
Algorithm Selection using Reinforcement Learning

Michail G. Lagoudakis MGL@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham, NC 27708, USA

Michael L. Littman MLITTMAN @RESEARCH.ATT.COM

Shannon Laboratory, AT&T Labs – Research, Florham Park, NJ 07932, USA
Department of Computer Science, Duke University, Durham, NC 27708, USA

Abstract

Many computational problems can be solved by
multiple algorithms, with different algorithms
fastest for different problem sizes, input distri-
butions, and hardware characteristics. We con-
sider the problem ofalgorithm selection: dy-
namically choose an algorithm to attack an in-
stance of a problem with the goal of minimiz-
ing the overall execution time. We formulate the
problem as a kind of Markov decision process
(MDP), and use ideas from reinforcement learn-
ing to solve it. This paper introduces a kind of
MDP that models the algorithm selection problem
by allowing multiple state transitions. The well
known Q-learning algorithm is adapted for this
case in a way that combines both Monte-Carlo
and Temporal Difference methods. Also, this
work uses, and extends in a way to control prob-
lems, the Least-Squares Temporal Difference al-
gorithm (LSTD(0)) of Boyan. The experimental
study focuses on the classic problems of order
statistic selection and sorting. The encouraging
results reveal the potential of applying learning
methods to traditional computational problems.

1. Introduction

When performing a repetitive task, people often find ways
of optimizing their behavior to make it faster, cheaper,
safer, or more reliable. Computer systems execute tasks
that are far more repetitive and could benefit considerably
from optimization. Programmers and source-level compil-
ers work hard to reorganize computations to make them
more efficient, but as computer systems become more com-
plex and “mobile” programs are expected to run efficiently
on a wide variety of hardware platforms, squeezing max-
imum performance out of a program requires run-time in-
formation.

A challenging research goal is to design a run-time sys-
tem that can repeatedly execute a program, learning over
time to make decisions that speed up the overall execution
time. Since the right decisions may depend on the problem
size and parameters, the machine characteristics and load,
the data distribution, and other uncertain factors, this can
be quite challenging. As a first attempt, we attack the fol-
lowing algorithm selectionproblem. We require that the
programmer provide (a) a set of algorithms that are equiva-
lent in terms of the problem they solve, but can differ in, for
example, how their running time scales with problem size,
and (b) a set of instance features, such as problem size,
that can be used to select the most appropriate algorithm
from the set for a given problem instance. We show how a
reinforcement learning approach can be used to select the
right algorithm for each instance at run-time based on the
instance features.

Recall that arecursive algorithmis one that solves a prob-
lem by doing some preprocessing to reduce the input prob-
lem to one or more subproblems from the same class,
solves the subproblems, then performs some postprocess-
ing to turn the solutions to the subproblems into a solution
for the original problem. Because each of the subproblems
generated by a recursive algorithm belongs to the same
class as the original problem, each gives rise to a new algo-
rithm selection problem. Thus, when recursive algorithms
are included in the algorithm set, the algorithm selection
problem becomes a sequential decision problem.

Related work (Lobjois & Lemaˆıtre, 1998; Fink, 1998)
treats algorithms in a black-box manner: each time a single
algorithm is selected and applied to the given instance. Our
focus is on algorithm selectionwhile the instance is being
solved. In that sense, each instance is solved by a mixture
of algorithms formed dynamically at run-time.

The remainder of this section develops a simple example
to clarify the definition of the algorithm selection problem.
Section 2 connects the problem to that of solving a Markov
decision process and Section 3 explains how a learning al-

gorithm can be applied to improve performance. Section 4
discusses approximation methods for the value function,
and, finally, Section 5 provides results for two initial studies
using the problems of order statistic selection and sorting.

As a simple concrete example, let’s consider creating a sys-
tem for sorting. We write two algorithms: shellsort and
bubblesort. Shellsort has a bit more overhead, and thus can
run a bit more slowly for small problems. However, its
asymptotic running time for a list ofn items isO(n3/2) in
contrast to bubblesort’sO(n2), so we’d expect shellsort to
be preferable for large problems. If we use only problem
size,n, to decide which algorithm to run, the algorithm
selection problem reduces to finding an optimal cutoffn′

such that we sort lists of fewer thann′ items with bubble-
sort and longer lists with shellsort.

Now, consider adding mergesort to our algorithm set.
Mergesort is anO(n log n) recursive algorithm. It takes a
list of n items, separates it into two lists of sizebn/2c and
dn/2e, sorts them individually, and finally combines the
two small sorted lists into a single sorted list. Since merge-
sort is the most efficient algorithm in the set for large lists,
a large list will be sorted by applying mergesort repeatedly
until the resulting subproblems are sufficiently small. At
this point, either shellsort or bubblesort should be applied.

2. Algorithm Selection as an MDP

The algorithm selection problem can be encoded as a kind
of Markov decision process (Puterman, 1994) (MDP) con-
sisting of states, actions, costs, transitions, and an objective
function. The state of theMDP is represented by the cur-
rent instantiation of the instance features. To fully satisfy
the Markov property, some unknown factors, like data dis-
tribution and machine characteristics, should be part of the
process’ state. However, such information is not only un-
available, but would also make the state space extremely
large and perhaps overly expensive to manipulate on the
fly. We treat such factors as unmodeled hidden state and
assume their influence is negligible.

Actions are the different algorithms that can be selected.
Non-recursive algorithms are terminal in that they are not
followed by a state transition and the corresponding pro-
cess terminates. In contrast, recursive algorithms cause
transitions to other states, which correspond to the subprob-
lems created by the recursive algorithm. These state transi-
tions are non-deterministic in general, especially when ran-
domization is used as part of the recursive algorithm.

The immediate cost for choosing some algorithm (action)
on some problem (state) is precisely the real time taken for
that execution, excluding any time taken in recursive calls.
The total (undiscounted) cost accumulated while fully solv-
ing a problem is exactly the total time taken to solve the

Preprocessing PostprocessingRecursive Calls

Subproblem 1 Subproblem 2

Running Time

 Top
Level

R
ecursion

Figure 1.For each (sub)problem the shaded part of the running
time indicates the immediate cost.

problem (see Figure 1). The objective is to find a policy,
a mapping from values of instance features to algorithms,
such that the expected total execution time is minimized.
For a fixed policy, the value of a states is the expected
time to solve a problem described by states using the al-
gorithms selected by the policy. Note that the cost function
is unknown and non-deterministic in general, since it may
depend on several uncertain and hidden factors.

State transitions are a bit more complex in the case of re-
cursive algorithms. From theMDP point of view, the multi-
ple subproblems that are created and solved by a recursive
algorithm result in transitions to multiple states—this vio-
lates the standardMDP definition. For example, mergesort
divides the input to be sorted into two pieces, each corre-
sponding to a different state, yielding a 1–to–2 state tran-
sition. However, as long as a sequential model of compu-
tation is used, we can safely treat each of these transitions
to a new state independently, and the total cost will be the
sum of the individual total costs for each subproblem. One
can think of it as cloning theMDP and generating one copy
for each transition.

There is a strong relation between the recurrence equations
used to analyze the running time of recursive algorithms
and the Bellman equation for the algorithm selection prob-
lem. The standard recurrence for mergesort is (Cormen
et al., 1990)

T (n) = 2T (n/2) + Θ(n), T (1) = Θ(1),

whereT (n) represents the running time on an instance of
sizen. The Bellman equation for the state value function
of the Markov chain underlying mergesort is

V (sn) = 2V (sn/2) +R(sn, am), V (s1) = 0,

whereR(sn, am) is the cost for choosing mergesort in state
sn that corresponds to an instance of size1 n; the Bellman

1Size is the most crucial instance feature for most problems.
In presenting our method we assume that the state of the MDP

equation captures the underlying structure of the recursive
algorithm.

In the most general case, the average running timeT (n) of
a recursive algorithm that createsk subproblems of sizes
n1, n2, ..., nk, is described by the recurrence

T (n) = E

 k∑
j=1

T (nj) + t(n)

 ,
wheret(n) is the preprocessing and postprocessing time.
On the other hand, the value of a statesn under a fixed
deterministic policy would be expressed as follows:

V (sn) = E

 ka∑
j=1

V (snj) +R(sn, a)

 ,
wherea is the algorithm chosen by the policy for statesn,
snj are the states describing the resulting subproblems, and
R(sn, a) is the cost for choosinga in statesn. Although
T (n) corresponds toV (sn), it is expected thatV (sn) <
T (n), that is, the expected time for the combined algorithm
is less than the time for the recursive algorithm alone.

In general, there is no model of theMDP available and thus,
in order to act optimally, either a model must be learned
by experience, or a model-free approach must be used. We
choose the second track and focus on learning the state–
action value functionQ(s, a). In this case, the Bellman
optimality equation becomes

Q(sn, a) = E

 ka∑
j=1

min
a′
{Q(snj , a

′)}+R(sn, a)

 .
3. Learning Mechanism

Our learning mechanism is a variation of the well known
Q-learning algorithm (Watkins & Dayan, 1992), adapted to
account for multiple state transitions. The general (undis-
counted) update equation of Q-learning is:

Q(t+1)(st, at) =

(1− α)Q(t)(st, at) + α
[
Rt+1 + mina

{
Q(t)(st+1, a)

}]
,

wherest is the state at timet, at is the action taken at time
t, Rt+1 is the one-step cost for that decision, andα is the
learning rate. Ifat is a non-recursive algorithm, the result-
ing state is terminal and has a cost of 0, so the update rule,
reduces to

Q(t+1)(st, at) = (1− α)Q(t)(st, at) + αR(st, at).

consists of solely the instance size, but, in general, several other
features may be used.

For recursive algorithms the learning rule is a little more
involved. For the sake of simplicity, let’s consider a recur-
sive algorithm that generates only two subproblems (gen-
eralization to more subproblems is easy). In this case, the
Q-learning rule is

Q(t+1)(st, at) = (1− α)Q(t)(st, at)+

α
[
R(st, at) + min

a

{
Q(t)(s1, a)

}
+ min

a

{
Q(t)(s2, a)

}]
,

wheres1 ands2 are the states (at timet + 1) correspond-
ing to the two subproblems. Notice that the target value
depends on two estimates, which can introduce significant
bias depending on the accuracy of the value function. In ad-
dition, multiple bootstrapping can easily cause divergence
of the value function to wrong estimates if a function ap-
proximator is used (Boyan & Moore, 1995). The two re-
sulting states must be visited individually in turn, as both
subproblems must be solved. That means that it is nec-
essary to store state information for all the pending states
along the current path in the recursion tree.

The update rule above makes use of previous estimates
in updating the value of the current state–action pair in
the spirit of Temporal Difference (TD) algorithms (Sutton
& Barto, 1998). Alternatively, one could “unfold” (solve
completely) each of the two subproblems, adding the in-
dividual costs at each step. This is the “Monte-Carlo re-
turn”, Rπ(s) =

∑
tR(st, at), and expresses the sum of

all individual costs when starting with a subproblem cor-
responding to states and following the policyπ until the
subproblem has been fully solved. To get good estimates,
the policyπ should not take any exploratory actions. Typ-
ically, π is the greedy policy with respect to the current
value function. AlthoughRπ(s) is an unbiased estimate
of the target value ofQ(s, a), it has high variance as it de-
pends on several returns and is not available before the end
of the episode. Unfolding both subproblems would result
in a pure Monte-Carlo (MC) algorithm with the following
update rule and the shortcomings just mentioned:

Q(t+1)(st, at) = (1− α)Q(t)(st, at)+

α [R(st, at) +Rπ(s1) +Rπ(s2)] .

Our learning rule combines theTD andMC rules above, by
taking theMC approach on one subproblem and theTD ap-
proach on the other. In other words, one subproblem (say,
the smallest one) is unfolded and its “Monte-Carlo return”
is added to the current one–step return, before bootstrap-
ping and recursing on the other. This is a viable alternative
in this problem because of the one–to–many state transi-
tions. The update rule takes the form:

Q(t+1)(st, at) = (1− α)Q(t)(st, at)+

α

R(st, at) +Rπ(s1)︸ ︷︷ ︸
Rt+1

+ min
a

{
Q(t)(s2, a)

} ,

wheres2 is the state corresponding to the subproblem we
recurse on. By choosings2 to be the largest one (or the
“hardest” to solve, in general), we achieve several things:
(1) more opportunities for later exploration, (2) less vari-
ance inRt+1, and (3) small recursion stack (for unfolding
the small subproblem). In addition, our problem becomes
an ordinaryMDP with single state transitions, with the extra
transition effectively pushed into the cost function. Also,
unlike the pureTD approach, there is no need for extra state
information storage. Figure 2 clarifies all these issues. This
learning rule is used in all our experiments.

An issue related to our learning rule concerns the availabil-
ity of R(s, a) during learning. If the last step of the recur-
sive algorithm is one or more recursive calls, thenR(s, a)
is immediately available before any attempt to solve the
subproblems is made. Thus, the system can learn about the
current state by immediately applying the learning rule and
then continuing independently with the subproblems dis-
carding the current state information. This is similar to the
use of “tail recursion” to improve the efficiency of recur-
sive calls. However, if the algorithm requires some amount
of postprocessing work after one or more subproblems are
solved, the returnR(s, a) is delayed until these subprob-
lems have been captured. Clearly, learning is delayed in
this case and state information storage is necessary. In our
experiments in Section 5, we take advantage of the “tail re-
cursion” as this is allowed by the algorithms we explored.

4. Generalization and Approximation

In this initial study, we have used both table-based and ap-
proximation methods to represent the value function and
cope with the size of the state space. In particular, we make
use of state aggregation and linear architectures.

State aggregation is primarily used to compress specific in-
stance features, like problem size. The rationale is that al-
though the running time of an algorithm might be signifi-
cantly different for small feature values, this relative differ-
ence fades out as values become large. For example, sort-
ing 20 elements is relatively more expensive than sorting 10
elements, but there is almost no relative difference between
sorting 5020 and 5010 elements. So, in order to avoid an
“explosion” of the state space, in our experiments we use
logarithmic compression that allows for high resolution at
small feature values and progressively lower resolution as
values grow. In particular, the valuev of an instance fea-
ture is mapped tov′, according tov′ = dlog1.1(v + 1)e.
This formula2 maps 100, 1000, and 10000 to 49, 73, and
97 respectively.

2The base 1.1 of the logarithm is an empirically-derived value
that simply provides the desired resolution. The unit increment is
used to overcome states values of 0.

 Time Step

R
ecursion

Monte-Carlo
 (MC)

Temporal Difference (TD) Exploration (EX)

No Exploration
 (NE)

Temporal Difference
 (TD)

Exploration
 (EX)

MC NE TD NE MC NETD EX

<

< <

t

t+1

t+2

t+1R
Include
in

Rt+2Include in

Figure 2.The learning mechanism. The Monte-Carlo return from
the smaller subproblem is included in the cost of its parent, fol-
lowed by a transition to the bigger subproblem. The same pattern
applies recursively at all levels/time steps. Notice that once ex-
ploration is prevented at some node, it is prevented in the whole
subtree under the node. The bold arrows show the trajectory of
the standardMDP.

Linear architectures are used to approximate the value
function. Recall that such an approximator approximates
Q(s, a) as a linear combinationφ(s, a)ᵀw of k basis func-
tions φ(s, a) with coefficients (or weights)w. The k
weightsw are estimated in a way that minimizes discrep-
ancy with the observed data in the least-squares sense.
The observed data take the form{st, at, Q(t+1)(st, at)}
for t = 1, 2, ..., whereQ(t+1)(st, at) is the new (updated)
value given by our learning rule in Section 3. Ideally, we
would likeφ(st, at)

ᵀw = Q(t+1)(st, at) to be true for all
data. UsingΦ to denote the matrix with rowsφ(st, at)

ᵀ

andq to denote the vector with componentsQ(t+1)(st, at),
the least-squares solution forw is given by solving thek×k
linear system

(ΦᵀΦ)w = Φᵀq =⇒ w = (ΦᵀΦ)−1Φᵀq.

The matrixΦ and the vectorq can become extremely big
as data accumulate. Fortunately, we need only maintain
thek × k matrixA = ΦᵀΦ and thek-dimensional vector
b = Φᵀq, which can be incrementally updated with new
data as follows:

A(t+1) =
(
Φᵀ φ(st+1, at+1)

)(Φ

φ(st+1, at+1)ᵀ

)

= ΦᵀΦ + φ(st+1, at+1)φ(st+1, at+1)ᵀ

= A(t) + φ(st+1, at+1)φ(st+1, at+1)ᵀ ,

b(t+1) =
(
Φᵀ φ(st+1, at+1)

)(q

Q(t+2)(st+1, at+1)

)

= Φᵀq + φ(st+1, at+1)Q(t+2)(st+1, at+1)

= b(t) + φ(st+1, at+1)Q(t+2)(st+1, at+1).

The weights can be updated byw(t) =
(
A(t)

)−1
b(t)

whenever needed. In this work, we use a separate linear
architecture for each algorithma, each one having its own
set of weights, that isw = w(a).

This least-squares approach is similar to the one described
by Boyan (1999), and actually extends the LSTD(λ) algo-
rithm to general MDPs forλ = 0.

5. Results

We have applied the ideas above on two fundamental com-
putational problems: order statistic selection and sorting.
These early experimental results3 reveal that there is po-
tential for getting the most out of well-known algorithms
by combining them as suggested in the previous sections.

5.1 Order Statistic Selection

For theorder statistic selection problem, we are given an
array ofn (unordered) numbers and some integer indexi,
1 ≤ i ≤ n. We would like to select the number that would
ranki-th in the array if the numbers were sorted in ascend-
ing order. There are several algorithms for order statistic
selection. We picked two of them such that neither is best
in all cases, otherwise learning would not really help4.

DETERMINISTIC SELECT (Cormen et al., 1990) is a re-
cursive worst case linear time algorithm. It finds a good
partitioning element by making a recursive call to find the
median of a subset of the input. That subset consists of the
medians of every five elements of the input, and therefore
its size is a fifth of the original size. Then, the original input
is partitioned and a recursive call is made to the appropri-
ate (left or right) subproblem. The size of this subproblem
varies, but it is no less than3n/10 − 6 and no more than
7n/10+6, if n is the original size. Hence, two subproblems
are solved at each recursive call. The recursion continues
until the desired element is restricted in a subset of size less
than or equal to 5 from where it can be easily isolated. The
performance of the algorithm is almost invariant with re-
spect to the value of the index (assuming fixed array size).

HEAP SELECT is a (non-recursive) algorithm with
O(n log n) worst case running time. The basic step of this
algorithm is the construction of a binary heap between the
position i and the closest end of the array. Without loss
of generality, assume thati is closer to the left end, i.e.,
i ≤ n/2 (the other case is symmetric). All the elements be-
tween positions 1 andi are organized into a heap, whose

3All experiments were performed on a Sun Ultra 5 machine
using MATLAB code. All running time plots represent averages
of 10 runs per data point. Learning was turned off during perfor-
mance testing.

4We excluded RANDOMIZED SELECT because it was consis-
tently best in our initial studies.

root is located at positioni and holds the maximum el-
ement. Then, the algorithm iterates through the remain-
ing elements; if an element is smaller than the root el-
ement of the heap, the two elements are exchanged and
the new root is pushed into the heap to maintain the heap
property. At the end, the desired element is located at the
root of the heap. To see this, notice that all elements in
the heap are smaller than or equal to the elements out-
side the heap. Obviously, the closer the index to the left
end, the smaller the heap and the faster the algorithm, since
T (n, i) = Θ(i) +O ((n− i) log i) for i ≤ n/2.

Figure 3 (in addition to other information) shows the aver-
age running time of the two algorithms for randomly gen-
erated instances of fixed size (10000) and varying index
(1− 10000). As expected, HEAP SELECT performs much
better than DETERMINISTIC SELECT for indices close to
the ends. However, for indices close to the middle (e.g. me-
dians) DETERMINISTIC SELECT outperforms HEAP SE-
LECT. A similar picture holds for other array sizes as well.
Thus, there is potential for a better average running time if
the two algorithms are combined.

As a first attempt to learn how to combine the two algo-
rithms, we used a tabular approach. The state of the pro-
cess, in this case, consists of two instance features, namely
the size of the inputn and the distanced of the index from
the closest end of the array (d = min{i, n − i + 1}). We
assume that the problem is symmetric with respect to the
middle of the array to reduce the range ofd: selecting, say,
the 10th element is equivalent to selecting the 91st one out
of 100 elements. Also, the difference between selecting
the 4000th element among 10000 elements and the 4010th
element in 9995 elements is so small that discriminating
between these two cases is not of much help. So, in order
to avoid an explosion of the state space, we logarithmically
compress the two features as described in Section 4. Given
that, half a table of size90 × 83 is sufficient to represent
the value function.

We trained the system on thousands of randomly generated
instances (≈ 100, 000) of fixed size (10000) and varying
index (1 − 10000). To facilitate training, we first trained
on several instances of smaller size. A1 − ε policy with
high degree of exploration(ε = 0.6) was used during train-
ing. Two decreasing learning rates were used, one for DE-
TERMINISTIC SELECT (α1 = 0.4 initially) and one for
HEAP SELECT (α2 = 0.7 initially). D ETERMINISTIC SE-
LECT has varying cost for a given state because of the non–
deterministic transitions, whereas HEAP SELECT is quite
invariant. This difference is reflected in the two learning
rates. The results are shown in Figure 3.

The “cut-off point algorithm” selects HEAP SELECT when
the index is within the first 13% or the last 7% of the input,
and DETERMINISTIC SELECT otherwise. The two cut-off

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

Index

T
im

e
(s

ec
)

Heap Select

Deterministic
 Select

 Learned
Algorithm

Cut−off Point
 Algorithm

Figure 3.Results for order statistic selection (tabular case).

points were determined directly from the crossover points
in Figure 3. Thus, it implements an empirically derived
policy, typical of those found in optimized software imple-
mentations. The learned algorithm, however, performs bet-
ter, because the ideal cut-off points differ by problem size.
The exception close to index value 1000 is due to the lack
of the assumed perfect symmetry. The system is forced to
arrive at a compromise using symmetric cut-off points.

Although the tabular approach reveals a performance gain,
it comes with several disadvantages: it uses a huge amount
of storage, it imposes upper limits to instance features (e.g.
size), and it takes a long time to train (several days for the
case above). This is mostly due to the lack of good gener-
alization. The key observation here is that the running time
of an algorithm typically varies smoothly as some instance
feature changes smoothly. That makes generalization much
easier compared to other domains.

Our second approach to learning makes use of linear ar-
chitectures to represent the value function. The states =
(n, d) in this case consists of the problem sizen and the
signed distanced of the indexi from the midpoint of the
array (d = i − bn/2c). Using our knowledge about the
shape of the value function, and after many trials, we found
that the value functionQ(n, d, a) can be approximated by
the following two parametric functions (one for each ac-
tion/algorithm):

Q(n, d, aD) = w1D

√√√√1−

(
d

n

)2

+ w2D

(
n−

d2

n

)
,

Q(n, d, aH) = w1H

√√√√1−

(
2d

n

)2

+ w2H

(
n

4
−
d2

n

)
,

where aD, aH are the actions of selecting DETERMIN-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

Index

T
im

e
(s

ec
)

Heap Select

 Learned
Algorithm

Cut−off Point
 Algorithm

Deterministic
 Select

Figure 4.Order statistic selection (linear architecture).

ISTIC SELECT and HEAP SELECT respectively, and
w1D , w2D , w1H , w2H are the parameters (weights). Briefly,
these functions represent a linear combination of a semi-
ellipse and a parabola (for constantn). The amount of stor-
age required in this case (see Section 4) is a2 × 2 matrix
(A(t)) and two2× 1 arrays (q(t) andw(t)) for each equa-
tion. That gives a total of 16 real numbers which compares
favorably with the≈3735 numbers of the tabular case.

We trained the system on 2,400 randomly generated in-
stances of different sizes distributed uniformly in the range
[20, 10000] with a schedule that starts with smaller sizes
and moves toward larger sizes. The index was also varied
uniformly within the available range for each size. We set
the learning rateα to 1.0 for both actions to prevent use of
wrong estimates and divergence of the value function. With
α = 1.0, only estimates of smaller sizes are used, since the
resulting subproblems can only be smaller. As long as the
training schedule is from smaller to larger sizes, it is guar-
anteed that these estimates will be fairly accurate, because
training has been completed for smaller sizes. This idea is
similar to the Grow-Support algorithm of Boyan and Moore
(Boyan & Moore, 1995). Exploration was set to maximum
(ε = 1) so that both actions get approximately the same
amount and distribution of data points. We used the least-
squares approach, described in Section 4, to estimate the
weights at each step during training.

The main advantage of the linear architecture is that the
value function is defined for any state, even for states the
system has not been trained on. Also, the learning time
was less than an hour in this case. Overall, this second
approach overcomes all the difficulties of the tabular ap-
proach with only a small degrade in performance (the best
cut-offs cannot be estimated precisely due to the restricted
form of approximation). Figure 4 shows performance re-
sults for fixed size (n = 10000) and Figure 5 results for

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

25

30

Size

T
im

e
(s

ec
)

Heap Select
Deterministic Select
Cut−Off Point
Learned Algorithm

Figure 5.Order statistic selection (median, linear architecture).

fixed index (d = 0, the median) and size up to100000.
Note that the system was trained only on instances of size
up to 10000. These initial results revealed that our ap-
proach to the algorithm selection problem is feasible and
encouraged experimentation with other problems.

5.2 Sorting

The sorting problemis to rearrange an array ofn (un-
ordered) numbers in ascending order. This is probably the
best known computational problem and there exist numer-
ous sorting algorithms.

QUICKSORT (Cormen et al., 1990) is a recursive random-
ized sorting algorithm withO(n2) worst case running time
andO(n log n) expected running time. It picks a partition-
ing element from the array at random and partitions the in-
put in two parts such that all elements in the first part are
less than or equal to the elements in the second part. Then,
the two parts are sorted recursively. QUICKSORT is ex-
tremely efficient for large arrays.

INSERTIONSORT (Cormen et al., 1990) is a non–recursive
algorithm withO(n2) worst case running time. It starts
with the first element as the initial sorted list and iteratively
inserts the other elements one–by–one at their correct po-
sition by shifting elements that are greater to the right. IN-
SERTIONSORT is very efficient for small arrays and for in-
puts that are almost sorted.

A common approach is to run QUICKSORT for large sizes
and switch to INSERTIONSORT when the size falls below
some cut-off point. However, the optimal cut-off point may
depend on several uncertain factors and it is unlikely fixed.
Using our approach, however, it is possible to figure out the
best cut-off point on the fly.

The state of the process consists of the sizen of the input.

Using our knowledge of the asymptotic running times, we
approximate the value function (that is, the expected run-
ning time) by the following parametric functions (one for
each algorithm):

Q(n, a) = w
(a)
1 n2 + w

(a)
2 n log2 n+ w

(a)
3 n,

wherea is eitheraQ or aI . The constant term is omitted,
becauseQ(0, a) = 0 by definition. The weights for these
linear architectures are estimated by the least-squares ap-
proach of Section 4.

We trained the system on 40 randomly generated instances
only, 20 with size in[1, 10], and 20 in[10, 100], starting
from smaller and moving toward larger sizes. We focus on
this small range because the cut-off point lies somewhere
in that range. The learning rate was set to1.0 for reasons
mentioned in the order statistic selection case. The learned
weights werew(Q) = (0.006, −0.085, 5.969)× 10−4 and
w(I) = (0.142, −0.540, 3.539) × 10−4. Figure 6 shows
the learned value function along with actual running times
for the individual algorithms. As expected, the value func-
tion for QUICKSORT is less than the actual running time
of pure QUICKSORT, because of the ability to invoke IN-
SERTIONSORT as needed. Notice that the cut-off point
suggested by the learning algorithm is much lower than
the point where the running time curves cross each other.
This leads to an interesting insight: once a cut-off point is
employed (say, the point where the running times cross),
QUICKSORT becomes better overall, but INSERTIONSORT

does not change. Thus, QUICKSORT can now be faster
for instances right below the chosen cut-off point, where it
was not faster before. That gives a new cut-off point and
the same reasoning applies again and again, and the cut-off
point moves lower and lower until it eventually converges.
This is captured by the learning algorithm, but is difficult
to work it out empirically offline.

Performance results are shown in Figure 7 for sizes up to
1000. The “cut-off point algorithm” is the one that uses the
crossover point (size=47) of the running time curves. The
learned algorithm, whose policy sets the cut-off point to
size=35, performs around 15% better. The learned policy
was precomputed beforehand to eliminate the overhead of
evaluating the value function at each step.

6. Future Work and Conclusions

In this paper, we have ignored the distribution of the input
data; all data come from the same uniform random distri-
bution. Ideally, a learning system should be able to adapt
rapidly to changes in the underlying distribution. To this
end, it is required that (1) learning is continuously on, (2)
some exploration is allowed, and (3) most recent data over-
shadow old data. We are currently experimenting with ex-
ponential windowing in our least-squares approach to ex-

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Size

T
im

e
(s

ec
)

Actual Running Time of InsertionSort
Value Function for InsertionSort
Actual Running Time of QuickSort
Value Function for QuickSort

Cut−Off Point from Value Function = 35

Cut−Off Point from Running Times = 47

Figure 6.Value function, actual running time, and cut-off points.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size

T
im

e
(s

ec
)

InsertionSort
QuickSort
Cut−Off Point Algorithm
Learned Algorithm

Figure 7.Running times for sorting.

ponentially discount old data. Allowing continuous explo-
ration might lead to a cost penalty or to the discovery of a
change. We have no clear solution to that problem, but in
order to avoid unnecessary time penalties, we need more
control over the algorithms. For example, we could termi-
nate a selected (terminal) algorithm if its current running
time exceeds significantly the estimate of the value func-
tion, and select another algorithm. We currently investigate
these ideas on sorting. We plan to add more algorithms to
the algorithm set and target for rapid online adaptation. We
also plan to apply the proposed ideas to other problems, like
convex hull and graph problems, where algorithm selection
may induce significant savings.

The long-term goal and potential contribution of the work
presented in this paper is twofold. First, from a computer
science point of view, we envision an era where a com-
putational problem is solved not by an isolated algorithm

selected on the basis of its theoretical properties, but by
an adaptive system that encapsulates the available reper-
toire of algorithms for that problem and selects them based
mostly on their practical performance. We believe that such
systems will be more efficient in applications that involve
a wide and diverse range of problem instances. Second,
from a machine learning point of view, the real-time con-
straint (learning is part of solving the problem) calls for
learning algorithms that generalize and adapt rapidly while
consuming minimum computational resources (especially
time). The challenge for real-time learning becomes more
and more important for the success of learning systems in
real-world applications. The results presented here are the
first steps along these directions and toward these goals.

Acknowledgments

The first author would like to thank the Lilian-Boudouri
Foundation in Greece for financial support. The second au-
thor is supported in part by NSF-IRI-97-02576-CAREER.

References

Boyan, J. A. (1999). Least-squares temporal difference
learning. Machine Learning: Proceedings of the Six-
teenth International Conference(pp. 49–56). Morgan
Kaufmann, San Francisco, CA.

Boyan, J. A., & Moore, A. W. (1995). Generalization in
reinforcement learning: Safely approximating the value
function. Advances in Neural Information Processing
Systems 7(pp. 369–376). Cambridge, MA: The MIT
Press.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990).
Introduction to algorithms. Cambridge, MA: The MIT
Press.

Fink, E. (1998). How to solve it automatically: Selec-
tion among problem-solving methods.Proceedings of
the Fourth International Conference on Artificial Intelli-
gence Planning Systems(pp. 128–136). AAAI Press.

Lobjois, L., & Lemaˆıtre, M. (1998). Branch and bound al-
gorithm selection by performance prediction.Proceed-
ings of the Fifteenth National Conference on Artificial
Intelligence(pp. 353–358). Menlo Park: AAAI Press.

Puterman, M. L. (1994). Markov decision processes—
discrete stochastic dynamic programming. New York,
NY: John Wiley & Sons, Inc.

Sutton, R. S., & Barto, A. G. (1998).Reinforcement learn-
ing: An introduction. The MIT Press.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning.Ma-
chine Learning, 8, 279–292.

