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Poor Man’s TBR: A Simple Model
Reduction Scheme
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Abstract—This paper presents a model reduction algorithm
motivated by a connection between frequency-domain projection
methods and approximation of truncated balanced realizations.
The method is computationally simple to implement, has near-op-
timal error properties, and possesses simple error estimation
and order-control procedures. Usage of the method also enables
straightforward exploitation of information about the particular
application and setting, as well as circuit functional information,
such as frequency weighting information and correlations be-
tween network port waveforms. When such specific information
is available, standard truncated balanced realization algorithms
generate models far from optimal according to statistical decision
criteria. Examples are shown to demonstrate that the method can
outperform the standard order reduction techniques by providing
similar accuracy with lower order models or superior accuracy
for the same size model.

Index Terms—Balanced realization, input correlation, model re-
duction, reduced-order systems.

I. INTRODUCTION

MODEL reduction algorithms are now standard tech-
niques in the integrated circuits community for analysis,

approximation, and simulation of models arising from intercon-
nect and electromagnetic structure analysis. Krylov subspace
projection methods such as Pade-via-Lanczos (PVL) [1] and
passive reduced-order interconnect macromodeling algorithm
(PRIMA) [2] have been the most widely studied over the past
decade. They are very appealing due mostly to their simplicity
and their overall strong performance in terms of efficiency and
accuracy.

However, Krylov projection methods are known to have two
drawbacks in practical application. First, there is no general
agreement on how to control error in these methods. Error esti-
mators do exist for some methods [3], but they are seldom used
in practice. The drawbacks of these estimators are that they re-
quire additional computation, which can be expensive and awk-
ward to implement, and produce error estimates only at single
frequency points, which leaves open the problem of error es-
timation over a range of frequencies. Second, moment-based
methods, such as PRIMA, are known in some cases to produce
models that are “too high” in order with the obvious conse-
quences in terms of analysis or simulation cost [4]–[6]. Mul-
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tipoint rational approximations produce more compact models
than moment matching, but error theory is even less well devel-
oped [7].

An alternate class of model reduction schemes is the trun-
cated balanced realization (TBR) family [8]. These are pur-
ported to produce “nearly optimal” models and have easy to
compute a posteriori error bounds. As the TBR methods are too
expensive to directly apply to integrated circuit problems, var-
ious two-stage and iterative Krylov methods have been proposed
[5], [9]–[13] that combine Krylov subspace projection and TBR.
While these hybrid techniques do a fairly good job of addressing
the excessive order issue, the error-bound properties are weak-
ened. Second, they are awkward in treating nonsymmetric, par-
ticularly very unbalanced systems, when two separate projec-
tion subspaces must be combined. Third, the methods are per-
ceived as being complicated to implement and, so, have not
been widely used in practice. Implementation of the TBR tech-
niques requires considerable machinery from control theory and
multiple numerical procedures that are tricky to implement in a
stable way: solution of Lyapunov equations, balancing transfor-
mations, and/or eigendecompositions of matrix products.

The first main contribution of this paper is to illustrate a direct
connection between two existing algorithms: multipoint rational
approximation techniques and TBR. This connection motivates
a new algorithm PMTBR, whose major attraction is its sim-
plicity. It possesses some of the advantages of both techniques:
the straightforward implementation of the projection methods
and the excellent compaction properties of TBR. As a side ben-
efit, it provides further theoretical basis for the empirically ob-
served excellent performance of multipoint projection. PMTBR
appears to have promising properties with respect to order con-
trol and error estimation, which, while not as powerful as TBR’s
error control, appears to be an advance over multipoint projec-
tion.

The second main contribution of this paper is to illustrate how
algorithmic improvements can be made through the statistical
interpretation [14] of the PMTBR procedure. In this viewpoint,
the TBR procedure can be seen as a special case of a more gen-
eral method that obtains reduced models as a type of maximum
entropy procedure, with the specifics of candidate models deter-
mined by the statistical distribution assumed for the inputs to the
state-space system. TBR corresponds to the limiting case of as-
suming a totally noninformative prior distribution on the inputs.
Utilizing distributions with more information about a particular
problem structure leads to more effective algorithms, and we
will demonstrate two illustrative examples.

The first example addresses one problematic feature of the
TBR approach. While TBR provides strong guarantees on error,
the method is a global one in the frequency domain, with no
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control over allocation of modeling effort to different frequency
bands. Thus, the near-optimal approximation properties of TBR
are only near-optimal for classes of problems rarely encoun-
tered in practical circuit analysis. Various approaches to fre-
quency weighting have been proposed that generally involve
construction and reduction of a composite system by pre- and/or
post-multiplying the original system by auxiliary weighting sys-
tems [15]–[17]. For narrowband applications such as in RF cir-
cuits, construction and merging of such auxiliary systems is
not desirable. Projection methods, on the other hand, can be
easily tuned to generate accurate approximations in any fre-
quency bands of interest, but lack any theoretical guarantees or
error bounds of any kind. As we shall see, the statistical view-
point on the PMTBR algorithm leads directly to a frequency-se-
lective variant of PMTBR.

The second example addresses the problem of reducing sys-
tems with a large number of input/output ports, also known
as massively coupled systems. Such systems typically occur in
substrate and package parasitic networks. Algorithms such as
PRIMA [2] and PVL [1] are considered impractical for such
networks. They rely on block iterations, where the size of the
block equals the number of input/output ports. Therefore, each
block iteration considerably increases the size of the model. For
example, if a moment-matching (Krylov-subspace) algorithm
is used to reduce a network with 1000 ports, and if only two
(block) moments are to be matched at each port, the resulting
model will have 2000 states, and the reduced system matrices
will be dense. This makes simulation in the presence of non-
linear elements impractical. PMTBR is intrinsically somewhat
less sensitive to the number of input ports. Much more impor-
tantly, however, in the PMTBR framework it is possible to ex-
ploit circuit functional information that results in correlations
between the waveforms incident on the parasitic network ports.
By exploiting this information, an input-correlated variant of
the PMTBR procedure can be derived that enables significant
further model order reduction.

This paper is structured as follows. In the next section, we
review background information on model reduction algorithms.
In Section III, we introduce the PMTBR algorithm and describe
how it is used to construct a reduced order model. In Section IV,
we describe the statistical interpretation of PMTBR and explore
its implications with the use of the two examples described
above. In Section V, we discuss some practical issues associ-
ated with the implementation and usage of PMTBR, namely
extension to descriptor systems, order control, simultaneous ap-
proximations to both Gramians, and passivity. In Section VI, we
present experimental results that demonstrate the general prop-
erties of the proposed method as well as the specific example ap-
plications discussed. Finally, in Section VII, some conclusions
are drawn.

II. MODEL REDUCTION BACKGROUND

A. Projection Framework

Many modern interconnect modeling technologies rely
heavily on projection-based model reduction algorithms. For

simplicity of exposition, consider for the moment the restricted
case of linear system models

(1)

with input and output , that are described by the matrices
, , . These algorithms take

as input a linear system of the form (1) and produce a reduced
model

(2)

where , , . This is achieved by
constructing matrices and whose columns span a useful
subspace, and projecting the original equations in the column
spaces of and as

(3)

Most common choices are based on picking the columns of ,
to span a Krylov subspace [1], [2]. Different choices will lead

to different algorithms with slightly different properties but an
overall similar flavor.

B. TBR

Model reduction via balanced truncation is based on the anal-
ysis of the controllability and observability Gramians , re-
spectively. The Gramians are usually computed from the Lya-
punov equations

(4)

(5)

Reduction is performed by projection onto the invariant sub-
spaces associated with the dominant eigenvalues of the product
of Gramians [8], [18]. For example, the approach of [18]
corresponds to the projection procedure above with , the
orthonormal bases arising from the Schur decomposition of the
product of Gramians. One of the important features of TBR is an
absolute bound on the error of approximation. If we let denote
the square root of the th largest eigenvalue of ( always
has real eigenvalues) then the error in the transfer function of the
order TBR approximation is bounded by [19].

C. Multipoint Rational Approximation

An evolution of Krylov-subspace schemes are methods that
construct the projection matrix from a rational, or multipoint,
Krylov subspace [7], [9], [20]. Compared to the single-point
Krylov-subspace projectors, for a given model order the mul-
tipoint approximants tend to be more accurate, but are usu-
ally more expensive to construct. Given , complex frequency
points , a projection matrix may be constructed whose th
column is

(6)

This leads to multipoint rational approximation. Multipoint
projection is known to be an efficient reduction algorithm in
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that the number of columns, which determines the final model
size, is usually small for a given allowable approximation error,
at least compared to pure moment matching approaches. Of
course, there are many practical questions to ponder in an actual
implementation: how many points should be used, and how
should the be chosen? How is error determined? How is
linear independence of the columns of enforced?

Consider enforcing linear independence. An obvious strategy
is to perform an SVD on the vectors computed as above.
A main point of this paper is that constructing projection ma-
trices by multipoint frequency sampling, as in (6), followed by
an SVD, in fact converges to the TBR algorithm. The singular
values obtained from such a procedure approximate the Hankel
singular values, and can thus be used for order and error control.

III. PMTBR APPROACH

A. Analysis in Frequency Domain

For simplicity consider the case , and fur-
ther assume that is stable. This case is of more than theoret-
ical interest as it occurs in RC circuit analysis, and the standard
TBR algorithm is known to produce passive approximants [12].
It is easy to see that in this symmetrized case, both Gramians
are equal and in the standard TBR procedure are obtained by
solving the Lyapunov equation, (4).

The more fundamental definition of the Gramian is ob-
tained from the state evolution operator, also called the funda-
mental solution, of the differential equation .
The Gramian can also be computed in the time domain as

(7)

However, noting that the Laplace transform of is
, it follows immediately from Parseval’s theorem that the

Gramian can also be computed from the expression1

(8)

where superscript denotes Hermitian transpose. Consider
evaluating via applying numerical quadrature to (8). Given a
quadrature scheme with nodes and weights , and defining

(9)

an approximation to can be computed as

(10)

Let be a matrix whose columns are , and a diagonal
matrix with diagonal entries . Equation (10) can
be written more compactly as

(11)

1Or any similar expression integrating along an appropriate contour.

B. Model Construction via SVD

To derive a model reduction procedure, consider the eigende-
composition

(12)

Note that , since is real symmetric in this special
case. An obvious candidate for reduction would be to pick a pro-
jection matrix formed from the columns of corresponding to
the dominant eigenvalues of . If the quadrature rule is accu-
rate, will converge to , which by perturbation analysis of
invariant subspaces [21], implies the dominant eigenspace of
converges to the dominant eigenspace of . Now, consider the
singular value decomposition of .

(13)

with real diagonal, and unitary matrices. Clearly

(14)

So, the dominant singular vectors in , as can be identified
from the singular values in , give the eigenvectors of .
Therefore, converges to the eigenspaces of , and the
Hankel singular values are obtained directly from the entries of

. can then be used as the projection matriz in a model
order reduction scheme.

It seems likely that the singular values of the matrix would
have something to do with approximation error. The above il-
lustrates that the correspondence is in fact precise; the SVD of

reveals the same information revealed by TBR (modulo the
weights ).

An obvious question is: how fast does the proposed scheme
converge. In particular, how fast do the dominant singular
vectors of approach the dominant eigenvectors of ? As
we will demonstrate, it turns out that very good models can
be obtained with a fairly small number of sample points, in
agreement with previous experience with multipoint approxi-
mation. For this reason, we denote our method “Poor Man’s”
TBR (PMTBR), since the quantities computed are cheap ap-
proximations to full TBR.

Surprisingly, as we shall shortly demonstrate, in many prac-
tical applications, PMTBR performs better than TBR in the
sense of giving more accurate models for a given model size
or amount of effort. This unexpected bonus demonstrates the
virtues and rewards of frugality.

The PMTBR algorithm is shown as Algorithm 1 in Fig. 1.
We formulate the approach to allow the sample points to be
arbitrary points in the right half-plane.

C. Computational Complexity

To compare the cost of computing a th order model for a
system with states, using any of the proposed methods, we
begin by quoting the complexity results for the basic operations
involved. For the Krylov-subspace algorithms and PMTBR,
these are either SVD or QR operations, at a cost of ,
matrix solves, at a cost of (typically,
for circuits), and matrix factorizations, at a cost of
(typically, for circuits). As we saw, all of these
algorithms can be cast into the projection framework, with
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Fig. 1. PMTBR algorithm.

appropriate projection matrices. Since such costs are similar
for all the algorithms considered, we will discard the cost of
such projections for purposes of comparison.

The TBR algorithm implies the computation of the Gramians
and , from (4) and (5) and the eigenvalues of their product,

at a cost of . Clearly, the cubic cost of TBR limits the use
of this algorithm for small- to medium-sized problems. Krylov-
subspace algorithms require one QR factorization, one
matrix factorization, and solves, for a total cost of

.
Assuming that frequency points are chosen in the quadra-

ture scheme for PMTBR, examination of Algorithm 1, indi-
cates that it involves one SVD, solves, and factorizations,
for a total cost of . This is the same cost
as for multipoint rational approximations.2 On the strength of
the above comparison, for a given size model, it appears that
Krylov-subspace algorithms provide the most efficient proce-
dures for order reduction due to the smaller number of factor-
izations. However, since PMTBR and multipoint projection may
not need as high an order a model, the choice depends on the rel-
ative cost of factorization, and PMTBR is likely preferred if
is close to . In addition, when frequency points are chosen
for the PMTBR algorithm, experiences indicates that it is highly
likely that the final model, after compression via the SVD will
lead to a th order model, (see Step 7 of Algorithm
1). If the simulation cost dominates over the model computa-
tion cost, as is often the case, then the added compactness of
PMTBR makes this algorithm the most efficient alternative. For
this reason, since the cost is the same, and PMTBR generally
produces smaller models, there is no reason to prefer multipoint
projection.

IV. EXPLOITING STATISTICAL INFORMATION

A. Statistical Interpretation of TBR

The PMTBR approach has an interesting statistical viewpoint
that is useful in motivating new algorithms. First, let us consider
a statistical interpretation of the standard TBR procedure [14].

2Notice that we are accounting for the cost of a single SVD. However, from
Algorithm 1 it appears that a new SVD is performed every time that a new
sample vector z is added to the collection. In practice this is not done, as is
discussed ahead in Section V-C, which justifies our estimation.

Consider the controllability operator : ,
which maps the inputs of an -input -state linear state-space
model to the state at time zero, . Sup-
pose, for simplicity, that the system is in balanced coordinates.
The controllability Gramian as given in (4), (7) may also be
written

(with denoting the adjoint operator). Consider interpreting
as a zero mean random variable with Gaussian distribu-

tion, inputs uncorrelated, and each input having autocorrelation
(matrix) function , with the identity
matrix. The time-domain inputs are unit power. is then also
a Gaussian random variable with correlation matrix

Thus, in this viewpoint, the controllability Gramian can be
seen as the covariance matrix associated with the state vector.
Similar statements can be made for the observability Gramian,
though the physical interpretation is less direct. The TBR pro-
cedure constructs the Karhunen–Loeve transformation [22] of
the associated random process. The entropy of such a process is
related to the variances, which are the eigenvalues of .3 The
reduced models of order created by TBR can be seen as max-
imum-entropy -state models, given the assumption of uncor-
related inputs with white spectrum. In a Bayesian-like interpre-
tation of the procedure, we would say that the TBR procedure
produces a maximum entropy model associated with the prior
assumption of distribution on the inputs that is uninformative.
PMTBR constructs a maximum entropy model consistent with
the observed column samples which are drawn according to our
assumptions on the joint distribution of the inputs. This inter-
pretation suggests a route to more efficient modeling strategies.

From an information theoretic viewpoint, the lower the en-
tropy associated with the state , the less effort required to rep-
resent it. In our context, the smaller the entropy of the process ,
the smaller the model we can potentially obtain. A fundamental
result of information theory is that conditioning reduces entropy
[23]. We should expect that the stronger the degree of prior in-
formation about the input structure, the lower the entropy, and
the smaller the model that can be constructed.

As an example, consider how restricting the choice of input
vectors in TBR affects the size of the reduced models. A
large circuit may have many possible ways to construct the
input/output ports, i.e., the matrices. That is, in a large
circuit, there are many nodes where it is possible to potentially
observe the output, or potentially attach a source. In practice,
only some nodes are of interest either for drive or for observa-
tion, and we now show how this selection process affects the
models produced by TBR.

Let and denote two possible subsets of possible input
vectors , . The conditioning property of entropy implies

3The Shannon entropy is essentially the sum of the log of the eigenvalues of
X .
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where denotes entropy of the state associated with input
partitioning . It is easy to verify explicitly that addition of input
vectors monotonically increases the entropy. Let

If

then4

(15)

and it follows that . The claim follows from the
strict concavity of the function and the symmetric
positive definiteness of , . Thus, the fewer the inputs, or
outputs, or the weaker the relation between, say, a given input
and the observed state, the easier the model reduction problem.
That such situations occur in practical circumstances is the basic
premise of model reduction.

Given that the inputs are chosen, TBR can be interpreted as
an optimal procedure for selecting a model according to the two
alternate criteria.

1) For a fixed order, the expected deviation (error) in the state
is minimized. This is a maximum likelihood type criteria.
2) For an allowed deviation, or variance, the minimal order

model is chosen. This is a minimum description length type
criteria.

However, if further information is available about the structure
of the inputs, TBR will not produce the optimal model, ac-
cording to these criteria. A more detailed analysis is necessary,
and the intermediate computations (e.g., the Lyapunov equa-
tions) cannot generally be done in closed form.

We will now present two specific contexts in which more de-
tailed knowledge about the anticipated structure of the inputs
can lead to more efficient reduction procedures. PMTBR plays
the role of an approximate procedure, which chooses the min-
imal length model, given the observed samples [24].

B. Frequency-Selective TBR

Consider evaluating (8) by breaking the integral into partial
sums each of which is an integral over a section of the
imaginary axis

(16)

(17)

where amounts to the whole imaginary axis.
Each gives the contribution to from the system’s be-

havior over the interval . is the Gramian of the operator that
maps input to state; its singular values give the norm of that op-
erator. This suggests interpreting as the contribution from the
input over the frequency interval . The standard TBR proce-

4To see that this is true, observe that the right-hand side [B B ][B B ] =
B B + B B is just matrix multiplication written as outer products, then
note that the left-hand side of (15) is linear in P .

dure, having no a priori knowledge of the frequency content of
the input, weights each frequency equally. However, in almost
all practical problems, we have some knowledge of the actual
frequency distribution of the inputs. Often, the inputs are ban-
dlimited, or nearly so, or we might be interested only in the be-
havior of the system around some finite frequency interval. We
propose truncating the sum in (16) to finite intervals, and using
the resulting “finite-bandwidth” Gramian for model reduction.
Since the resulting Gramian places more emphasis on frequen-
cies of relevance, we expect to achieve better performance, for
a given model order, on problems with finite bandwidth in-
puts. More generally, we may define a “frequency-weighted”
Gramian as

(18)

where is the weighting function (the notational similarity
with quadrature weights is deliberate). The more appropriate
the weighting function to our problem at hand, the better we
expect the performance of the reduction algorithm to be. Seen
from this viewpoint, TBR is a generic, somewhat naive, algo-
rithm as it presumes complete ignorance of frequency content.
The weighting function in standard TBR is most appropriate
for white noise inputs where nothing is really known about fre-
quency content.

In a practical implementation, with a finite number of fre-
quency samples, weighting can be accomplished by adjusting
the weights and/or location of samples . In fact, every

-matrix implicitly defines a frequency weighting scheme.
For this reason, it is better to choose points/weights in PMTBR
(perhaps adaptively) according to the expected frequency profile
of the system and the inputs, than to try to achieve convergence
to the TBR Gramians themselves.

This analysis provides another explanation for the empirically
observed fact that multipoint projection can sometimes exhibit
better relative error performance than generic TBR. Multipoint
projection more highly weights points in (18) than the standard
TBR weighting, resulting in better relative performance in those
areas. In the search for good global error performance, TBR can
over-emphasize areas of the transfer function that are large in
magnitude. When such regions are of interest to the problem
at hand, TBR is a nearly optimal method. However, when such
regions lie out of the frequency band of interest, or lead to ex-
cessive sacrifice of relative error for absolute error, TBR may
not do as well as multi-point projection. PMTBR, on the other
hand, can always be tailored to the problem at hand.

The frequency-selective TBR procedure is shown as Algo-
rithm 2 in Fig. 2. The similarity with Algorithm 1 should be
fairly obvious, the main distinction being in the point-selection
algorithm.

C. Input-Correlated TBR

In the previous section, we showed how exploiting knowledge
of the frequency profiles of the inputs led to a more efficient
procedure. We implicitly assumed no knowledge of the relation
between the inputs. In this section, we discuss the input-corre-
lated TBR procedure [25], describe how it fits into the statistical
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Fig. 2. Frequency-selective TBR algorithm.

Fig. 3. TBR error bounds for 12 � 12 RC mesh as function of number of
inputs.

context, and show how it leads to more efficient reduction pro-
cedures.

Consider applying model reduction algorithms to networks
with a large numbers of input/output ports, that is, for networks
with many columns in the matrices defining the inputs. Such
systems occur often in practice, for instance when dealing with
massively coupled parasitic networks as occur in substrate anal-
ysis, package modeling, and on large digital interconnect net-
works.

To motivate our algorithm, let us examine the behavior of the
Hankel singular values for a simple system, such as an RC mesh,
as the number of ports (i.e., columns in the -matrix) varies.
Fig. 3 shows the TBR error bound obtained from the Hankel
singular values as a function of the number of inputs. We can
conclude that the order needed for good accuracy grows with
the number of inputs. This is contrary to the common expecta-
tion that a few poles are sufficient for RC systems, but in accord
with the statistical analysis above. For systems with many in-
puts, many states may be needed because of the high dimension
of the controllable space. Even in this simple RC circuit case,
for the 64-input case, low accuracy (20% error bound) requires
at least 40 states in the reduced model.

Other available procedures are likewise impractical. The
moment-matching (Krylov-subspace) family of algorithms,
such as PRIMA [2] and PVL [1], lead to models whose size
is the number of ports multiplied by the number of moments
matched. At low frequencies, the PACT [26] algorithm can lead
to smaller numbers of states than PRIMA, since it does not rely
on matching (block) moments. However, PACT still leads to
matrices that are dense, and whose size is still bounded from
below by the number of ports.

The key to a more efficient procedure lies in noting that in
many practical problems, the inputs to an interconnect network
are not arbitrary. Often it is necessary to retain all the input ports
if the full impact of parasitic effects is to be correctly estimated
[27], but there may be relations between the inputs (or output)
at different network ports that can be exploited to give a smaller
model. Suppose a correlation matrix [22] for the input rela-
tions is known (that is, the correlation function discussed above

is ). The appropriate Gramian for
this restricted problem is given by

The key insight is, for symmetric positive definite , the
eigenvalues of decay faster than the eigenvalues of from
(4), if the eigenvalues of exhibit some decay. In other words,

is closer to a low-rank matrix than if the inputs exhibit
some correlated behavior, as in the perfectly uncorrelated case
the eigenvalues of are identical. This is equivalent to saying
that we have partial information about the relation between the
inputs, the case corresponding to zero information. Thus,
for a given truncation criterion for the singular values, using
for a model reduction procedure will lead to smaller models.
This is a special case of the more general observations made
above. Under the hypothesis that is a suitably representative
model of the possible inputs, no accuracy will be lost. In prac-
tical problems, such fidelity can be guaranteed if we are suit-
ably conservative in the specification of the correlation matrix
( , corresponding to the ultimate degree of safety, total
ignorance). As in the frequency-selective case, though the phys-
ical interpretation as an absolute error bound no longer applies,
the eigenvalues of the Gramian can still be used for error con-
trol, as they can be given an interpretation associated with the
likelihood of error in the probabilistic input model.

To estimate input correlations, consider taking a set of
samples of input waveforms, for input , , where

is the sample index. The correlation matrix can be estimated
as

As is the usual case, the actual correlation matrix need not be
formed. Instead, we can take the SVD of the matrix whose
columns are the input samples , i.e.

with , orthonormal.
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Fig. 4. Input-correlated TBR algorithm.

Note that, in addition, from this information, we can also ob-
tain estimates of the frequency profile of the inputs. These es-
timates can be used to select the frequency points for the
PMTBR procedure. The final algorithm is shown as Algorithm
3 in Fig. 4.

V. PRACTICAL IMPLEMENTATION

A. Descriptor Systems

Usually, in circuit analysis it is inconvenient, and possibly
prohibitively expensive, to translate to the form in (1). In the
more general case, with the state-evolution equation given by

, the controllability Gramian can be ob-
tained from

(19)

Not surprisingly, the frequency domain equation is

(20)

and the above procedure follows exactly with the change that
the columns of are given by

(21)

Note that the complications present in applying standard TBR
to problems with singular -matrices vanish in PMTBR.

B. Error Estimation

The above arguments can be extended to a generalized
process of error estimation. The singular values obtained from
the weighted Gramians can be interpreted as gains between
filtered inputs and weighted outputs. Singular values from
truncated modes can be interpreted as errors on the filtered
system, i.e., finite-bandwidth or weighted errors. The singular
value information can be used in three ways to guide model
order control.

First, if enough samples are taken that good estimates of the
true Gramians are obtained, then the singular values obviously
provide error bounds, through the connection to TBR.

Second, the singular values can guide the process of point
selection. With reasonable spaced sampling of points, as pro-
jection vectors are added to the -matrix, convergence of the
singular values indicates convergence of the error, which guides
when to stop adding vectors to .

Third, we have found that, again assuming a sampling density
consistent with the weighting , the singular values usually
give a fairly good guide to model order well before convergence
is achieved. Our experiments indicate that when, for a number of
samples in excess (e.g., twice) of the model order, the singular
value distribution exhibits a small “tail” (that is, for a “small” ,

: ), then sufficient order and point placement
has been achieved. Again, this is, as one would expect, strikingly
similar to the usual TBR concepts.

Of course, there is always the question of whether patholog-
ical cases, such as systems with very narrow resonances, can
arise. In practical applications, fundamental physics usually es-
tablish limits on resonance width. When these limits are known
up-front they can be used to guide minimum sampling densities.
With appropriate weightings, adaptive schemes (e.g., bisection
of frequency intervals) can also be used. Full discussion of point
selection is beyond the scope of this paper, but in all systems
we have encountered, approximation by multi-point projection
is sufficiently powerful that we have not found point selection
to be problematic in obtaining quality results.

C. On-the-Fly Order Control

To minimize computational effort, it is desirable to run the
algorithm until a desired accuracy level is obtained, and at that
point cease to add points into the sample space of PMTBR. We
would make this decision by looking at a small number of the
trailing singular values of the matrix, and stopping when
the sum drops below a given threshold. This means that esti-
mates of the singular values of must be available each time
a sample (or set of samples, depending on the updating scheme)
become available. In the previous development we utilized the
SVD decomposition because of its direct connection to eigen-
value analysis, and the utility of having available the singular
values for comparative analysis of the TBR and PMTBR algo-
rithms. However, the SVD is not the most appropriate tool for
such an adaptive order control procedure, since no fast update
procedure is known. Thus when using the SVD, the computa-
tional complexity of adding a single new vector into the sample
space is about the same as performing a new SVD of the entire
set of column samples. However, in our case, we do not need
the actual singular values themselves, only the ability to esti-
mate the magnitude of a trailing few, and to obtain a basis for
the dominant subspaces. Other rank revealing factorizations that
possess better updating properties may be more appropriate, for
example the RRQR [28], [29] and UTV factorizations [30].

We should clarify two potential points of confusion in im-
plementation. First, the singular value estimates do not neces-
sarily indicate convergence of the integral form to the Gramians
(this is obviously the case over finite frequency ranges). Usu-
ally, good models are obtained well before the singular value
estimates converge to the true Hankel singular values. A good
example is a very high-Q two-state resistance–inductance–ca-
pacitance (RLC) circuit. Only two sample vectors are required
to obtain the exact model, which PMTBR will correctly predict.
However, obtaining the exact Gramian by numerical integration
could require a very large number of quadrature points, espe-
cially if the points are placed in a naive manner such as a uni-
form distribution.
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Second, in the SVD, the columns of the basis matrices
and are potentially complex. However, they are only unique
to within a phase factor which can be factored out to obtain
real valued projection matrices and, thus, real-valued models as
needed for implementation in time-domain analysis.

D. Cross-Gramian Method

In the general case, computation of both Gramians and
is required in order to perform the TBR procedure. The reduc-
tion depends on the dominant eigenspaces of the product ,
which is an invariant of the system, whereas and individ-
ually depend on the chosen coordinates. Motivated by [31], we
suggest as basis for a procedure the cross-Gramian that en-
codes controllability and observability information into a single
matrix.

Analogous to the Lyapunov equations for , , can be
obtained from the Sylvester equation

We propose performing model reduction by projection onto the
dominant eigenspaces of . In the case of symmetric models,
including single-input, single-output models as a special case,

and reduction based on eigenvalues of the cross-
Gramian is identical to TBR. In the general case, since the eigen-
values of are the eigenvalues of the Hankel operator, not
the singular values, the procedures are not the same. However,
since the “sum-of-the-tail” of eigenvalues is a bound on
the sum of the tail of the singular values [31], if the trailing
eigenvalues of are small, we may still expect good models.
It is easy to construct counterexamples, but we have obtained
good results on many real systems.

The Sylvester equation is related to the time-domain expres-
sion

(22)

and the frequency domain representation

(23)

In the PMTBR context, we need to construct two sets of sample
vectors, one corresponding to the controllability subspaces pre-
viously discussed, represented by a matrix with column vec-
tors

and the other to the observability subspaces, represented by a
matrix whose columns are

The PMTBR procedure proceeds by performing the eigen-
decomposition of . Note that this matrix is nonsym-
metric, and is of the same dimension as the unreduced system.
Therefore, explicit construction followed by eigenanalysis of
this matrix is by hypothesis infeasible. We propose a procedure

that compresses the eigenvalue problem. Suppose we compute
a matrix , with orthonormal columns, whose columns span
the joint column space of and . Then, ,

for some (nonsingular) , . The eigenvalue
problem becomes

or

with . This reduced eigenvalue problem can be
solved, truncated to the significant eigenvectors , and the
necessary projection matrix obtained in the original coordinates
from .

E. Passivity and Stability

Because we do not compute the full Gramians, as developed
here, PMTBR does not possess the stability and/or passivity [12]
preserving properties of the full-blown TBR algorithms. A full
remedy to this situation is possible but beyond the scope of this
paper. However, the usual solution followed for integrated cir-
cuit problems, reduction via congruence transforms, can still be
utilized. In this case, stability and passivity will be guaranteed
for suitably formulated RLC circuit networks.

VI. COMPUTATIONAL EXPERIMENTS

In this section, we show results from applying PMTBR to a
set of examples. The section is structured in three parts. First, we
illustrate the relevant properties of PMTBR, its relation to TBR
and compare it to alternate reduction methods. Then, we show
an example that illustrates the frequency-selectivity capabilities
enabled by PMTBR. Finally, examples are shown to illustrate
the input-correlated variant of PMTBR and the dramatic reduc-
tion that it can provide.

A. General Properties of PMTBR

1) Convergence to TBR: In our first example, we consider an
RC circuit model of a clock distribution network. This circuit, to
a good approximation, is finite bandwidth. We use this example
to illustrate the asymptotic equivalence of the TBR and PMTBR
methods. Fig. 5 illustrates the singular values of the ma-
trix resulting from a moderate number (50) of sample points

. It can be seen that the estimated singular values, while not
exact, are good approximations, and follow the general trend of
the exact solution. It is interesting that the approximate singular
values continue to rapidly decrease over nearly fifteen orders of
magnitude, even with a relatively low accuracy approximation
of the Gramians. PMTBR appears to capture the fact that this
RC model is intrinsically low order. Of course, adding sample
points would increase the accuracy of the singular value approx-
imations, as we will show later.

More critical for model reduction is the estimation of the
projection subspaces. Fig. 6 shows convergence of one angle
between projection subspaces. In this case, we chose the
second principal vector to estimate within the first four leading
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Fig. 5. Hankel singular values as computed from the exact Gramians (solid
line) and the estimated from PMTBR (dashed line).

Fig. 6. Angle between the second principle vector and the PMTBR singular
subspaces.

subspaces of PMTBR. Even for small numbers of sample
points, the subspaces are fairly closely aligned, and alignment
increases with increasing number of samples. This indicated
convergence of PMTBR to TBR for this example. The leveling
out of the curve is due to the fact that the model under study has
nonzero response outside the finite bandwidth used to compute
the PMTBR results. By increasing the bandwidth over which
we perform PMTBR, we could continue to decrease the sub-
space angles, but at some point the accuracy obtained thereby
ceases to be of interest, because in a real problem, negligible
signal strength exists outside finite bandwidths.

2) Comparison to PRIMA: In our next example, we use
a model for an on-chip spiral inductor to demonstrate how
PMTBR can outperform the standard model order reduction
method PRIMA. Particularly for the real part of the inductor’s
impedance (i.e., the resistance), PRIMA converges slowly on
this example. Fig. 7 shows a comparison of the error in the
inductor’s resistance for approximations obtained with PRIMA
and PMTBR of increasing sizes. From the plot, one can see
that the PMTBR approximation produces a more accurate
approximation at any given order, and converges more quickly.

Fig. 7. Error of approximations of resistance obtained with PRIMA and
PMTBR for increasing order models on the spiral inductor example.

Fig. 8. Spiral inductor example, convergence of singular values of ZW .

As 30 frequency samples were used to compute the PMTBR
model, at each order, more work was also required to compute
the approximations for a given order. However, as about 60
PRIMA vectors are required to obtain 1% accuracy in the
resistance, the overall work is still less.

Next, we demonstrate the order-control and error-estimation
capabilities of PMTBR. Fig. 8 shows the convergence of the
five largest singular values of as the number of frequency-do-
main sample points (also referred to as quadrature nodes ) is
increased. In this example, we used a very crude uniform sam-
pling/weighting that would correspond to the “rectangle rule”
in quadrature. We see that the largest five singular values have
mostly converged by the time we reach 100 sample points. Fig. 9
shows the error versus order for PMTBR models using 100
sample basis points, as well as the error estimates computed
using the singular values. First, we can see that increasing the
order of the approximation beyond ten or twelve benefits very
little, as the corresponding singular values are certainly below
the relevant error and quickly approaching machine precision.
Second, we see that, for the orders corresponding to the well-es-
timated singular values, the error estimates are very good. Esti-
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Fig. 9. Admittance transfer function error and error estimates for the spiral
inductor example.

Fig. 10. Comparison of error in multipoint projection method (MPPROJ) and
PMTBR for the PEEC example.

mates for higher orders are not as good, but do indicate correctly
that the actual error is small and rapidly approaching zero.

Note that as indicated above for this example a much smaller
number of samples was required to achieve excellent error
performance on this model. Singular value plots with this
sample size (not shown) show that a model of size 5–7 is indeed
enough to achieve acceptable accuracy with this number of
sample points.

3) Comparison to Multipoint Projection: Of course, an
obvious question is, since the PMTBR technique uses the
same information as multipoint projection, whether there is
any advantage in using PMTBR over multipoint projection. To
answer this, we show results from an example introduced in [1],
a lumped-element equivalent circuit for a three-dimensional
problem modeled via PEEC.

Fig. 10 shows a comparison of the errors incurred with ap-
proximations of increasing order obtained using a multipoint
projection method and PMTBR for this PEEC example. The

plots clearly show the superior accuracy of PMTBR for sim-
ilar size models (equivalently, PMTBR is able to generate more
compact size models for the same accuracy). Furthermore it is
interesting to note that for high accuracy this difference actually
increases, as the error of the projection method goes down very
slowly with order increase. This is clearly due to the ability of
PMTBR to prune out redundant information from the model.
Note that in [1] an order 60th approximation computed with
PVL was needed to obtain good approximation of the transfer
function of the equivalent circuit.

It is interesting to observe that, just as the multipoint projec-
tion method did, the PMTBR technique is able to circumvent
any difficulties involved with having singular or matrices.
This is a matter of practical relevance as many systems obtained
applying the modified nodal formulation to some discretized
model often have singular and/or matrices (typically, in
those cases would be related to the conductance matrix and

to the capacitance matrix). Applying standard TBR to such
systems involves some complicated preprocessing, see [12] for
a discussion. Note also that PMTBR was quite accurate on this
example, despite the fact that it contains sharp resonances that
cause difficulty for quadrature (compare Fig. 5 where the sin-
gular value estimates are not exact). PMTBR does not produce
the exact same singular value estimates as TBR, as it weights
the contributions to the projection subspaces differently, the sub-
spaces produced contain the system information relevant to the
point selection chosen.

B. Frequency Selectivity

An important question to resolve is whether there is any ad-
vantage to PMTBR compared to a standard projection tech-
nique followed by standard TBR. We show results from an 18
pin shielded connector structure that was previously used to il-
lustrate a PEEC formulation based on PRIMA that generates
passive reduced-order models [6]. While the resulting model
was indeed provably passive, disappointing reductions were re-
ported, which were attributed to limitation in the PRIMA al-
gorithm in dealing with the “relevant modes of the system.”
In order to address this issue, in [13], the same example was
used to illustrate a two-step algorithm for RLC order reduction
based on PRIMA followed by TBR. Significant order reductions
were reported after the second step of reduction as TBR is able
to determine that those modes are not observable nor control-
lable. Therefore, it is a good model system on which to compare
PMTBR and TBR.

Fig. 11 shows a plot of the exact transfer function of the
connector, as well as approximations obtained with TBR and
PMTBR. For this particular example, we were interested in
testing the ability of the PMTBR algorithm to produce ap-
proximations on a finite bandwidth. We decided to illustrate
approximation over a finite range of 0–8 GHz. Samples were
generated to cover the frequency range from dc to 8 GHz, and
these samples were used to generate an order 18 PMTBR ap-
proximation. At the same time, a TBR approximation of order
30 was also generated (we found that 30 was the minimum
order required for TBR to provide reasonable representation
of any features in the 0–8 GHz range). From the figure, we
can see that the PMTBR approximation does indeed show
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Fig. 11. Transfer function approximations for the connector example. Note
PMTBR has better finite-bandwidth performance than TBR.

very good accuracy in the frequency range of interest. The
figure also shows, rather dramatically, the inability of the TBR
approximation to produce an accurate model at the frequency
of interest, even with the higher order approximation. Further-
more, the TBR approximation seems to be accurately picking
some features of the system but these happen to fall out of
the bandwidth of interest. We believe TBR concentrates effort
around 15 GHz because of the relative amplitude of the transfer
function. PMTBR is easily focused on the 8 GHz and below
range merely by selection of sampling points, and does not
waste effort with approximation at higher frequencies.

C. Input-Correlated TBR Examples

In this section, we complete the experimental demonstration
of PMTBR with the examples from [25] that show how in-
creased information about input form can reduce model size for
models with large numbers of inputs/outputs.

1) Simple Multi-Input RC Circuit: To illustrate the basic
characteristics of the proposed reduction method, we will first
consider a 32-port RC interconnect network. To simulate the
situation where there is some degree of information about
the relation between inputs, we drive the network with a set
of square waves with uncertain delays That is, each input is
driven with a waveform as shown in Fig. 12, a square wave
with timings randomly dithered about 10% of the period. This
is intended to mimic the situation where signals incident on
the network have some correlation for example because they
originate from the same functional block (mixer, oscillator,
etc.) or are time-correlated, due to a common clock, but the
signals themselves can be known only approximately before
the reduction procedure.

Fig. 13 shows results from setting the SVD tolerance set to
in Algorithm 3, and extracting a 15-state reduced model.

The results from the input-correlated TBR method are accept-
able. For comparison, we also show the 15-state TBR model:
the accuracy of this model is clearly unacceptable. For equiva-
lent accuracy, TBR requires about a 45-state model. Note that
PRIMA matching only one moment, would require a 32-state

Fig. 12. Set of waveform samples for one input on RC network example.

Fig. 13. Simulation results for one output on RC network example. PMTBR
with correlation information out-performs TBR.

model. For this example, PRIMA requires at least two moments
for acceptable accuracy, i.e., 64 states. A PACT model incorpo-
rating poles up to only the sinusoid frequency would have over
seventy states.

Now, we demonstrate the effect of drawing inputs from out-
side the class assumed for model construction. If the inputs ven-
ture far from the distribution assumed when the model was built,
accuracy will deteriorate and more states will be required in the
model. To illustrate this, we reran the same example, again using
square waves for inputs, but completely changing the phase re-
lation between the inputs (as opposed to the low-level dither in-
troduced in Fig. 13). Fig. 14 shows the results from the same
15-state models as used previously. The accuracy of the input-
correlated reduction procedure degrades noticeably. Recovering
accuracy requires a model of many more states, so without some
degree of information about the input correlation, there is no ad-
vantage over using TBR.

2) Large Substrate Network: Finally, we consider applica-
tion of the method to a real circuit (a data converter) with an
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Fig. 14. Simulation results for one output on RC network example, with
re-randomized phase relation. PMTBR with correlation information breaks
down.

Fig. 15. Simulation results for data converter example, 150 port substrate
models, full versus 4-state reduced model.

extracted substrate network. First, for purposed of assessing the
actual error performance of the model reduction algorithm, we
extracted only a small portion of the substrate network connec-
tion the bulk nodes of the MOS transistors. 150 ports of the sub-
strate network were extracted using a boundary-element proce-
dure. Both resistive and capacitive terms were retained, leading
to a 150-state model. To obtain estimates of the input-signal cor-
relations at the input, we use the MOS transistor bulk current
signals from simulating the circuit without the substrate network
as inputs to the input-correlated TBR procedure.5 We then com-
pared the results of simulation with the reduced model to simu-
lation with the full model. These results are shown in Fig. 15. In
this case, fair agreement with the full model was obtained using
only four states, and excellent agreement obtained with eight

5Note that, should the substrate network result in such large changes to the cir-
cuit operation that these estimates were completely unrepresentative, we would
have to iterate this procedure to obtain a self-consistent estimate. This would
probably indicate that the circuit ceased to function as designed.

Fig. 16. Error estimate based on singular value analysis of Z-matrix from
input-correlated TBR, for 1000-port substrate network with inputs from data
converter example.

states. This is a 20X compression from the full model. Note that
this network is, for most intents, unreducible with standard pro-
jection methods.

To illustrate the capabilities of the algorithm on larger net-
works, we also applied the proposed technique to a larger sec-
tion of the extracted substrate network, this time comprising
1000 substrate ports. Fig. 16 shows the error estimate data ob-
tained from the singular value analysis in Algorithm 3. In this
case, a model size of 30 states is sufficient to achieve high accu-
racy. This represents a compression of over 30X in model size
and, because of the superlinear complexity associated with fac-
torizing dense matrix blocks, considerably more savings in time
required for linear system solution in simulation.

VII. CONCLUSION

In this work, we discussed a connection between TBR model
reduction methods and multipoint rational approximation/pro-
jection techniques. While primarily of theoretical interest, this
connection leads to a potentially useful new algorithm: PMTBR.
PMTBR was shown to have some advantages over existing algo-
rithms, particularly in generating smaller reduced models, and
possibly in order control and error estimation. In retrospect, the
connection of TBR and PMTBR is not surprising: both the TBR
procedure and the SVD used in PMTBR are principal com-
ponents analyzes. TBR is a principal components analysis of
the functionals defined by the state-space model, and naturally
arises from time-domain theory of state-space systems. PMTBR
arises naturally from a numerical approximation viewpoint of
frequency domain data.

A potentially more important observation is that the existing
model order reduction algorithms contain implicit assumptions
about the inputs to the systems being modeled. To each set
of assumptions, corresponds an implicit model of the inputs
themselves. When correlated with actual information available
from application domains, these input models seem unduly re-
strictive, implying that the assumptions implicit in the standard
model order reduction schemes may be somewhat naive. Our
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hope is that increased care in modeling the system inputs them-
selves can lead to more powerful modeling schemes.

Possible extensions of this work include integration of adap-
tive point selection estimation with error control, and extension
of the PMTBR approach to the positive–real TBR [12] algo-
rithms.
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