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Abstract—We consider model-order reduction of systems oc-
curring in electromagnetic scattering problems, where the inputs
are current distributions operating in the presence of a scatterer,
and the outputs are their corresponding scattered fields. Using
the singular-value decomposition (SVD), we formally derive
minimal-order models for such systems.We then use a discrete em-
pirical interpolation method (DEIM) to render the minimal-order
models more suitable to numerical computation. These models
consist of a set of elementary sources and a set of observation points,
both interior to the scatterer, and located automatically by the
DEIM. A single matrix then maps the values of any incident field
at the observation points to the amplitudes of the sources needed to
approximate the corresponding scattered field. Similar to aGreen’s
function, thesemodels canbeused toquicklyanalyze the interaction
of the scatterer with other nearby scatterers or antennas.

Index Terms—Electromagnetic scattering, integral equations,
modeling.

I. INTRODUCTION

T HE AIM in model-order reduction (MOR) is to replace
a complicated system by a simpler one, while preserving

the input–output relationship of the former. Typically, the
systems are dynamical systems, and MOR is used to generate
models that can be integrated in system-level time-domain
simulations [1]–[3]. For example, MOR is routinely used to
generate compact models for microwave components from
detailed simulations or measurements [4], [5].
An extension of MOR, parametric MOR, can be used to con-

struct models that remain accurate for a range of material and
geometric parameters [6]–[8]. For example, in [6], waveguide
fields for a range of frequencies and permeabilities are approxi-
mated using a weighted combination of representative field so-
lutions obtained at a small set of frequencies and permeabili-
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Fig. 1. Input region , an inhomogeneous dielectric scatterer and an output
region .

ties. To determine the weights, a low-order equation is derived
for them, by Galerkin projection of the relevant high-order dis-
cretized partial differential equations.
In this paper, we borrow from the MOR framework to gen-

erate ROMs for electromagnetic scattering problems. However,
we only consider time-harmonic fields (with an time
dependence) and not any time-domain dynamical system. Also,
while the inputs and outputs usually considered inMOR are port
amplitudes, our inputs and outputs are, respectively, current dis-
tributions and fields. Hence, while ideas from MOR underlie
much of this work, the premises are different.
We consider the situation depicted in Fig. 1, where we have

a scatterer occupying region , an input region , where currents
may reside, and an output region ,where the scatteredfieldmay
be observed. Regions and may intersect, may be identical,
and may be infinite, but they may not have any point in common
with . Our goal is to obtain an ROM for the system relating the
currents in region to the scattered field in region . To achieve
this goal, we rely on the availability of a (presumably time-con-
suming) routine for solving the scattering problem and yielding
the output for an arbitrary input. This routine is to be used in an
offline, model-generation stage, and the pertinent questions are
then how to choose its inputs and how to use the corresponding
outputs to generate the read-only memory (ROM).
For concreteness,we assume that the scatterer is an inhomoge-

neous dielectric, the currents in region are electric, and thefield
to be observed in region is the scattered electric field. Other
scattering problems, such as those involving magnetic materials
or perfect conductors, could be handled similarly. The system
relating the inputs to the outputs can be written as follows:

Input (1)

State equation (2)

Output (3)

where the operator maps , a current in region , to the
electric field it produces in free space, evaluated at observation
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points in region . The field is also denoted since
it is an incident field that induces an electric polarization cur-
rent in the scatterer region . The operator maps , a
current in region , to an incident field that would induce it on
the scatterer, essentially, it is the impedance operator to be in-
verted in the course of solving the scattering problem. Finally,
the operator maps a current in region to the electric field
it produces in free space, evaluated at observation points in re-
gion , that is, it yields the scattered electric field, . While
the operator is typically time-consuming to apply, and the
and operators can be applied fast by using fast-multipole or
similar methods, since they are just integral operators with the
free-space dyadic Green’s function as kernel.
The system formulation (1)–(3) is useful for considering the

choice of inputs for the offline stage. A natural choice might be
to choose the inputs so that the fields incident on the scatterer
span the range of the operator . Sincewe are assuming that re-
gions and are distinct, this operator is compact. This implies
it has a finite numerical rank, and this rank is an upperbound on
the required number of inputs. Clearly, if we precompute the re-
sponse to all of these inputs, the response to an arbitrary input
will be obtainable as a weighted combination of the precom-
puted responses.
As natural as this choice may be, it typically involves more

inputs than necessary. The reason is that the numerical rank of
the operator

(4)

which maps the inputs to the outputs is never larger, and typi-
cally smaller, than that of alone. Since is also a com-
pact operator, so is . It therefore has an approximate
null-space, and certain vectors in the range of could fall in
this approximate null space. Physically, this can occur if, for ex-
ample, the output region includes a null in a bistatic radar cross
section of the scatterer.
The compactness of and hinges on our assumption

that regions and do not intersect with . If both regions
and include many points that are very close to region ,

the reduction in order may be limited. Regardless, the reduction
will be close to optimal, as we now explain.
A minimal set of inputs needed to generate a model of with

a prescribed error is readily obtained from an SVD of

(5)

In (5), the and are the left and right singular vectors, re-
spectively, the are the singular values (positive and ordered
in decreasing order), and the inner product is given by

(6)

where the overbar denotes the complex conjugate. Note that an
SVD exists if and only if an operator is compact. While is
not compact, surrounding it with the compact operators and

yields the compact operator . By truncating (5), an ROM
is readily obtained, and its order say is minimal for a certain

error criterion. The first of the are the inputs for which
the responses should be precomputed.
The aforementioned observation provides a formal guideline

for choosing the inputs for the offline stage, but it is still un-
clear how to determine these inputs in practice. In this paper,
we develop a computational scheme for this problem, where we
do not compute the singular vectors explicitly, but show how
to work with the SVD representation implicitly. The computa-
tional scheme makes use of two relatively new numerical tech-
niques: randomized SVD (RSVD) algorithms and the discrete
empirical interpolation method (DEIM) [9]–[11], and the obser-
vation that it is easy to form approximate SVDs of and .
The final result is a model for which consists of
fictitious elementary sources inside the scatterer, at locations
chosen automatically by the algorithm. The amplitudes of the
sources required to approximate the scattered field are obtained
by evaluating the incident field at a second set of
points inside the scatterer and multiplying by an matrix.
Assuming and are small enough, this model allows rapid
evaluation of the scattered field in region for an arbitrary in-
cident field due to sources in region .
The idea of modeling a scatterer by precomputing the re-

sponse to a set of excitations is not new of course. When
spherical waves are used as excitations, one obtains the clas-
sical scattering matrix, which is best suited to approximately
spherical scatterers of moderate electrical sizes. For arbitrarily
shaped scatterers, the characteristic modes introduced by
Garbacz [12] and Harrington and Mautz [13] are a natural gen-
eralization of the scattering matrix approach. The excitations
used in this paper may be considered as a further generalization,
one that obtains whether information regarding the possible
input and output regions is taken into account.
Tailoring the excitations to the input and output regions can

be useful in antenna siting problems, where antennas are to
be mounted on a complex scatterer (say, an aircraft), but their
possible locations are highly constrained. Then, the number of
modes needed to represent the input–output relationship be-
tween the potential antenna sites is determined more by the
number of potential sites and their size, than by the size of the
scatterer. Hence, the number of modes may be greatly reduced
compared to the number needed for a more general analysis.
For an extreme example, if both regions contain only a single

point, then, regardless of the complexity of the scatterer, the
linear relationship between input and output requires a single
number for its specification (at a single frequency). If instead
of single-point regions, we have a few points in each region,
then a small matrix suffices to specify the input–output relation.
Finally, if the regions contain many closely spaced points, then
the corresponding matrix will be large, but will be close in norm
to a matrix of low rank. Regardless of the regions, an SVD of the
input–output matrix can be used to generate a model of minimal
rank for a prescribed error.
In this paper, we consider an example which demonstrates

the usefulness of the aforementioned approach. We generate an
ROM for a realistic model of a human head, for a magnetic res-
onance imaging (MRI) application. In this example, the design
of antennas for radio-frequency excitation of the head is very
time-consuming, because the presence of the head influences
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the current distribution on the antennas. Hence, any simulation
of the coils must include the head model. However, the loca-
tion of the antennas is restricted to a thin shell around the head
model, and this is exploited by our approach to obtain a compact
ROM that can be used to simulate a given antenna configuration
very quickly.
Suppose we model a given antenna configuration using the

method of moments (MoM). Then, the impedance matrix for
the antennas in the presence of the head is written as the sum of
a free-space matrix and a perturbation due to the presence of
the scatterer . The first matrix is the usual MoM matrix that
can be evaluated by standard codes, or applied fast with a fast
matrix-vector product technique. The second matrix is obtained
by using the ROM, and it is, by construction, given in factored
form that enables a fast matrix-vector product. Let denote the

matrix that maps the basis functions used to model
currents in the antennas to the fields they produce, in free space,
at the points in the ROM model. Let denote the
matrix of the ROM (in this case, ). Then for , we
have

(7)

Assuming is not too large, this form can be used to apply
quickly for an iterative solver, or if is not too large, can be
computed explicitly and a direct solver can be used. In this case,
the most time-consuming operation is filling the MoMmatrices,
which usually requires evaluating Galerkin integrals. How-
ever, for , we only need the fields of basis functions at
points, so, assuming , the cost of filling is similar
to the cost of filling . Therefore, analyzing a given antenna
configuration in the presence of the head can be performed with
standard MoM codes, and with a computational cost that is only
slightly larger than that of a free-space analysis. In this respect,
the ROM is equivalent to a numerically computed Green’s func-
tion for the scatterer.
The form of the ROMs we obtain is closely related to the

generalized scattering matrix (GSM) of [14] and [15]. Here too,
fields due to elementary sources inside a scatterer are used to
represent the scattered field, and their amplitudes are linearly
related to the values of an incident field evaluated at a set of
points. Our work is different in a few significant respects how-
ever. In [14] and [15], the sets of inputs chosen for precomputa-
tion are elementary sources placed on a curve (these works are
for 2-D) outside the scatterer. In [15], the SVD is used to deter-
mine how many inputs are necessary, but the analysis is based
on the range of , not on the SVD of . Also, the sources
inside the scatterer are distributed uniformly on a curve con-
formal with the scatterer boundary, whereas we distribute them
at the DEIM points, which can be anywhere on a fairly dense
grid inside the scatterer. While placing sources on a curve yields
a complete set of basis functions, our set is overcomplete and
this may yield more compact models (for a fuller discussion of
this point, see [16]).
Another related method is the synthetic-functions expansion

(SFX) [17]. This is a domain-decomposition approach, where
a large scatterer is partitioned into smaller scatterers, and basis
functions are obtained for each of the smaller scatterers by ex-

citing them with various excitations. For example, if the smaller
scatterers are well-separated, the excitations are due to elemen-
tary sources on a surface enclosing the smaller scatterer. Here,
too, the SVD is used to determine the number of elementary
sources needed to approximate an arbitrary function in the range
of .
Finally, though the aim of our method is different, it shares

some similarities with the technique of [18], recently proposed
for inverse-scattering problems, as well as the adaptive cross
approximation (ACA) [19]–[21], where the coupling between
well-separated regions is approximated using low-rank ma-
trices.
Notation: We follow the convention that column vectors

are denoted by lowercase symbols and matrices by uppercase
symbols. Scalars are typically lowercase, though we use
to denote the number of elements in vectors and matrices.
Bold symbols are used for physical vector fields. Operators
mapping to physical vector fields are denoted by calligraphic
symbols, while those mapping to a column vector are denoted
by lowercase symbols.
The remainder of this paper is organized as follows.We begin

by describing how the SVD of the operator can be computed
(Section II). Then, we explain how to expedite the computa-
tion of time-consuming inner products in this SVD, using the
DEIM (Section IV-B). In Section IV, we discuss implementa-
tion issues, and in Section V, we show numerical results for an
example pertinent to MRI. Finally, the paper is summarized in
Section VI.

II. CONSTRUCTING THE ROM

Our ROMs are based on an SVD of the operator , formally
given by (5). This representation is attractive because if the se-
ries is truncated after terms, the resulting model is an op-
timal rank- approximation of the operator, with respect to an
error criterion. The main difficulty with this idea is that the
and the have to be known throughout the input and output

regions, respectively, and, in general, these regions are 3-D, and
potentially infinite. Our approach for this problem is to shift
computations from regions and to region , in a manner
reminiscent of the reciprocity theorem. For example, instead of
computing inner products between a source in region and the
, we compute inner products between the fields that the source

generates in region , and a set of corresponding distributions in
region . Computing inner products in region is much easier,
since the fields are smoother than their sources, the region is fi-
nite, and we can make use of the basis functions of whichever
solver we employ. To find these corresponding distributions, we
write the SVD of using the SVDs of and .
Let us first define these operators more precisely. The oper-

ator maps currents in region to the electric fields they gen-
erate in region . It is given by

(8)

where is the free-space dyadic Green’s function

(9)
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Here, is the free-space permeability, the identity dyadic,
and , with being the speed of light in vacuum. Sim-
ilarly, the operator maps currents in region to the electric
fields they generate in region . It is given by

(10)

The operators and are compact, which means we can
use a truncated SVD to approximate them while controlling the
error of the approximation. We have

(11)

(12)

where, using terms for

(13)

and using terms for

(14)

As in the matrix SVD, the norm of the error committed in
the aforementioned truncation is bounded by the norm of the
vector of discarded singular values. Hence, the error can be
estimated by computing, say, twice as many singular values
than intended. If the norm of the second half of the singular
values vector is small enough compared to that of the first
half, the order may be deemed high enough and, if not, more
singular values should be computed. The appropriate tolerance
for determining the truncation order depends on the accuracy
required for the specific application. For the MRI example
described in this paper, we increased the order until the norm
of the second half was a thousand times smaller than the norm
of the first half (see Section V-B).
To obtain an approximate SVD of , we insert (11) and (12)

into (5)

(15)

and compute an SVD of the matrix , marked by the brace in
(15)

(16)

where the denotes the conjugate transpose. Replacing the term
marked by the brace in (15) by its SVD, (16), we obtain an
approximate SVD of

(17)

Since the numerical rank of is no larger, and potentially
smaller than that of either or , it may be possible to
truncate (17) further without incurring significant errors in the
approximation of . Indeed, from (15), one can expect the
singular values of to behave roughly like the product ,
decaying faster than each one individually.
The point of the aforementioned derivation is clarified by the

following final step. We use (11) and (12) to write and
in an alternate form

(18)

where is the operator adjoint to , and is defined analo-
gously to in (13). This form is suitable for computation be-
cause applying , , , and is easy since these are
just matrices, and applying and only involves distribu-
tions defined over region , and applying and only in-
volves computing fields due to sources in free space.
If the singular vectors defined in region are known exactly,

there is no approximation involved in using (18) to compute
inner products with singular vectors defined in regions and .
This is because the truncation error committed in (11) and (12)
is orthogonal to the retained vectors. More precisely, define the
truncation error operator, say for , by .
Then

(19)

but the last term is identically zero because 0 for
all . Hence, the region inner product on the left-hand side
of (19) can be replaced by the (first) region inner product on
the right-hand side. If these integrals are evaluated numerically,
the error incurred is independent of the truncation order . A
similar argument applies to the truncation of .
In practice, the singular vectors defined in region are not

known exactly. But as explained in Section IV-A, it is possible
to use RSVD techniques, together with a set of basis functions
for region , to compute discretized approximations to these
singular vectors as well as to the singular values, the and
. Once we have these, we form the matrix by solving

scattering problems (or adjoint scattering problems if ),
compute an SVD of , and use it to form the operators and

according to (18).

III. EVALUATING THE ROM

The steps for evaluating the ROM once it has been con-
structed with the approach above are as follows.
1) Compute the free-space field due to the sources in region

at observation points in region .
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2) Compute the inner products of this field with the .
3) Multiply a vector of these inner products by the matrix

.
4) Use the result of the last step to form a weighted combina-
tion of the .

5) Compute the free-space field due to this weighted combi-
nation at observation points in region .

If the scatterer is a complex object, the number of basis func-
tions in region , denoted by , will be large and computing
the free-space fields and inner products above will be time-con-
suming.
To expedite the ROM evaluation, we replace the full inner

products by sampled inner products, along the lines of a recently
proposed DEIM.
The main idea in the DEIM is that if we are trying to approx-

imate a vector by a weighted combination of a few orthonormal
basis vectors, we need not resort to the full inner products. If
the vector to be approximated is in the span of the basis vectors,
or almost so, then selecting a few entries in the vector and de-
termining the coefficients based solely on these entries usually
suffices. If we choose the number of entries equal to the number
of basis vectors, we obtain the DEIM, which is an interpola-
tion method. We may also use more entries than basis vectors
to obtain a closer approximation of the full inner products. The
DEIM includes an algorithm for selecting the entries, given in
the Appendix. Using this idea, we can restrict the computation
of the inner products to a small set of points in region and so
expedite the ROM evaluation.
We detail the procedure for the operator; a similar proce-

dure is used for the operator. To evaluate using (18)
involves computing a vector of coefficients so that

(20)

where is given by . To compute , one way
would be to use the large set of basis functions for region
. In this basis, the are represented by a matrix ,
the field is represented by a vector , and
then . Note that is a semi-discrete operator that
maps a continuous distribution in region to a column vector
of size .
To expedite the computation of , we approximate it using

only entries of , which are chosen according
to the DEIM. Using a selection matrix, , composed of
columns of the identity matrix, the chosen entries are
written as , and is determined approximately by

(21)

where . By applying a similar procedure for
, we obtain an selection matrix , an

matrix of output basis vectors, and a semi-discrete operator
that maps coefficients of the basis functions in region

to electric fields at observation points in region . We denote
the DEIM interpolation matrix for the output region by

.

Fig. 2. Full-order (a) and reduced-order (b) models.

Combining the DEIM with the SVD-based ROM, we obtain
a new ROM which is of the same order, but much faster to eval-
uate. The system relating the ROM inputs and outputs is

Input (22)

State equation (23)

Output (24)

where

(25)

The inverse of the system matrix can be precomputed of-
fline by solving the scattering problems for each of the ex-
citations. In (25), the SVD-factored form of , in parenthesis,
includes only the first singular values and vectors of . The
form of full-order and reduced-order models is summarized pic-
torially in Fig. 2

IV. NUMERICAL IMPLEMENTATION

The procedure for constructing the ROM consists of four
steps as follows.
1) Use the SVD to obtain a compressed representation of the

and operators.
2) Use the DEIM to determine input and output interpolation
points.

3) Solve the scattering problem for a set of excitations span-
ning the range of .

4) Form matrix , according to (15), and compress it using
the SVD.

Implementation details regarding these steps are given below.

A. Compression of the and Operators

The operators and are semi-discrete, that is, they
map continuous distributions to discrete column vectors or
vice-versa. Computing their full SVDs is challenging, but for
our purposes, we only need the singular values and the and
matrices. To obtain them, we use an RSVD technique [22].
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We apply and to a set of random excitations. For
example, for , these excitations are elementary dipoles
with random amplitudes and orientations, distributed in region
.We obtain column vectors representing fields in region ,
which we orthonormalize to obtain an unitary matrix
. Then, considering the columns of to represent sources

in region , we compute the fields due to these sources at the
dipole points in region . We obtain an matrix ,
which we compute the SVD of

(26)

and approximate and . An analogous
procedure is used for .
As long as is kept moderate, the computational cost of the

SVDs is not too high, since the matrices have rank . Of
the computed singular values, numerical experiments show that
roughly the first half are accurate, and accuracy deteriorates in
the second half. Hence, if singular values are to be retained, we
must have . We begin with an estimate of and ,
and an error tolerance, and compute the RSVD as described. If
the smallest singular value in the first half of singular values is
smaller than the error tolerance, the RSVD is considered accu-
rate enough for our purpose. If not, we increase and repeat
the RSVD procedure. Once we obtain an adequately accurate
SVD, we set to the smallest value that still guarantees that the
error tolerance is met and retain the first singular values of
and their corresponding columns of .

B. Generation of Interpolation Points

Our implementation of the DEIM differs slightly from that
introduced in [10]. For simplicity, we only describe the proce-
dure for ; the one for is analogous. The standard approach
is to apply DEIM to the truncated basis with vectors, which
yields interpolation points. This works well when the vector to
be approximated is very close in norm to a vector in the column
span of the basis vectors. But if this is not the case (because we
allow for a moderate error tolerance) using the standard DEIM
introduces fairly large errors.
To overcome this problem, we use more field evaluation

points than basis vectors. To generate these points, we take
advantage of the RSVD computation and apply the DEIM to
the intermediate orthonormal basis before truncation.
We obtain interpolation points which we use to form the
matrix , which we then truncate, retaining
only its first rows.
It is important to keep the number of interpolation points

moderate, since the cost of evaluating the ROM scales linearly
with this number. However, it is possible to use three times as
many interpolation points with little overhead, by using all three
components of the field at a given point. The DEIM selects basis
functions in region , but, typically, there are three basis func-
tions with overlapping supports, one for each Cartesian compo-
nent. So we augment the set of basis functions chosen by DEIM
with all of the basis functions whose support overlaps that of the
chosen set.

To summarize, the combined RSVD+DEIM approach is
given in the MATLAB-style code in Algorithm 1.

Algorithm 1 Combined RSVD+DEIM Implementation

1: set number of random excitations

2: set number of singular vectors computed,

3: set error tolerance

4: and are the number of basis functions in regions
and , respectively.

5:

6:

7: FOR

8:

9: END

10:

11:

12: FOR

13:

14: ( is just the field due to , evaluated in
region })

15:

16: END

17:

18:

19:

20:

21: FOR

22: IF

23: , BREAK

24: END

25: END

26:

27:

28:

29: RETURN , , , .

C. Generation and Compression of the Matrix

Generating the matrix is typically the most computa-
tionally-intensive step. It requires the solution of a scattering
problem for each basis excitation, and we assume that the
scatterer is such that a direct inversion of is not practical. The
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excitations can be either the columns of or the columns
of , whichever is smaller. If , the operator is replaced
by its adjoint, and the results are conjugated and transposed.
Although it is a computational-intensive step, it is embarrass-

ingly parallelizable in shared and distributed memory environ-
ments. Hence, an almost linear speedup can be expected when
using up to cores or machines.
Once the matrix is formed, according to (15), we compute

its SVD and discard singular values (and corresponding singular
vectors) which are below a given error tolerance. The matrix
can then be stored and applied in its SVD-factored form.

In practice, however, if is not too large, this last step is not
essential.

D. Summary of Key Features

The most notable features of the proposed approach are as
follows.
• The compression of the input and output operators is purely
algebraic, and only depends on the geometry of regions ,
, and .

• Any electromagnetic solver can be used to solve the scat-
tering problem for the basis excitations.

• The ROM is valid for any source and observation points in
regions and , and the position of such points is uncon-
strained within these regions.

• The ROM can be readily and efficiently reused for any
configuration of antennas and scatterers within regions
and , and combined with any integral equation solver.

V. NUMERICAL RESULTS

A. Problem Specification
We demonstrate the proposed method by applying it to a

problem relevant to the design of antennas used in high-field,
parallel-transmit, magnetic resonance imaging (MRI) scanners.
In these scanners, an array of antennas placed close to the human
body is used to excite atoms at the so-called Larmor frequency.
For the case we consider here, this frequency is 298.2 MHz.
Because of the proximity of the human body to the antennas,
its presence has to be taken into account when designing the
antennas and the RF transmission network. Analyzing the inter-
action of the antennas with the human body is computationally
intensive, especially if the body is to be modeled realistically,
and this makes it hard to optimize a design, or asses its sensi-
tivity to changes in the body’s position.
The human model we use is the highly realistic and inhomo-

geneous DUKE model of the virtual family [23], of which we
use only the head and shoulders (Fig. 3). This is a voxel-based
model, in which the complex permittivity is defined on a uni-
form grid of 5-mm resolution.We define the input and the output
regions to be a cylindrical shell around the head, between 140
and 160 mm from the center of the head, and with a vertical
length of 220 mm. The antennas may reside anywhere in this re-
gion. Since the model is defined at voxels, we use a voxel-based
method for the solver. We use an electric-field volume integral
equation (EFVIE) method with pulse basis functions similar to
that of [24], but with a better conditioned formulation to be de-
scribed elsewhere [25]. The headmodel is embedded in a cuboid

Fig. 3. Sagittal views of the (top) real part and (bottom) imaginary part of
for the 5-mm resolution Duke model at 298.2 MHz.

domain of lengths 320 mm 480 mm 400 mm, uniformly dis-
cretized into 5-mm resolution voxels. This domain has 491520
voxels and three times as many basis functions. Of these, region
contains 98339 voxels and regions and contain

26784 voxels.

B. ROM Construction

Since regions and are the same, the procedure is sim-
pler than in the general case. We have and, therefore,
we also use the same set of DEIM points for input and output
regions. For the random excitations, we use all of the voxels
in region , and in each one, we have a spatially constant cur-
rent distribution. While in general, the random excitations could
be confined to the surface of region . Here we use the FFT
to generate the incident fields, so using volume current distri-
butions is convenient. We use 2000 random excitations
in the region, and a relative tolerance of 0.001 for the
RSVD truncation. Algorithm 1 generates an incident basis of

476 vectors and 840 interpolation points in the scatterer.
The basis is stored in 295017 476, and the DEIM ma-
trix in 2520 476 (recall that we have three components
for each voxel). Due to the proximity of the potential antenna
positions to the scatterer (less than 20 mm at the closest point),
the number of vectors that we need to keep is relatively high
(476), but it is still a small number when compared to the de-
grees of freedom (DOFS) in regions (80352) and (295017).
We use the EFVIE solver to solve for each of the 476 vectors
contained in the columns of , and form the matrix . As pre-
sented in (16), an SVD is applied to matrix , and its factor-
ized form is truncated, retaining the 327 largest singular values
and corresponding singular vectors. After this truncation, matrix

in (25) can be represented as the product of a 2520 327
matrix, a diagonal 327 327 matrix, containing the singular
values of , and a 327 2520 matrix. The complete ROM
construction takes approximately 4 h on a server equipped with
a GPU, with the solution of the 476 scattering problems taking
most of the time.

C. Results

The top plot of Fig. 4 depicts a 3-D view of the 98339
voxels in region (DUKE model, in blue) and 26784
voxels in the input region (antenna region, in gray) used for
the ROM generation. The bottom plot of Fig. 4 shows the same
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Fig. 4. (Top) 3-D view of the voxels in the DUKE model (in blue) and in the
antenna region (in gray). (Bottom) voxels selected by the DEIM for the inter-
polation (in red).

TABLE I
RESULTS FOR 100 RANDOM EXCITATIONS

EFVIE times use a GPU-accelerated code.

3-D domain in which the DUKE model has been replaced by
the 840 interpolation points selected by Algorithm 1.

D. Approximation of the Incident Field

To test the approximation of , we compare the
approximation obtained using the DEIM points with that ob-
tained using all points, and with the exact . The relative
2-norm errors

(27)

are shown in Table I. In (27), is the approximation
of the field due to the random excitations, and is the exact
field, discretized using the region basis functions. When the
DEIM points are used, , and when all of the

Fig. 5. Comparison of the coefficients obtained using the DEIM points and
all of the points.

Fig. 6. The 3-D view of the DEIM points (in red) for the DUKE model, with
the voxels associated with a transmitting coil (blue), and the voxels associated
with a receiving coil (green).

points are used, . The same formulas are used to
characterize the error for the scattered field .
Table I presents the worst case results among the results ob-

tained for 100 random current distributions in the region. The
absolute values of the 476 coefficients in are shown in Fig. 5,
for a square loop of uniform current (Fig. 6). As can be observed,
the computed using the DEIM points matches those com-
puted using all of the points to a high degree.

E. Scattered Field Approximation

For each of the 100 random current distributions in region ,
we compute the scattered field in region (which is the same re-
gion in this case).Again,we compare errors using only theDEIM
points, all of the points, and the EFVIE solver. Table I also in-
cludes the average time per excitation required by each method.
In a second setting, we place a loop of uniform current in

region as a rough model for a transmitting antenna. The voxels
associated with the transmitting and receiving coils are shown in
Fig. 6, in blue and green, respectively.We compute the scattered
field at a receiving coil located in a different position in region ,
and the results of this computation are shown in Fig. 7, where
the high accuracy of the ROM approximation can be readily
observed.
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Fig. 7. From top to bottom: real and imaginary parts of the , , and com-
ponents of the scattered electric field at the receiving coil voxels, using the
EFVIE solver and the proposed ROM.

F. Combination With a Thin-Wire MoM Solver

The proposed ROM can be particularly useful when com-
bined with an integral-equation solver, since it can be used to
model a simpler scatterer or antenna in the vicinity of the scat-
terer modeled by the ROM.
To demonstrate this possibility, we use a very simple MoM

solver for thin-wire structures [26]. We place a circular wire
loop antenna in region . The loop has a radius of 74.5 mm,
a wire diameter of 1 mm, and it is discretized into 94 segments
of approximately 5 mm each (Fig. 8). The loop dimensions were
chosen so that its resonance is close to the frequency of interest
298.2 MHz. The wire loop is placed at 147.5 mm away
from the center of the head (less than 20 mm away from the
closest head voxel), and it is excited at 298.2 MHz using a delta
gap source at the top of the loop. The choice of the distance to
the head is such that no coil element coincides in space with the
elements that were used to generate the ROM.

Fig. 8. The 3-D view of the DUKE model (in blue) and the circular wire-loop
antenna.

TABLE II
IMPEDANCE OF THE WIRE-LOOP ANTENNA

is for 147.5 mm, is for 167.5 mm.
MoM EFVIE times use a GPU-accelerated code.

In the thin-wire MoM model, the loop current is discretized
into segments of constant current, and the vanishing of the tan-
gential component of the electric field is enforced at the centers
of the segments. In the absence of the head, this leads to a linear
system

(28)

where is the vector of unknown segment currents, is a vector
of voltages due to the delta-gap source, and is a generalized
impedance matrix. With the ROM available, this equation is
easily modified to take into account the presence of the head.
We have

(29)

where is a 2520 94 matrix that maps the current moments
of the segments forming the loop to the discretized electric fields
they produce at the DEIM elements in the head. Exploiting reci-
procity, the transpose of this matrix is used to map the current
moments at the DEIM points to the electric field (multiplied by
segment length) they produce at the antenna segments. Finally,
the minus sign in (29) is needed to relate an electric field to a
voltage.
The system matrix in (29) is obtained very fast, since it only

involves generating the matrix and a few matrix multiplica-
tions. We compare this with a more standard approach, where
the EFVIE solver is coupled with the thin-wire MoM solver.
In this case, the coupling must be computed between each of
the 94 segments of the wire loop and the 98339 voxels of the
body model. Constructing the 94 94 system matrix involves
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Fig. 9. (Top) Real and ( bottom) imaginary parts of the port impedance for a
74.5-mm-loop antenna as a function of the distance from the center of the head,
with and without the head.

94 solves using the EFVIE, with takes about 46 min. In this sce-
nario, methods, such as the ACA, could be applied to obtain a
compressed version of the coupling between the wire loop and
the body model, speeding up the computation. However, any
change in the geometry or position of the wire loop would re-
quire recomputing the compressed coupling. On the other hand,
the proposed ROM can be reused for any geometry or position
of the antenna, as long as it fits in the input/output region.
The values of the port impedance with the head present and

without it are shown in Table II. In MRI, the loops are electri-
cally small and their port impedance is largely inductive. We
choose, however, to make the loop larger in order to increase
the effect the head has on the port impedance. The results ob-
tained using the ROM match those obtained with the coupled
EFVIE+MOM solver fairly closely (less than 0.2% error), but
the latter takes half a second, while the former takes 46 min.
Using the ROM, it becomes more practical to automate and op-
timize the design of an antenna array while controlling the total
absorbed power. To test the robustness of the proposed method,
we also experimented with placing the antenna at different dis-
tances, including positions outside region . Fig. 9 shows the
real and imaginary part of the port impedance with and without
the head as the loop distance varies, from 135 to 170 mm. This
includes positions between the region and the head, as well as
positions beyond region . It is clear that the proposed ROM is
able to capture the behavior of the complete system, since it is in
fairly good agreement with the results of the MoM+EFVIE. As

Fig. 10. (Top) Real and (bottom) imaginary parts of the port impedance a loop
antenna as a function of the coil radius, when placed at 142.5 mm, with
and without the head.

can be observed in the second column of Table II, when placing
the antenna 167.5 mm away from the center of the head, the
ROM is still very accurate (0.3% error in the absolute value).
We now compare the response of the coil loop as we vary the

radius, from 60 mm to 90 mm, when placed at 142.5 mm.
The coil is discretized into a varying number of segments (76 for
60 mm to 114 for 90 mm) of approximately 5-mm length. The
variation of the real and imaginary parts of the port impedance
is shown in Fig. 10, and good agreement between the ROM and
the MoM+EFVIE can be observed.
Note that in all of these settings, solving the MoM+EFVIE

for each distance or for each coil radius requires approximately
45 min, whereas the solution with the proposed ROM requires
half a second per solve.
Finally, the current distribution along the 74.5-mm radius

loop when placed at 147.5 mm, with and without the head,
is shown in Fig. 11. Here, too, good agreement between the
ROM and the coupled EFVIE+MoM solver is evident.

VI. CONCLUSION

A method for generating ROMs of complex scatterers was
described. While we focused on inhomogeneous dielectric scat-
terers, the approach is general and it can be easily adapted to
other types of scatterers. The ROMs are based on the SVD of
the operator relating currents in an input region to the electric
fields they produce, in the presence of the scatterer, in an output
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Fig. 11. (Top) real and (bottom) imaginary parts of the currents flowing through
each segment of the wire antenna, with and without the head.

region. The models are therefore optimal in the sense that they
are the most accurate for a prescribed rank. Despite this opti-
mality, a straightforward application of the SVD involves inner
products over 3-D, possibly infinite domains and, hence, it is
not practical. We therefore replace these inner products with ap-
proximate inner products using the DEIM. The resulting model
consists of elementary sources inside the scatterer, with ampli-
tudes determined from the values of the incident field at the
source locations. As the number of sources is moderate, the
ROM is very fast to evaluate. Once constructed, it can be com-
bined with an integral-equation solver to analyze interactions
between antennas, or simple scatterers, and the complex scat-
terer. As shown in the numerical results section, a loop antenna
radiating near a highly realistic human head model can be an-
alyzed accurately in half a second on a desktop PC. This ca-
pability enables the automated design and optimization of an-
tennas operating near complex scatterers.

APPENDIX

For completeness, a brief description of the DEIM is given
as follows. This description differs from that of [10] in that all
quantities are complex, but this modification is straightforward.
Consider approximating a nonlinear vector function

and assuming that the range of is
contained, at least approximately, in a linear space spanned by a
set of known orthonormal vectors, . More precisely

(30)

for some coefficients . The best approximation in the
least-squares sense is obtained when , but when

, computing all components of may be too time
consuming. In the DEIM, the coefficients are computed
by a discrete interpolation, that is, the approximation is forced
to be exact for of the components of . The operation of
selecting rows of a length column vector is expressed using
a selection matrix , which is composed of the corresponding
columns of the size identity matrix. Then, are
the components used to determine the coefficients and we
have

(31)

and inserting this expression into (30), we obtain the DEIM ap-
proximation

(32)

The algorithm for selecting the points is a greedy algorithm
aimed at minimizing an error bound developed in [10], and it
is guaranteed to yield an invertible . Let us denote the in-
dices of the components to be selected by , so
that . We first order the columns of
in order of decreasing “importance”, that is, such that

will be usually sorted in decreasing order. If, as is usually the
case, was obtained from an SVD, the usual ordering of the
matrix is adequate. In the first iteration, we set equal to the
index of the largest component in the first column of . Then,
we approximate the second column of by the first column of
times a coefficient, determined in order to make the approx-

imation exact at . We compute the residue of the approxima-
tion, and set equal to the index at which the residue is largest.
We proceed in this way until we have points. The algorithm is
given more precisely in Algorithm 2.

Algorithm 2 DEIM

1: Input: U is an unitary matrix.

2:

3: ( is the order identity matrix.)

4: FOR

5: Solve

6:

7:

8:

9: END

10: RETURN
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