weak form of the equation solved is as follows: find
v ∈ HD = {v ∈ L2(D)|∇v ∈ [L2(D)]3, v(SD) = fD},
where D = D1 ∪ D2. The affine Sobolev space, satisfying
Dirichlet BC, so that:

a(v, u) = 2π

∫
D

J · ErdA

=
∫ b

0

∫ L

0
(σ + εs)(∇v · ∇u)rdxdr

is null for any u having Dirichlet null BC. The number of
DOFs is 9837, about four times larger than the number of
nodes, as we expected. The use of second order elements
makes the solution more precise than in the case of the
first order, where the number of unknowns is the number
of floating nodes (i.e. the inner ones plus those on the
Neumann boundary, so that those with essential boundary
conditions (Dirichlet) with known potential are excluded.
The boundary conditions are as follows: null Dirichlet for
r = b, r < a and x = L, non-null Dirichlet of value
V0 = 1 for r < a and x = 0 (essential), null Neumann
in rest (natural). The system of linear algebraic equations

Fig. 5 Contour plots of the electric potential (FEM). The scales on the
axis are not equal
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Fig. 6 The variation of the potential at the surface of the computing
domain (FEM). The 3D image is obtained by rotating the 2D solution

obtained from a(u, v) = 0 by replacing u and v with their
expansion in trial functions was solved with the direct solver
MUMPS – MUltifrontal Massively Parallel Sparse direct
Solver in 5 sec on a two-core MacOS system. The solution
is graphically represented in Figs. 5 and 6.

The EQS analysis in the frequency range [1 kHz,
10 MHz] gives the frequency characteristics shown in Fig. 7.

Details on numerical solution with FIT The computing
domain has been discretized with a mesh similar to that used
in FEM. In stationary d.c. mode, each cell (r1, r2)× (z1, z2)

contributes to the equations system with four conductances,
placed on its four edges, having the expressions:⎧⎪⎪⎨
⎪⎪⎩

Gr1 = πσ((r1+�r1)
2−r2

1 )

2�z

Gr2 = πσ(r2
2 −(r2−�r2)

2)

2�z
for axial oriented

Gz1 = Gz2 = πσ�z
ln(r2/r1)

for radial oriented

(6)

where the cell dimensions are: �z = z2 − z1; �r = r2 − r1;
�r1 = �r2 = �r/2; Gz1 = Gz2 = 0, if r1 = 0.

The simplest implementation method in MATLAB uses
the nodal technique to write the equations of this resistive
electric circuit: (AGAT)V = J, where A is the edges-nodes
incidence matrix, G is the diagonal matrix of conductances
(6) and J is the array of injected currents into nodes.
The code is executed extremely fast since it does not
contain for loops, but makes use of sparse matrices. The
implementation is simplified if the nodes are numbered
systematically from 1 to N, for example starting along the
axis and then similarly for increasing radius, so that going
through the nodes i = 1 : nr−1 and j = 1 : nz−1, all cells
k = (i − 1)nz + j are covered. If the edges are numbered
in agreement with the nodes, for example the axial ones
having double indices (2k) than the initial node (k) and
the radial ones an uneven index (2k + 1), a total of 2N

edges is obtained. Thus virtual edges are introduced on one

side of the boundary, which are removed eventually. They
correspond to null columns in matrix A. By splitting the
node set into those floating, with unknown potentials (V1)
and those placed on the Dirichlet boundary, with known
potentials (V2) and considering the corresponding split of
nodal conductances matrix:{
G11V1 + G11V2 = J1
G21V1 + G22V2 = 0

⇒ G11V1 = J1 − G11V2 (7)

leads to the system of linear equations that is solved
to determine the unknown potentials (V1). Actually, this
technique is also used in FEM to handle essential boundary
conditions.

Under nonECEc boundary conditions, the injected
current on the terminal is known, so the vector J is no longer
null. The current injected into a circular crown between two
successive nodes can be assigned to the initial node (case v1
in Fig. 8), to the final node (case v2), or the current injected
into the node is calculated using the dual network edges as in
dFIT (Ioan et al. 2006) (option 3). The results are presented
comparatively in Fig. 8. The two alternatives 1 and 2 are
bounds for the correct distribution, but the best numerical
solution is obtained using the final version based on a dual
network.

The EQS analysis requires minimal changes of the
MATLAB code, namely the cell conductances G are
replaced with their admittances, which are obtained by
simply replacing the membrane conductivity σ2 with σ2 +
jωε. The results now depend on the frequency, and their
representation in Fig. 7 overlaps those obtained with FEM,
which validates both numerical methods FEM and FIT, in
the case of ECE boundary conditions. The FEM solution is
more accurate, but the computational effort is higher, since
the system has four times more equations. To overcome
this drawback, the dFIT approach can be used (Ioan et al.
2006), in which the unknowns are not only the potentials
in nodes but also those in the center of the cells. The
number of unknowns doubles, but the advantage is that two
independent systems, each with n equations, are separately
solved in parallel or sequentially for the two sets of
potentials. Moreover, the two solutions realize a bracketing
of the exact solution, allowing the control of the numerical
computing error, since their difference is an upper bound of
that error.

The EQS analysis needed a solving time of around 1.42
sec on a two-core MacOS system and used 1.604 MB of
memory. There were 10 frequency samples computed, each
one was solved with the direct solver UMFPACK, under
Matlab.

This model is based on the assumption that the myeli-
nated compartment can be represented by an equivalent
perfectly symmetrical cylinder with constant radius. How-
ever, the cross-sectional profile of the axon may present
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Fig. 7 The variation of Y11 and
Y12 with frequency (FIT and
FEM)

asymmetries (Halter and Clark 1991). A thorough analysis
of asymmetries is not the object of this paper. It is expected
that mild asymmetries of axons can be approximated with
equivalent symmetrical axons. For this, an elliptic cylinder
was considered, with the semimajor axis a2 and semiminor
axis a1 preserving the initial cross-section area πa2 (in the
symmetrical model a1 = a2 = a) as in Fig. 9. The anal-
ysis of the relative error between the asymmetrical model
Gasym and the symmetrical one Gsym with respect to the
degree of eccentricity defined as a2/a1 (Fig. 10) shows a
low influence of the asymmetry to the model’s accuracy.

2.5 Order reduction of 2.5Dmodels

In order to obtain simpler models valid for a large range
of frequencies, methods such as VF Vector Fitting (VF)
may be used (Gustavsen and Semlyen 1999). VF is a data-
oriented reduction method, which searches for a rational
approximation of the frequency characteristic given as a set
of samples.

The order of the reduced system is imposed by the user
and the result represents the best approximation of that
order. Starting from a set of Ns circuit matrices H = {H1,
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Fig. 8 Electrical potential of the
far end electrode for various
implementations of the nonECE
boundary conditions

H2, ...,HNs } of size p×p (in our case p = 2 and the matrices
are positive defined and symmetrical), representing the
admittances corresponding to the frequencies s = [s1, s2,

..., sNs ] with sk = j2πfk , it is aimed to iteratively determine
the parameters of the rational matrix function in s:

Y(s) = D + sE +
q∑

k=1

Rk

s − pk

, (8)

which approximates the data. It has q poles pk , with
residues Rk which are symmetrical complex matrices of
dimension p×p and the real symmetrical matrices D and E
of the same size. Using the data from the Ns = 10 frequency

Fig. 9 The asymmetrical FEM model, as an elliptic cylinder

samples represented in Fig. 7, reduced models of orders
q = 1, 2, 3, ..., 9 were successively retrieved.

Figure 11 shows the relative errors of the reduced 2.5D
model (with admittances Y11 and Y12) with VF, for different
line lengths and different orders q. Errors less than 10−10

are obtained for orders ranging from 4 to 8. For practical
applications a order q = 3÷5 provides acceptable accuracy.
For example, for q = 3 and L = 2.5λ0, the three poles of
the reduced model are p1 = −2.25 · 108, p2 = −2.30 · 107,
p3 = −4.26 · 106 and the zeros are z1 = −2.61 · 107,
z2 = −4.42 · 106. The real and negative values of the poles
guarantee the stability and non-oscillating character of the
reduced model. The conductance G11 = 0.782 · 10−6 of the
reduced model has a deviation of 0.2% from the d.c. value
of Y11(s).

3 Cable (1D) model

In this model the radial variation of the solution is neglected,
so the potential V (x, t) is dependent only of the axial
position x and time t . This 1D spatial variation leads
to the simplification of the potential equation, leading
to the equations of the transmission lines (TLs), this
model being also named the “cable model”. This model is
characterized by the per unit length (p.u.l.) parameters: r –
longitudinal resistance, c – transversal line capacitance and
g – transversal line conductance:

r = 1/(σ1πa2); (9)

c = ε2π/ ln(b/a); (10)

g = σ22π/ ln(b/a), (11)
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Fig. 10 Relative error vs. degree
of eccentricity of the
asymmetrical model. EC case,
L = λ0, solved with FEM, error
defined as
‖Gasym − Gsym‖/‖Gsym‖

Fig. 11 The relative errors of
the reduced model (Y11 and Y12)
with vector fitting

Fig. 12 Mapping the
geometrical model with a
segmented line circuit model
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which have in this test case the following values: r =
6 GΩ/m, c = 2.4 nF/m, g = 3.59 mS/m.

The geometrical 1D model mapped with a segmented line
circuit model having length �x is shown in Fig. 12. In this
circuit the voltage source E = V0 = −70 mV is considered
to describe the effect of ion channels (Niebur 2008).

By applying the Kirchhoff’s laws and considering �x →
0, the first order PDE system is obtained:

− ∂i(x, t)

∂x
= g(V (x, t) − V0) + c

∂V (x, t)

∂t
; (12)

−∂V (x, t)

∂x
= ri(x, t), (13)

which leads to the second order PDE for potential:

∂2V (x, t)

∂x2
= rg(V (x, t) − V0) + rc

∂V (x, t)

∂t
, (14)

with V (x, 0) = V0, V (0, t) = V1(t), V (L, t) = V2(t).
Introducing the characteristic time τ = c/g = 0.67 μs

and the characteristic length λ0 = 1/
√

rg = 215 μm,
Eq. (14) becomes:

τ
∂V (x, t)

∂t
− λ2

0
∂2V (x, t)

∂x2
= V0 − V (x, t). (15)

This diffusion equation of parabolic type (similar to
the heat equation) can be obtained also as a consequence
of the EC-EQS field equations: charge conservation,
electromagnetic induction law and material equations in 1D
geometric assumption. The second order ODE of potential
in the frequency domain is obtained through Laplace
transform:

−λ2
0
∂2V(x, s)

∂x2
+ (1 + τs)V(x, s) = V0

s
+ τV(x, 0), (16)

in which s = jω, with ω = 2πf for the harmonic regime,
at frequency f .

The characteristic time gives information about the
system’s major time constant, and the characteristic length
shows the length above which the attenuation begins to
have significant values. Our studies (Bărbulescu et al. 2016)
have shown that the maximum line length of a myelinated
compartment for which the neuronal signal is able to trigger
the action potential is:

Lmax = λ0argcosh

(
Vmax − V0

Vt − V0

)
∼= 2.58λ0,

where Vmax = 30 mV is the maximum value of the neuronal
signal, V0 = −70 mV is the equilibrium potential and
Vt = −55 mV is the threshold potential.

According to the literature, the typical length of a
myelinated compartment is between 1 ÷ 2.5 mm. This
corresponds to an optimal length of about 100 times larger

than the external diameter of an axon (Fitzhugh 1962;
Goldman and Albus 1968):

Lopt = (1 ÷ 2.5) · 10−3 < Lmax
∼= 2.58λ0

⇒ λ0 >
(1 ÷ 2.5)

2.58
mm = (0.4 ÷ 1) mm. (17)

This means that the characteristic length should be larger
than 0.4 mm. In our test case it is equal to 0.215 mm, but
this value can be easily doubled if the parameters r and g

are doubled (by modifying the material parameters σ1 and
σ2 within the acceptable ranges).

3.1 Analytical 1Dmodel

Considering a line having the length L as a two-port, excited
in terminal voltages, the global dynamic admittance matrix
is extracted, after solving (14) with zero initial conditions
(Ciuprina et al. 2015):

Y(s) =
[

Y11 Y12

Y21 Y22

]
=

[
ch(γL)

ZCsh(γL)
− 1

ZCsh(γL)

− 1
ZCsh(γL)

ch(γL)
ZCsh(γL)

]
; (18)

[
I(0, s)

I(L, s)

]
=

[
Y11 Y12

Y21 Y22

] [
V(0, s) − V0/s

V(L, s) − V0/s

]
. (19)

The characteristic line parameters γ = √
r(g + sc) =√

1 + τs/λ0 and ZC = √
r/(g + sc) = 1/(gλ0

√
1 + τs)

do not depend on the line length. In the static regime (s =
0), γ = √

rg = 4.64 · 103 m−1 and ZC = Z0 = √
r/g =

1/(gλ0) = 1.29 M
.
The linear model described by these complex admit-

tances has an equivalent circuit with an infinite number of
capacitances and resistances. Voltage sources having e.m.f.
E = V0 have to be connected in series with the input ports
to satisfy (16). Table 4 contains the asymptotic values of
admittances vs. frequency.

The frequency characteristics of the 1D model Y11(f ) =
|Y11(jω)|, Y12(f ) = |Y12(jω)|, ω = 2πf , for two lengths:
L = λ0/4 and L = 2.5λ0, are shown in Fig. 13. The dotted
lines are the reference values, extracted from the numerical
2.5D FEM model. The two models give similar results over
the entire frequency range.

The two circuit functions Y11 and especially Y12

determine the voltage attenuation factor of the transmitted

Table 4 The asymptotic limits for Y11 and Y12

L Y11, Y12 for f → 0 Y11, Y12 for f → ∞

L → 0 Y11 → ∞, Y12 → ∞ ∞, ∞
L = λ0 Y11 = th(1)/Z0, Y12 = 1/Z0 ∞, 0

L → ∞ Y11 = 1/Z0, Y12 → 0 Y11 → ∞, Y12 → 0
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Fig. 13 The frequency
characteristics, Y11(f ), Y12(f )

for L = λ0/4 (top) and
L = 2.5λ0 (bottom), computed
with Eq. (18)

signal, which is the system’s transfer function when the
output terminal has a null current:

I(L, s) = Y21(s)V(0, s) + Y22(s)V(L, s) = 0 ⇒
Av(s) = V(L, s)

V(0, s)
= −Y21(s)

Y22(s)
= 1

ch(
√

1 + sτL/λ0)
.

In stationary regime, the signal attenuation is A0 =
Av(0) = 1/ch(L/λ0). The system acts as a low-pass

filter, with Av(s)
s→∞−−−→ 0 and an infinity of poles sk , all

real and negative and satisfying the relation: skτ + 1 =

((k − 1/2)πλ0/L)2, the first being essential. The small
length compartment does not attenuate the input voltage in
stationary regime, Y11 and Y12 being practically equal. As
expected, the attenuation is higher for larger line lengths, six
times higher for L = 2.5λ0 than for short line.

Low frequency errors are very different from errors
computed at high frequencies. Under these conditions,
the global error estimate by the classical method gives
completely irrelevant results. Therefore it is necessary to
define the error differently. The typical neuronal signal has
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Table 5 The relative errors of the analytical 1D model

Length L εrel[%], Y11 εrel[%], Y12

L = λ0/4 0.079 0.09

L = λ0 0.055 0.027

L = 2.5λ0 0.057 0.003

a spectrum in which the low frequency components are
much more significant than the high frequency ones. In
order to correctly quantify the error, a weighted norm w(f ),
adequately defined is proposed (Stoica et al. 2005):

‖Y‖w
∼=

∫ fM

fm

w(f )‖Y(f )‖2df ∼=
M∑

k=0

w(fk)‖Y(fk)‖2�fk .

Here ‖Y‖2 is the Euclidian norm of the matrix Y and the
weight w(f ) is computed from the spectrum w′(f ) of the
standard neuronal signal s(t):

w′(f ) =
∣∣∣∣
∫ ∞

0
s(t)e−j2πf tdt

∣∣∣∣
∼= tmax

N

∣∣∣∣∣
N∑

k=0

s (ktmax/N) e−j2πf ktmax/N

∣∣∣∣∣ ;

W =
∫ ∞

0
w′(f )df ∼=

∫ fM

fm

w′(f )df ∼=
M∑

k=0

w′(fk)�fk .

Thus the normalized weight w(fk) = w′(fk)/W has a
unitary integral. Considering the weighted norm, the global
error is defined as:

εrel = Z0 ‖Y1D − Y2.5D‖w , (20)

where Z0 = 1/(gλ0) is the d.c. characteristic impedance of
the line.

Table 5 contains the relative errors between the 1D
model and the reference 2.5D FEM model for Y11 and Y12,
computed with Eq. (20) for 10 frequencies between fm and
fM , for different line lengths.

The general conclusion is that the 1D “cable model”
correctly describes the transmission of the neuronal signal
through the myelinated compartment, having numerical
deviations from the field model of under 0.1%, even smaller
for optimal lengths of real compartments (which is larger
than the characteristic length). Consequently, if a better
accuracy is required, the cable model is not acceptable and
2.5D field models should be used, but for the most practical
cases this accuracy is acceptable.

3.2 Order reduction by series truncation
of the analytical 1Dmodel

The hyperbolic functions which compose the analytical
model can be expanded in different infinite series and
products (Abramowitz et al. 1988):

1

sh(z)
= 1∑∞

k=0
z2k+1

(2k+1)!
= 1

z
+ 2z

∞∑
k=1

(−1)k

z2 + α2
k

= 1

z
∏∞

k=1

(
1 +

(
z
αk

)2
) , αk = kπ; (21)

cth(z) =
∑∞

k=0
z2k

(2k)!∑∞
k=0

z2k+1

(2k+1)!
= 1

z
+ 2z

∞∑
k=1

1

z2 + α2
k

=
∏∞

k=1

(
1 +

(
z
βk

)2
)

z
∏∞

k=1

(
1 +

(
z
αk

)2
) , βk = (2k − 1)π/2. (22)

The first way of expressing the hyperbolic functions in
Eqs. 21 and 22 is a series of powers (Taylor-Padé for the
numerator and denominator), the second is a series of simple
fractions, and the last is a product of poles and zeros.
Consequently, this model has an infinite divergent sequence
of poles, distributed in an arithmetic progression on the
negative semi-axis, the zeros being intercalated in-between
the poles. We should notice that αk are exactly the proper
values of the spatial operator of the transmission equation,
so they represent the modal characteristics of this equation.

Different reduced models – characterized by rational
functions – are obtained by truncating these series to q

terms. The first q poles of these functions have the smallest
absolute value and they represent the most relevant poles
of the original function. The truncation of the power series
modifies the position of the poles, possibly generating
complex poles, as it happens very early in the test case, for
q = 3. The big advantage of these reducing approaches is
that the reduced model is natively parametric. For example,
reducing with simple fractions gives:

Y11(s)=cth(γL)

ZC

∼=gλ2
0

L

(
1+2

q∑
k=1

sτ + 1

sτ + 1 + (αkλ0/L)2

)
.

Unfortunately, the truncation in simple fractions of Y12

has a very slow convergence; therefore it is preferable
to use Taylor-Padé or infinite product truncation for this
circuit function. Besides the methods presented above,
there is also the possibility to use continuous fractions
expansion (authentic Padé) (Lozier 2003), which ensures
moments’ conservation and is expected to have the fastest
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Fig. 14 Relative error of the 1D
cable model reduced by series
truncation vs. order of the
reduced model, L = 2.5λ0

convergence. In our test case, this method gave best results
(minimal errors) for order 10, but for order 3 the errors were
between Taylor-Padé and simple fractions.

For the line lengths of interest, truncating the series of
powers and truncating the infinite products proved to be the
best reducing methods. The latter may be because truncating

Table 6 The relative errors of
the reduced analytical 1D
model vs. its order, Y11 and Y12

Length L εrel[%] εrel[%] εrel[%]
q = 1 q = 3 q = 10

Y11

λ0/4, simple fractions 4.81 2.11 0.71

λ0, simple fractions 18.83 8.45 2.84

2.5λ0, simple fractions 40.61 20.52 7.09

λ0/4, Taylor-Padé 0.36 1.68e-4 1.2e-13

λ0, Taylor-Padé 9.13 1.04 8.28e-9

2.5λ0, Taylor-Padé 31.62 7.85 0.05

λ0/4, truncated products 1.11 0.18 0.018

λ0, truncated products 7.82 1.39 0.14

2.5λ0,truncated products 24.57 7.00 0.81

Y12

λ0/4, simple fractions 1.32 0.28 0.03

λ0, simple fractions 5.04 1.14 0.13

2.5λ0, simple fractions 9.11 2.64 0.33

λ0/4, Taylor-Padé 0.09 2.08e-5 1.4e-13

λ0, Taylor-Padé 1.71 0.073 1.85e-10

2.5λ0, Taylor-Padé 3.34 0.096 5.18e-5

λ0/4, truncated products 2.38 1.04 0.35

λ0, truncated products 7.35 3.19 1.06

2.5λ0,truncated products 8.15 3.30 1.05
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Fig. 15 The equivalent circuit of
the numerical 1D model

the infinite products takes into account both poles and zeros
of original transfer functions. It balances both perspectives:
current and voltage excitation. Figure 14 shows the way the
relative error varies with the order of the reduced model, for
different methods and L = 2.5λ0.

Table 6 shows the relative errors of the reduced models
(Y11 and Y12, obtained by simple fractions, Taylor-Padé
truncation and product truncation) for different line lengths
and different orders (q), considering the analytical 1D
model as reference.

With simple fractions reduction, Y12 has small relative
errors, of less than 3% for large line and order 3. However,
the deviations of Y11 for lengths of interest such as 2.5λ0

are much larger, of about 40% for order 1 and 20% for
order 3. With Taylor-Padé reduction, both Y11 and Y12 have
small relative errors, of 8% and 0.1% respectively, for large
line and order 3. However, the deviation of Y11 for lengths
of interest – such as 2.5λ0 – at order 1 is still quite large,
of 31%. With product truncation reduction, Y11 has the
smallest deviation at order 1, of less than 25%. For larger
orders, the deviations of both Y11 and Y12 are similar and
relatively small, but larger than the relative errors obtained
with Taylor-Padé.

Therefore, the Taylor-Padé method gives the best
approximation:

Y11(s) = gλ0
1 + ∑q

k=1
(L/λ0)

2k(1+sτ )k

(2k)!
L/λ0 + ∑q

k=1
(L/λ0)

2k+1(1+sτ )k

(2k+1)!
;

Y12(s) = gλ0
1

L/λ0 + ∑q

k=1
(L/λ0)

2k+1(1+sτ )k

(2k+1)!
,

excepting Y11, for order 4-7 where truncated products give
better results.

For example, for q = 4 and L = 2.5λ0, the four
poles of the reduced model with truncated products are
p1 = −3.85 · 106, p2 = −1.09 · 107, p3 = −2.27 · 107,
p4 = −3.92 · 107 and the zeros are z1 = −2.08 · 106,
z2 = −6.79 · 106, z3 = −1.62 · 107, z4 = −3.03 · 107,
whereas G11 has a deviation of 0.35% from the d.c. value of
admittance Y11(s).

3.3 Numerical 1Dmodel: reduction by segmentation

Solving the Eq. (15) numerically implies the discretization
of the interval 0 < x < L in a grid with q nodes (plus the

Fig. 16 Relative difference of
potential from the exact value
vs. the discretization step of the
spatial network, in the stationary
case
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peripheral ones, indexed 0 and q + 1), which are assumed
to be spaced with the step h = �x. By finite centered
differences, a system of q ODEs is obtained:

Vk−1(t) − 2Vk(t) + Vk+1(t)

�x2
= 1

λ2
0

(Vk(t)−V0) + τ

λ2
0

dVk(t)

dt

k = 1, .., q; �x2

λ2
0

=rg�x2=RG, �x2 τ

λ2
0

=rc�x2=RC,

withR = r�x, G = g�x, C = c�x,

which after Laplace transform becomes:

− 1

R
Vk−1(t)+

(
2

R
+G+sC

)
Vk(t)− 1

R
Vk+1(t)=GV0.

These are actually the nodal equations of the circuit
in Fig. 15, with V0 = 0 and we will call this approach
“reduction by segmentation”. This circuit has q capacitors,
so it is a linear circuit with q state variables.

Figure 16 shows the dependence of the relative error
on the spatial step, theoretical (red) and experimental –
calculated as the relative difference between the exact
solution and the numerical solution in the stationary case.
The numerical method has the order of convergence one
if the Neumann condition at x = L is discretized with
regressive finite differences of order 1 (magenta), whereas
if discretized with regressive finite differences of order 2
(blue), the method has the order of convergence two.

Having null internal sources (V0 = 0) and controlling the
terminals with Vk = E = 1V , for k = 0 and Vq+1 = 0,
the admittances are extracted by solving the linear system
of nodal equations, from which only the first and the last
potential are of interest: Y11 = Y22 = (E − V1)/R and
Y12 = Y21 = Vq/R, numerically equal with the terminal
currents. Table 7 shows the relative errors computed with
Eq. (20) of the numerical models with 1, 3, 10, 100 segments
for different orders (q), considering the analytical model
(18) as reference, in the case of L = 2.5λ0.

Table 8 shows the relative errors of the numerical model
at fm and fM for different line lengths and different orders
(q), considering the analytical 1D model as reference.

Table 7 The global relative errors of the numerical 1D model for
L = 2.5λ0, with respect to the analytical 1D model

εrel[%] q = 1 q = 3 q = 10 q = 100

Y11 73.39 43.17 16.68 1.83

Y12 24.83 2.75 0.25 1.96e-03

Table 8 The local relative errors of the numerical 1D model at fm and
fM

L εrel[%], q=3 εrel[%], q=10 εrel[%], q=100

at fm at fM at fm at fM at fm at fM

λ0/4 25.1 24.7 9.13 8.63 0.99 0.93

λ0 26.8 66.7 9.75 27.8 1.06 3.1

2.5λ0 32.5 81.5 11.5 61.8 1.22 7.78

Second order finite centered differences have the order of
error (De Sterck and Ullrich 2009):

|Ek| = |Vk − Uk| ≤ (λ0h)2

12
= (L/λ0)

2

12q2
,

c4 = max
0<x<L

(∣∣∣∣∂
4V

∂x4

∣∣∣∣
)

≤ 1

λ4
0

,

quadratic to the discretization step. It is therefore expected
that as q increases, the error decays inversely proportional
to its square.

3.4 Order reduction of numerical 1Dmodel

The numerical solving of the TL equation implicitly reduces
the order, from infinite (the system order before meshing)
to a finite number q. This technique of reducing the
order is very widespread in the literature, and there are
recommendations for choosing the value 5÷10 for q (Moore
et al. 1978). We are no aware of any credible study referring
the error induced by this choice. However it is clear that the
reduction by segmentation does not necessarily lead to an
optimal result for a given order. We will find that smaller
errors can be obtained for the same order if we reduce the
state system of the circuit with n segments to a system with
q � n state variables. The equivalent circuit with refined
segmentation has the state equations:

d

dt

⎡
⎢⎢⎢⎣

V1
..
..
..
Vn

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

.. .. .. .. ..

.. −2 − RG 1 0 ..

.. 1 −2 − RG 1 ..

.. 0 1 −2 − RG ..

.. .. .. .. ..

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

V1
..
..
..
Vq

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1
0
..
..
0

⎤
⎥⎥⎥⎦

E

R

⇔ dv
dt

= Av + Be; v ∈ R
n×1,A ∈ R

n×n;B ∈ R
n×1.

The potentials V1 and Vn are output signals, whereas E

is the input signal of the system. This state system may be
reduced by different model order reduction techniques, such
as Heres (2005), Antoulas et al. (2001), and Panzer (2014):

– Balanced truncation
Balanced truncation (BT) has the most solid

theoretical foundation. It is a projection method, based
on the calculation of observability and controllability
matrices of the system. Consequently, the cost of this
method is relatively high, but the result is of optimal
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quality, ensuring accuracy control for the reduced
model (MATLAB 2015a).

The Bode diagrams of the 100-segments system
and the characteristics of the reduced systems using
balanced truncation to orders from 1 to 10 tend to
close in as the q order rises. The poles and zeros of
the reduced model of order 3 have the values: z1 =
−405.54 · 106, p1 = −69.66 · 106; z2 = −10.13 · 106,
p2 = −9.66 · 106; p3 = −2.21 · 106, real, negative and
alternate, and G11 = 0.812 · 10−6 has a deviation of
4.91% from the d.c. value of admittance Y(s).

The model error drops below 1% only for orders
q > 6, whereas for q = 3 it is about 10%, values
about three times smaller than for the model obtained
by simple segmentation.

– Krylov Subspace (projection) methods
In this class of methods, the state equations of

large systems are reduced by projection on a Krylov
subspace. They are considered to be among the best
methods for order reduction from a quality – cost
(computing effort) ratio point of view (Salimbahrami
and Lohmann 2002; Berljafa and Güttel 2014).

The model reduced with this method from the
state system with 100 degrees of freedom to q =
2, 4, 6, 8, 10 has the frequency characteristics practi-
cally overlayed with the full model, starting from q =
4. The errors are comparable with those obtained with
the BT method, slightly smaller for q = 4 but larger
for q = 10. In particular, the poles and zeros of the
4th order reduced system: p1 = −3055.81 · 106; p2 =
−73.27 · 106; p3 = −12 · 106; p4 = −3.85 · 106;
z1 = −5119.28 · 106; z2 = −357.91 · 106; z3 =
−4.57 ·106 show the stable character of this model, and
G11 = 0.781 · 10−6 is deviated by 0.85% from the d.c.
value of admittance Y(s).

– Proper Orthogonal Decomposition (POD)
We used an in-house POD code based on Mat-

lab’s singular value decomposition method (MATLAB
2015b).

A standard neuronal signal was used as training
excitation and the snapshots matrix contains solution
values in m = 100 spatial nodes for N = 100 time
samples.

The snapshots were generated with an in-house
program based on BTCS integration (implicit backward
finite difference in time, centered differences in space).
The responses of the full system and the reduced
one virtually overlap from order 3. For Y11, the
approximation is quite accurate, whereas for Y12, the
characteristic of the full system is concave, whereas for
the reduced system is convex. The reduced system of
order 3 has the poles: p1 = −38.12 · 106; p2 = −4.14 ·
106; p3 = −1.49 · 106, with much smaller absolute

values than in previous cases, indicating that this model
is slower. The conductance G11 = 0.796 · 10−6 has
a deviation of 2.82% compared to the d.c. value of
admittance Y(s). This method’s error is higher than for
the previous methods.

By comparing the results obtained with the three
reduction methods, we conclude that the most efficient
method for the studied case is the BT method.

4 Equivalent circuits for 0Dmodels

The simplest model of an axon compartment is based on the
lumped parameters:

R = L/(σ1πa2); (23)

C = Lε22π/ln(b/a); (24)

G = Lσ22π/ln(b/a), (25)

extracted from uniform EC field in the cytoplasm and
ES+EC fields in the axisymmetric membrane.

The equivalent circuit with these parameters has two
possible symmetric topologies (Fig. 17): T-type and �-type
circuits, with the admittances matrices:

YT =
[

2R(G+sC)+4
R2(G+sC)+4R

− 4
R2(G+sC)+4R

− 4
R2(G+sC)+4R

2R(G+sC)+4
R2(G+sC)+4R

]
;

Y� =
[

RG+sRC+2
2R

− 1
R

− 1
R

RG+sRC+2
2R

]
.

The advantages of these models lie in their simplicity
and in the fact that they are inherently parametric. Within
the accuracy of the calculation, these models are exact;

Fig. 17 The equivalent circuits of the 0D model; a T-type circuit; b
�-type circuit
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Table 9 The admittance relative errors of 0D minimal order models

εT[%] ε�[%]
local global local global

L at fm at fM Y11 Y12 at fm at fM Y11 Y12

λ0/4 0.5 24.7 3.3 2.9 1.0 38.4 6.2 6.0

λ0 7.5 81.1 19.8 6.1 15.5 271 33.5 19.2

2.5λ0 32.1 91.5 48.7 1.2 73.9 748 114 24.8

therefore their analytical character make their numerical
models alike. Even though the 0D model has large errors, it
is frequently used in practice as reduced order model, due to
its simplicity, even though its error is often not mentioned
(Elmore 1948; Burger 2009). It is the model of order 1 with
the smallest modeling error.

The relative errors of these two models, for 3 values of
compartment lengths and 2 frequencies are given in Table 9,
which contains also the global error for the two components
Y11 and Y12. The lumped parameter models with simpler �

or structures:

have higher global errors for L = 2.5λ0, of 298% for Y11

and 24.8% for Y12 (�) and of 73.3% for Y11 and 24.8% for
.

The data contained in Table 9 shows that this model has
increasingly larger errors as the compartment length grows
or as the frequency grows. The T-scheme behaves better for
longer compartments, which are of practical interest (2.5λ0

is the typical compartment length Bărbulescu et al. 2016),
having a global error of 48.7% for Y11 and 1.2% for Y12. If
a better accuracy is required, higher order models, extracted
by order reduction of 1D models should be used.

5 Simulation of full axons

In order to illustrate the use of linear models previously
extracted for the modeling of myelinated axons with
Ranvier nodes, we simulated the structure in Fig. 2b,
consisting of one myelinated compartment and one Ranvier
node. The model used for the linear myelinated part is
the one which proved to give the best accuracy in our
hierarchy: the 1D analytical model (L = 2.5λ0) reduced

Fig. 18 The electric potential
variation for the coupled model
in three positions: a input of the
linear compartment e(t), b
output of the linear compartment
/ input of the nonlinear block
(Vlin(t)) c output of the
nonlinear block Vnelin(t)
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Fig. 19 The coupling of models in the global axon model is carried out in a circuit simulator. The blocks represent sub-circuits

Fig. 20 The electric potential at
the output of every nonlinear
node for: up) an axon with 3
sections Nx-Lx, no bifurcation;
down) an axon with 2 branches,
first with 3 sections Nx-Lx and
second with one section Nx-Lx.
The quantities are scaled: the
time is in [ms], the potentials are
in [mV] and the current in [nA]
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Table 10 The maximum amplitude and delay of the electric potential with and without bifurcation. The differences are emphasized by the bold
figures

Signal node Peak with bif. Peak without bif. timepeak with bif. timepeak without bif.

[mV] [mV] [ms] [ms]

N1 (4out/4out1) 35.17 36.75 12.098 11.9

N11 (8out/8out1) 33.45 31.04 13.2 12.5

N12 (12out/12out1) 34.5 34.6 13.8 13.12

N1F (16/16f1) 41.33 41.37 13.94 13.26

with VF, described by state space matrices. The Ranvier
node was modeled as a nonlinear HH model (Hodgkin and
Huxley 1952) with the parameters from Simulating action
potential with the Hodgkin-Huxley model (2018), having
V0 = −70 mV as resting potential. The coupling was
performed in Simulink / Matlab. The input signal is modeled
as a difference of two exponentials, and the simulation time
is 20 ms.

Figure 18 shows the variation of the electric potential for
the coupled model at input, output of the linear compatment
/ input of the nonlinear model and at the output of the
nonlinear model. In the absence of the Ranvier node
the signal is strongly diminished as it diffuses along the
myelinated compartment, whereas in the Ranvier node the
signal is regenerated and delayed.

More structures of this kind Nx-Lx can be concatenated
to form a longer myelinated axon, the chain being
completed with a nonlinear bloc (Bărbulescu et al. 2019).

Fig. 21 The heterogeneous structure, section. Top: MYSA region;
middle: FLUT region; bottom: part of STIN region

The global model obtained is nonlinear with reduced linear
parts, therefore to simulate it one has to solve only ODEs
instead of PDEs. This reproduces the phenomenon of
saltatory conduction in myelinated axons for up to 500
sections (Bărbulescu et al. 2018).

The coupling is carried out in a circuit simulator as
shown in Fig. 19. After the first section (N1-L1) we
introduce a bifurcation and excite the left end of the axon
with an impulse current of 20 nA, having a width of 5
ms. We compare the electric potential at the output of
every nonlinear node of the first branch with and without
bifurcation. Note in Fig. 20 that the maximum amplitude
of the N11 signal (8out1) is lower in the presence of the
bifurcation. Furthermore, all the signals of the nodes located
after the bifurcation are more delayed than for a continuous
chain with no bifurcation (signals 8out1, 12out1, 16f1;
considering the time of their peak). Table 10 summarises
these results.

Further discussion is required on the heterogeneous
structures presenting different regions such as paranodal
(MYSA) and juxtaparanodal (FLUT) regions at the begin-
ning and end of the stereotyped, perfectly symmetrical
internode region (STIN), as in Halter and Clark (1991). This
heterogeneous model (Fig. 21) was simulated with FEM,
and frequency characteristics very similar with the ones
in Fig. 7 were obtained. Further, the model was reduced
by vector fitting with a low error as in Fig. 22 (with rel-
ative errors under 1e-4, 1e-6 and 1e-8, for orders 3, 4
and 5 respectively). From the frequency characteristics we
extracted a homogeneous structure by preserving the r and
c line parameters and fitting g and the length by error min-
imization. The homogeneous model is ∼9% longer and its
conductance is ∼20% higher than the STIN model. The new
structure is able to approximate the heterogeneous admit-
tances Y11 and Y12 with errors under 3% (2.71% for Y11

and 2.5% for Y12). We therefore argue that these models can
be approximated with enough accuracy with the behaviour
of a homogeneous structure.
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Table 11 Values of relative method errors for different models (analytical: the reference is extrapolated 2.5D FEM; numerical: the reference is
the analytical model; reduced: the reference is the numerical model)

Size Analytical Numerical Reduced

2.5D 0.026% 7.5 · 10−6% VF: 0.5% for q = 3; 3 · 10−8% for q = 9

1D 0.057% 43% for q = 3; 16% for q = 10 Truncated products: 7% for q = 3; 0.8% for q = 10

BT: 10% for q = 3; 0.1% for q = 10

0D 48.7% (for T-scheme) 48.7% (for T-scheme) 48.7% (for T-scheme)

6 Discussion and conclusions

In this study, the most accurate low-order models of
myelinated compartments were identified. A hierarchical
series of models has been developed, corresponding to
three spatial geometry classes (2.5D, 1D and 0D) and three
computational approaches for each geometry (analytical,
numerical and reduced order models). These models are
hierarchized based on modeling errors, which are closely
related to the complexity of the models.

The errors computed with Eq. (20) for different types
of models of the test problem are summarized in Table 11
(for L = 2.5λ0). The simplest model is the circuit with
lumped parameters (0D), but this model is not very accurate.
The model with distributed parameters (cable model –
1D) is more accurate and was analyzed analytically by
Laplace transformation from time domain to frequency
and numerically with FDM for spatial variation. The order
reduction was performed with several methods, such as:
BT, projection on Krylov subspaces, POD and truncation
of Taylor series or transfer function products. The most
accurate model, the EQS axisymmetric (2.5D) was studied

analytically using the method of variables separation (which
leads to modal decomposition) and numerically with FEM,
FIT and BEM methods – the most common methods used
to solve PDEs. In this case, a data-driven approach (VF),
was applied for order reduction. The numerical studies
conducted show that the cable model (1D) is sufficiently
accurate for practical requirements and it is not worth the
effort to use 2.5D models in simulation.

Figure 22 shows how the relative method errors depend
on the order of the reduced system, for different techniques
of order reduction applied to various models.

The conclusion is that the most efficient reduction is done
by the VF method, for which even for the first order the
error is around 5%, and for orders 3 and 4 the error decays
to 1% and to 0.1% respectively, which is satisfactory in
the vast majority of practical cases. The next best method
is the truncation (products and Taylor-Padé) of the transfer
function (Fig. 22). The segmentation, which is currently the
standard technique, provides results worse with at least two
orders of magnitude.

In conclusion, there are two main contributions of this
paper. First, it provides an answer to the questions: which

Fig. 22 Relative error vs. order
of the reduced model



J Comput Neurosci

reduction method to an imposed order q has the best
accuracy and what is the method able to reduce the model to
the smallest order for an imposed error and what is the value
of this order. Another contribution of the study consists in
identifying how the model error should be defined, in order
to provide a relevant characterization for the simulation of
neuronal functioning. Our study proposes a weighted norm,
suitably chosen for systems that transmit neural signals.

Finding the best low order model for myelinated
compartments is an essential step in the modeling of
neuronal signals transmission along myelinated axons
through saltatory conduction. The 2.5D-FEM model is the
most accurate, but the 1D cable model (in analytical form)
is the most computationally efficient. Since the 1D and
2.5D responses are almost identical, for the modeling of
the myelinated compartments we recommend the use of the
analytical 1D model (18), followed by reduction to order
3 ÷ 4, with vector fitting (VF). The time delay of the neural
signal computed with the extracted model gives the speed of
the signal transfer along the axon (Bărbulescu et al. 2016).
This model allows to accurately determine not only the
transmission speed of the neuronal signal, but also how this
speed depends on geometrical and material parameters. Our
source code is available upon request.

In the mathematical literature many methods of order
reduction are presented and studied, but according to
our knowledge, there is no systematic study referring to
their hierarchy in neuroscience applications, leading to
recommendations on which is the most appropriate method
in a given context, such as the one studied here. Our study
proves that the 1D cable model for axons that can be
approximated with symmetrical geometries, or mild degrees
of asymmetry and non-homogeneity can be as accurate as
3D models.

The methodology and tools developed throughout this
study allow that a further increase of the morphological
complexity which considers the periaxonal space (Gow and
Devaux 2008) can be easily included, either by a small
adaptation of the algorithm in the case of the analytical
method or by a simple preprocessing step in the case of
the numerical method. The impact that this extra current
pathway could have is the subject of our ongoing research.
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Appendix : Derivation of the analytical
(2.5D) model

The equation div(σgradV ) = 0, satisfied by the potential V

in each homogeneous subdomain, has the following form in
cylindrical coordinates:

div (σgradV ) = 1

r

∂

∂r

(
rσ

∂V

∂r

)
+ ∂

∂x

(
σ

∂V

∂x

)
= 0, (26)

where the axial symmetry of the function (i.e. independence
on the azimuthal angle) was taken into account. In each
homogeneous subdomain the potential V is a harmonic
function, a solution of the Laplace equation. According to
the separation of variables method (Ioan 1988), in each
homogeneous subdomain the potential V is assumed to have
the form:

V (x, r) = X(x)R(r). (27)

Substituting Eq. (27) in Eq. (26) it follows that the partial
differential equation can be decomposed into two ordinary
linear differential equations satisfied by the two functions X

and R:

−1

r

(σ rR′)′

σR
= X′′

X
⇒

{
X′′
X

= λ2

− (σ rR′)′
σrR

= λ2,
(28)

where λ is a positive real constant, called constant of
separation.

The solution of the first equation is:

X(x) = A sh(λx) + B ch(λx), (29)

where A and B are integration constants.
In Eq. (28) σ is piecewise constant, (σ1 for 0 < r < a

and σ2 for a < r < b). Therefore, on each homogeneous
subdomain, the function R is the solution of the differential
equation:

r2R′′ + rR′ + λ2r2R = 0,

which is a combination of zero order Bessel functions, with
the following form for the general solution:

R(r) = CJ0(λx) + DY0(λx).

The parameter λ and the integration constants are derived
by imposing the boundary conditions:

• on terminal 2 (x = L, 0 < r < a):

dV

dn

∣∣∣∣
x=L

= 0 ⇒ X(x) = B ′ch(λ(L − x)),

V (0, x) needs to have a finite value, so in the first
subdomain (0 < r < a) D has to be zero and thus:

V (r, x) = CJ0(λx)ch(λ(L − x)). (30)
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After renaming the constants above, the potential has
the general form:

V (r, x) =
{

BJ0(λr)ch(λ(L − x)), 0<r<a,

(CJ0(λr) + DY0(λr))ch(λ(L − x)), a<r<b.

• on the interface r = a:

V1(a, x) = V2(a, x), 0 < x < L

∂V1

∂n

∣∣∣∣
r=a

=β
∂V2

∂n

∣∣∣∣
r=a

, β = σ2 + jωε2

σ1 + jωε1
= σ2

σ1
, for ω = 0.

It follows that:{
D
C

=
(

1−β
β

)
/
(

Y1(λa)
J1(λa)

− 1
β

Y0(λa)
J0(λa)

)
;

B
C

= 1 + D
C

Y0(λa)
J0(λa)

= 1 + (1−β)J1(λa)Y0(λa)
βJ0(λa)Y1(λa)−J1(λa)Y0(λa)

.

• on the boundary r = b:

V (b, x) = 0, ∀x∈[0, L] ⇒ CJ0(λb) + DY0(λb) = 0.

This leads to the eigenvalues equation:

(1 − β)Y0(λb)J0(λa)J1(λa) +
J0(λb)(βY1(λa)J0(λa) − Y0(λa)J1(λa)) = 0,

which has an infinite number of solutions λk, k = 1, 2, ...,
∞ and the general solution of the problem V (r, x) is
obtained by superposition of all possible general forms:

V (r, x)=
{ ∑

k Ck
Bk

Ck
J0(λkr)ch(λk(L − x)), 0 < r < a∑

k Ck(J0(λkr)+Dk

Ck
Y0(λkr))ch(λk(L − x)).

Equivalently:

V (r, x) =
∑

k

CkR(λkr )ch(λk(L − x)),

where R are eigenfunctions given by:

R(λkr) =
{

Bk

Ck
J0(λkr), 0 < r < a

J0(λkr) + Dk

Ck
Y0(λkr). a < r < b

The constant Ck is computed by imposing the Neumann
boundary condition at x = 0:

∂V

∂x

∣∣∣∣
x=0

= f (r),

f (r) = − I1

σπa2
h(a − r) =

{ − I1
σπa2 , r ∈ (0, a)

0, r ∈ (a, b),
(31)

where h is the Heaviside function (unit step). The
function f (r) can be expanded into Fourier-Bessel series of
eigenfunctions:

f (r)=
∞∑

k=1

FkR(λkr )=
∞∑

k=1

CkR(λkr )λksh(λkL), (32)

where the Fourier coefficients Fk of this series result from
the orthogonality property of the eigenfunctions:

<R(λj r), R(λkr)>=
∫ b

0
rσ (r)R(λj r)R(λkr)dr =0, j �= k

In EC regime and with j = k this relation becomes:

‖Rk‖2 = σ1

∫ a

0
r
B2

k

C2
k

J 2
0 (λkr)dr +

σ2

∫ b

a

r(J0(λkr) + Dk

Ck

Y0(λkr))
2dr ⇒

‖Rk‖2 = σ1
B2

k

C2
k

a2

2
(J 2

0 (λka) + J 2
1 (λka))

+σ2
1

2
(b2(J 2

0 (λkb) + J 2
1 (λkb))

−a2(J 2
0 (λka) + J 2

1 (λka)))

+σ2
D2

k

C2
k

1

2
(b2(Y 2

0 (λkb) + Y 2
1 (λkb))

−a2(Y 2
0 (λka) + Y 2

1 (λka)))

+σ2
Dk

Ck

(b2(J0(λkb)Y0(λkb)

+J1(λkb)Y0(λkb)) − a2(J0(λka)Y0(λka)

+J1(λka)Y0(λka))). (33)

The scalar product between R(λkr) and f (r) leads to the
expression of Fk:

< R(λkr), f (r) >= Fk‖Rk‖2 ⇒
Fk= I1

πa2‖Rk‖2

∫ a

0
rR(λkr )dr= I1

πa‖Rk‖2

Bk

Ck

1

λk

J1(λka).

(34)
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