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Summary. Modeling the myelinated axons in a realistic
way, by maintaining the physical meaning of the compo-
nents may lead to complex systems, described by high-
dimensional systems of PDEs. The inclusion of myelinated
axons into larger neuronal circuits requires the generation
of equivalent low-order models that preserve the passiv-
ity and stability of the original models. The axons port-
based network structure makes them suitable to be modeled
as port-Hamiltonian systems. This paper uses a structure-
preserving reduction method for port-Hamiltonian systems
to reduce the global model of a myelinated axon.

1 Models of myelinated axons

A myelinated axon (Fig. 1) consists of myelinated
sections through which the signal is transmitted, which
alternate with Ranvier nodes where the signal is re-
generated (saltatory conduction).

In order to model the transmission of signals through
this chain, the phenomena occurring in the myeli-
nated sections have to be coupled with the phenom-
ena occurring in the Ranvier nodes. This coupling
can be carried out by means of electric terminals de-
fined both for the Ranvier nodes and for the myeli-
nated sections [3], resulting in nonlinear PDEs. Con-
sequently, in order to obtain a reduced model for the
axon, both components (called nodes and internodes)
can be modeled separately.

Fig. 1. The neuronal signal is transmitted along myelinated
axons and regenerated in the Ranvier nodes.

The most popular approach to model the intern-
odes is represented by the ”cable model”, described
by 1D PDEs of parabolic type [5], namely the RC
transmission line equation. A common reduction method
for these models consists of discretizing the line into

several segments, each being minimally modeled with
lumped parameters (Fig. 2). The resulting numeri-
cal model is a network of RC sections having resis-
tive parameters describing longitudinal electrical con-
duction phenomena through axoplasm, and capaci-
tive and transverse conductive effects through the cell
membrane.

Fig. 2. The segmented model of an internode, a network of
RC cells. The companion circuit is generated by the spatial
discretization with centered differences of the transmission
line equation.

2 Reduction of port-Hamiltonian systems

2.1 Port-Hamiltonian systems

This particular model of a myelinated compartment,
described as an interconnection of RC cells is suitable
for port-based network modeling, more precisely in
the port-Hamiltonian framework.

Port-Hamiltonian (pH) systems are widely used
in modeling, analysis and control of (multi-)physical
systems [8], because the representation is based on
the energy state space, which represents a natural state
space for the equations composing the mathematical
models of physical systems.

Port-Hamiltonian systems arise naturally from port-
based network modeling, further having a geomet-
ric structure. The Hamiltonian gives the total stored
energy of the system, whereas port-Hamiltonian sys-
tems have boundary ports to interact with the environ-
ment, through the exchange of energy. The mathemat-
ical representation of a pH system is:{

ẋ = (J−R)∇xH(x)+Bu(t)
y = BT∇xH(x)

(1)



2

where x ∈ Rn is the n-dimensional state vector; H :
Rn → [0,∞] is a scalar-valued vector function (con-
tinuously differentiable) – the Hamiltonian, describ-
ing the internal energy of the system as a function of
state; J =−JT ∈Rn×n is the structure matrix describ-
ing the interconnection of energy storage elements in
the system; R = RT ≥ 0 is the dissipation matrix de-
scribing energy loss in the system; and B ∈ Rn×m is
the port matrix describing how energy enters and exits
the system through the m terminals.

2.2 Moment-matching based reduction of pH
systems

Port-Hamiltonian representations are widely used in
lumped parameter system analysis and control, but
their framework extends to distributed-parameter and
mixed lumped-distributed parameter physical systems.
As is most often the case for these complex systems,
the state space dimension can be very large, so model
reduction is necessary.

Port-Hamiltonian systems exhibit important prop-
erties such as passivity which is relevant for stabil-
ity analysis and they maintain their structure through
composition, meaning an interconnection of port –
Hamiltonian systems is still port-Hamiltonian [7]. Any
reduced order model is expected to retain the proper-
ties and structure of the original model. There is ex-
tensive research done on model order reduction with
preservation of properties and/or port-Hamiltonian struc-
ture for linear [4], [1] and nonlinear systems [2], [6].

Among these techniques, the time-domain moment-
matching procedure represents an efficient tool [4].
The reduced model is obtained by constructing a lower
degree rational function that approximates a given
transfer function (assumed rational). The low degree
rational function matches the given transfer function
at various interpolation points in the complex plane.
In [4] a family of models that achieve moment match-
ing is extracted and from this set only the reduced or-
der model that inherits the port-Hamiltonian form is
selected.

3 Model reduction

Our approach is based on describing the myelinated
compartment in Fig. 2 as a port-Hamiltonian sys-
tem (1) and reduce the overall model with structure-
preserving moment-matching.

We consider the network in Fig 2 as a 2x2 sys-

tem with input u =
[

u1(t)
R1

i2(t)
]T

and output y =

[uc1(t) u2(t)]
T. The state space vector consists of the

charges of the capacitors x= [q1,q2, . . . ,qn]
T, thus the

derivative ẋ = [iC1 , iC2 , . . . , iCn ]
T is composed of the

currents through the capacitors. The Hamiltonian is
defined as:

H(x) =
1
2

n

∑
k=1

1
Ck

q2
k =

1
2

xTQx (2)

and its derivative with respect to the state variables is
a vector of voltages:

∇xH(x) = [uC1 ,uC2 , . . . ,uCn ]
T = Qx. (3)

In this formulation, Q is a diagonal matrix Q =

diag
(

1
Ck

)
, the structure matrix J = 0 and the dissipa-

tive matrix R is a tridiagonal matrix having on line k
the elements − 1

Rk
, 1

Rk
+ 1

Rk+1
+Gk and − 1

Rk
. The port

matrix B =

[
1 0 . . . 0
0 . . . 0 1

]T

.

The efficiency of this reduction will be compared
with the results previously obtained in [3], with the
prospect of using it for the reduction of the nonlinear
global model of a myelinated axon.
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3. Daniel Ioan, Ruxandra Bărbulescu, Luis Miguel Sil-
veira, and Gabriela Ciuprina. Reduced order models of
myelinated axonal compartments. Journal of Computa-
tional Neuroscience, under review.

4. Tudor Corneliu Ionescu and Alessandro Astolfi. Mo-
ment matching for linear port hamiltonian systems. In
2011 50th IEEE Conference on Decision and Control
and European Control Conference, pages 7164–7169.
IEEE, 2011.

5. KA Lindsay, JM Ogden, DM Halliday, and JR Rosen-
berg. An introduction to the principles of neuronal mod-
elling. In Modern techniques in neuroscience research,
pages 213–306. Springer, 1999.

6. Abraham Jan van der Schaft and AJ Van Der Schaft. L2-
gain and passivity techniques in nonlinear control, vol-
ume 2. Springer, 2000.

7. AJ van der Schaft and Rostyslav V Polyuga. Structure-
preserving model reduction of complex physical sys-
tems. In Proceedings of the 48h IEEE Conference on
Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pages 4322–4327. IEEE,
2009.

8. Arjan Van Der Schaft. Port-hamiltonian systems: an in-
troductory survey. In Proceedings of the international
congress of mathematicians, volume 3, pages 1339–
1365. Citeseer, 2006.


