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Abstract 
Since the delay of a circuit is determined by the 

delay of its longest sensitizable paths (such paths are 
called critical paths), the problem of estimating the de- 
lay of a circuit is called critical path problem. One im- 
portant aspect of the critical path problem is to decide 
whether a path is sensitizable. Several path sensitiza- 
tion criteria have been proposed in previously proposed 
critical path algorithms. However, they are often pre- 
sented in different forms and it is hard to compare with 
each other. In this paper we propose a path sensitiza- 
tion criterion according to  a general framework. Other 
path sensitization criteria can also be presented in the 
same framework. Therefore, they can be compared with 
each other. 

1. Overview of Critical Path Problem 
One important requirement of circuit design is the 

long path timing constraint, which requires the actual 
delay of a circuit to  be bounded by a constant r - usu- 
ally the clock period. A path which is never activated 
by any primary input vector is referred to as a non- 
sensitizable path or a false path. On the other hand, 
paths which can be activated by at least one primary 
input vectors are referred to as sensitizable paths. Since 
the signal at each primary output of a circuit will be- 
come valid no later than the length of the longest sen- 
sitizable paths, the actual delay of the circuit is defined 
as the length of the longest sensitizable paths in the 
circuit. Those longest sensitizable paths are considered 
to be the critical paths to the circuit. The problem 
of estimating the length of the critical paths is, thus, 
referred to as critical path problem. 

Recently, several critical path algorithms have been 
proposed to improve the accuracy of estimating the ac- 
tual delay of a circuit [l, 2, 4, 6 ,  71. Each of them bases 
on a path sensitization criterion to determine whether 
a path is sensitizable or not. Different algorithms are 
based on different path sensitization criteria and, thus, 
may have different estimations. Using a path sensitiza- 
tion criterion, the estimated delay of a circuit may be 
longer than or shorter than the actual delay of the cir- 
cuit. In the former case (the estimated circuit delay is 
greater than the actual circuit delay), if the estimated 
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circuit delay is also less than or equal to r ,  the long 
path timing requirement is met. In the latter case, even 
though the obtained circuit delay is less than or equal to 
T, the long path timing requirement may or may not be 
met. Therefore, from timing verification point of view, 
a criterion is considered to be “correct” if its estimated 
circuit delay is never less than the actual circuit delay. 
Certainly, a criterion is considered to be more accurate 
if its estimation is closer to the actual circuit delay. 

Since all path sensitization criteria are described in 
different forms, it is hard to directly compare them and 
evaluate their accuracies. It is also very important to 
decide whether a proposed criterion is correct. This 
paper presents a framework such that various path sen- 
sitization criteria can be compared in a unified way. 
We first give some basic definitions to be used in the 
rest of this paper. Then a framework is presented. A 
path sensitization criterion corresponding to the frame- 
work is also proposed. The proposed path sensitization 
criterion is an exact criterion (i.e., it  achieves 100% ac- 
curacy). We present several previously proposed path 
sensitization criteria in the same framework. 

2. Definitions 
A combinational circuit is composed of simple gates 

and leads. Each lead connects the output of a gate to 
an input of another gate. The delay of gate G and lead 
f are denoted by d(G) and d(f). 

Apath  P =  ( f o , G ~ ,  fi,...,Gm-l,fm-l)inacircuit 
is an alternating sequence of leads and gates. Lead fo 
connects a primary input to gate G1 and lead fm-l 

connects gate G,-1 to a primary output. Lead fi, 
1 5 i 5 m - 2, connects gate Gi to gate Gi+l. The 
length of P is the sum of the delays of all the gates 
and leads of P ,  and is denoted by d p ( P ) .  Partial path 
(fo, GI,  ..., f k - 1 )  is denoted by Pk. The length of Pk is 
denoted by dp(Pk).  

A logic value is the controlling value to a gate if 
the logic value at an input to the gate independently 
determines the value at the output of the gate. The 
controlling value to gate G is denoted by c(G).  For ex- 
amples, c(G) = “0” if G is an A N D  gate or a N A N D  
gate, and c(G) = “1” if G is an OR gate or a N O R  
gate. The non-controlling value to gate G ,  denoted by 
n(G), is the complementary value of c(G) .  For exam- 
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Figure 1: Stable time computation under v = [0,1] 

ples, n(G) = “1” if G is an AND gate or a NAND 
gate, and n(G) = “0” if G is an OR gate or a NOR 
gate. 

Applying a primary input vector to a circuit at time 
t = 0, the values at the inputs and the output of each 
gate will become stable sooner or later. Let v be a 
primary input vector. The logic values stabilized at 
gate input f and gate output G under v are called the 
stable values of f and G and are denoted by sv(  f ,  U) 
and sv(G, v). The times, when f and G become stable 
under v, are called the stable times of f and G and are 
denoted by st( f ,  v)  and st(G, v). 

Input f is said to be a controlling input to gate G 
under v if s v ( f , v )  = c(G).  On the other hand, f is 
said to be a non-controlling input to gate G under v if 
s v ( f , v )  = n(G). 

Given both the stable value and the stable time of 
each input to  gate G under v ,  we describe how st(G, v) 
is computed as follows [4]. If one or more controlling 
inputs to G exist under v ,  st(G, v) is determined by the 
earliest controlling input. Hence, the earliest control- 
ling input is considered to dominate G and st(G, v) is 
equal to  the stable time of the earliest controlling input 
plus d(G). On the other hand, if all the inputs to G are 
non-controlling inputs under v, st(G, v) is determined 
by the latest input. In this case, the latest input is 
considered to dominate G and st(G,v) is equal to the 
stable time of the latest input plus d(G). In summary, 
let f be an input to gate G .  Input f is considered to 
dominate G under v if either f is the earliest controlling 
input, or f is the latest input when all inputs to G are 
non-controlling inputs. 

Path P is defined to be sensitizable under v if each 
input f i ,  0 5 i 5 m - 2, dominates its succeeding gate 
G;+1. A path is defined as a sensitizable path if there 
is at least one primary input vector that sensitizes the 
path. 

In Figure 1, let each lead delay and each gate delay 
be one time unit. Let v = [0,1] be the primary input 
vector applied to the circuit at t imet  = 0. Since b is the 
only controlling input, it dominates G I  and st(G1, v) = 

Input c is the only input to gate G2. Therefore, 
s t ( G 2 , v )  = 2, s t ( e , v )  = 3, and s t ( f , v )  = 3. Input e 
dominates G3 because it is the only controlling input to 
Gs. So, st(G3, v) = &(e, v)  + d(G3) = 4 and st (g ,  v) = 
5.  Both inputs to G4 are non-controlling inputs. There- 

st(b, v) +d(G1) = 2. SO, st(d,  V) = st(G1, v) + d ( d )  = 3. 

fore, g, which is the latest input, dominates G4. Hence, 
st(G4, v) = st(g,  v) + d(G4) = 6 and st(h, v) = 7. The 
delay of the circuit under v ,  which is st(h, v), equals 7. 
As defined, path ( c ,  G2, e ,  Gs, g ,  G4, h)  is sensitized by 
v and is a sensitizable path in the circuit. 

3. SENV- An Exact Path Sensitization Crite- 
rion 

A path is defined to be sensizable if it  can be sensi- 
tized by at least one primary input vectors. Therefore, 
determining the sensitizability of a path is equivalent 
to determining the existence of primary input vectors 
which sensitize the path. I t  will be very helpful to 
develop a criterion which is capable of computing the 
set of primary input vectors tha t  sensitize the path. 
In this section, we will focus on finding all the pri- 
mary input vectors that sensitize a given path. Let 
P = (fo, G I , .  +, Gm-2, f m - l )  b e  any given path. We 
shall denote the set of primary input vectors which sen- 
sitize P as SENV(P). If SENV(P) is empty, path P is 
a false path. Otherwise, P is a sensitizable path. In the 
following, we will propose a path sensitization criterion 
to compute SENV(P). The criterion is thus denoted by 
SENV. 

In order to help the derivation of SENV, several 
sets of primary input vectors are defined first. The 
set of primary input vectors allowing input f to be a 
controlling (non-controlling) input is defined as C V ( f )  
( N V ( f )  respectively). The set of primary input vec- 
tors allowing f to be a controlling input with stable 
time no earlier than time t is defined as GEVe(f , t ) .  
The set of primary input vectors allowing f to be a 
non-controlling input with stable time no later than 
time t is defined as LEV,(f,t).  Clearly, C V ( f )  and 
NV( f )  are mutually exclusive. GEV,( f ,  t )  is a subset 
of C V ( f )  and LEVn(f,t)  is a subset of N V ( f ) .  Also, 
if time tl is earlier than time t2, GE&(f , t l )  is a su- 
perset of GEVc( f , t z )  and LEV,( f ,  t l )  is a subset of 

Suppose that SENV(Pk- 1) is available, which is 
the set of primary input vectors sensitizing partial 
path Pk-1. w e  start to compute the set of pri- 
mary input vectors sensitizing partial path Pk which 
is denoted by SENV(Pk). Clearly, we can parti- 
tion SENV(Pk-1) into two mutually exclusive sets: 
SENV,(Pk-l) and SENV,(Pk-I). Each primary in- 
put vector in SENVc(Pk-l) sets fk-2 to be a control- 
ling input with stable time t = dp(Pk-1). On the 
other hand, each primary input vector in SENVn(Pk-1) 
sets f k - 2  to  be a non-controlling input with sta- 
ble time t = dp(Pk-1). That is, SENVc(Pk-l) 
= SENV(%-1) nCV(fk-2) and SENVn(Pk-1) = 
SENV(FL1)n NV( fk-2) .  

In order for primary input vector v to allow f k - 2  
to dominate Gk-1, v has to  set 6 - 2  to be either the 
earliest controlling input or the latest input when all 
inputs to Gk-1 are non-controlling inputs. Therefore, 

LEVn(f,t2). 
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if fk-2 is a controlling input under U, each other input 
to Gk-1 must be either a non-controlling input or a 
controlling input with stable time t 2 dp(pk-1). On 
the other hand, if fk-2 is a non-controlling input under 
U ,  each other input to  Gk-1 must be a non-controlling 
input with stable time t 5 dp(pk-1). That is, if v is 
in SENV(Pk), v must be in either of the following two 
sets. The set of inputs to  Gk-1 except fk-2 is denoted 
by SD(fk-2) (i.e., side inputs of fk-2). 

(2) 

SENVn(Pk-1) n ( n LEV,(f, dp(Pk-1)) 
fESD(h-1) 

In other words, SENV(Pk) is the union of both 
Equations 1 and 2. As mentioned, SENV,(Pk-1) in 
Equation 1 can be replaced by SENV(Pk-l)nCV(fk-l) 
and SENVn(Pk-l) in Equation 2 by SENV(Pk-1) 17 
NV(fk-1). Initially, SENV,(Pl) = cV(f0) and 
SENVn(P1) = NV(f0). Thus, by recursion SENV(A) 
can be expressed as follows. 

Path P is sensitizable if SENV(P,) is not an emp- 
tyset. 

Let P be the path ( c , G z , e , G ~ , g , G 4 , h )  in Fig- 
ure 1. Partial paths PI = (c), P 2  = (c,G2,e), P3 = 
(c!G2, e, (3‘3, g), and P4 = (c ,  G2, e, G3,g, Gq, h) = P. 
Initially, SENV(P1) consists of all primary input vec- 
tors and is equal to { [ z , ~ ] } .  Note that z represents 
logic “Don’t Care”. Since G2 has only one input, 
SENV(P2) =SENV(PI) = { [ z , ~ ] } .  Gate G3 has two 
inputs d and e. Therefore, SD(e) = { d } .  The length of 
partial path P2 (i.e., dp(P2)) is equal to  3. For side in- 

and LEVn(d,3) = {[z, 1],[1,z]} = NV(d). For e, 
the last input of P 2 ,  CV(e) = {[z,l]} and NV(e) = 
{[z,O]}. SO, SENV(P3) =SENV(P2) n ((CV(e) n 
( N  V( d )  U GEV, ( d ,  3))) U ( N  V( e) n LEV, ( d ,  3))) is equal 
to {[z, 11, [l,O]}. The length of P3 is equal to 5. For 
side input f, NV(f) = {[z, l]}, GEV,(f,5) = 0, 
and LEVn(f,5) = {[z,l]} = NV(f). For g, the 
last input of P3, CV(g) = {[l,O]} and NV(g) = 
{[x, 11, [O,O]}. SO, SENV(P4) S E N V ( P 3 )  n ((CV(g) n 
( N  V(f) UGEVc (f, 5))) U(NV(g) nLEVn (f, 5))) is equal 
to {[z, 13). That is, P can be sensitized by both pri- 
mary input vectors [0,1] and [l, 11 and it is a sensitizable 
path. 

put 4 N V ( 4  = {[z, 11,[1,~1}, GEVc(43) = m o l } ,  

4. SENVloo,,- A Looser Criterion 
Some criteria are not general path sensitization cri- 

teria and only concern about the sensitizations of long 
paths. They do not care whether the sensitizations of 
short paths are misclaimed. Note that a path is consid- 
ered as a short (long) path if it is shorter (longer) than 
a critical path. However, it is important to guarantee 
to claim at least one critical paths as sensitizable (in 
order not to under-estimate) and to reduce the prob- 
ability to claim a long path as sensitizable (in order 
to increase the accuracy). Thus, in order to make the 
comparison easier, we also show a way to “loose” the 
criterion SENV. We shall denote the loosed criterion by 
SENVl,,,,. As long as a path sensitization criterion is 
only concerned with critical paths, we have found that 
the requirement of being the latest non-controlling in- 
put can be relaxed. Instead we only need to require 
all other inputs to Gi+l to be non-controlling inputs 
too. That is, we can replace LEVn(f,dp(Pj+l)) by 
NV(f) without over-estimating the length of critical 
paths. Even though SENVIoose is looser than SENV, we 
show that it achieves the same estimation of the critical 
path length as SENV [3]. The criterion SENVl,,,,(P) 
can be exmessed as follows. 

5. Accuracy Comparison 
In the path sensitization criterion proposed in [l] 

(denoted by BenV), a path P is claimed to be sensiti- 
zable if there exists a t  least one primary input vector 
which sets all the side inputs of P to  be non-controlling 
inputs. Thus, we can describe this criterion as follows: 

BenV(P) = E2 ( r) NV(f)) 
i = O  f€SD(fi) 

Obviously, BenV(P) SENVloo,e(P) for any path 
P ,  and thus the estimated delay of a circuit by BenV 
may be shorter than or equal to that by SENVloose. 
This implies the possibility of under-estimation by cri- 
terion BenV. 

In the criterion proposed by Du et a1 [4] (denoted 
by DuYenV), two static timing variables ,maz(f) and 
min( f ) ,  are precomputed for each input f .  The vari- 
able maz(f) (min(f)) is computed as the length of the 
longest (shortest) partial path from any primary input 
to  f. Clearly, the stable time at f will never be later 
than maz( f )  and will never be earlier than min(f). 
Path P is considered by DuYenV to be sensitizable, if 
for each fi of P ,  the following two conditions are satis- 
fied. 

1. If there exists any side input f of fi with min(f) > 
dp(Pi+l), fi has to be a controlling input. 
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2. For each side input f of fi, if muz(f) < d,(Pi), f 
has to be a non-controlling input. 

We can represent DuYenV(P) as follows. 

I t  can be shown that SENV(P) c DuYenV(P) [3]. 
Therefore, DuYenV is possible to over-estimation the 
delay of a circuit. 

The criterion proposed by Perremans et a1 [7] (de- 
noted by PerrV), is quite similar to DuYenV. A dy- 
namic timing variable, dmac(f), is computed for each 
input f during the execution of timing verification. 
The variable &"(I), representing an upper bound 
to the latest stable time of lead f ,  is initialized to equal 
maz(f) and is decreased as soon as it is assured that 
there is no sensitizable partial path terminating at f of 
length equivalent to the current dmaz(f). Path sensi- 
tization criterion PerrV contains two conditions: 

1. Iff; of P is a non-controlling input, each side input 
f in SD(fj) must be a non-controlling input too. 

2. If fi of P is a controlling input, side input f of f j  

must be a non-controlling input when dmaz(f)  < 
d p  (Pi+ 1) * 

Criterion PerrV(P) can be expressed as follows. 

It can be shown that SENV/oo,e(P) 5 PerrV(P) [3]. 
This implies the possibility of over-estimating the delay 
of a circuit by criterion PerrV. 

Path P is considered to be a viable path [6] (sensi- 
tizable path in our terminology) under v if and only if 
for each fi of P and for each side input f of (fi), either 
one of the following conditions holds. 

1. f is a non-controlling input. 

2. f is a controlling input and s t ( f ,  v )  2 dp(P i+ l ) .  

We can express ViableV(P) as follows. 

can achieve the same estimation of the circuit delay as 
SENV [3]. 

We summarize the comparison results in the follow- 
ing. 

1. regarding the sensitization of a path P: 

BenV(P) E SENV(P) E SENVI,,,,(P) C 

SENV(P) c DuYenV(P); 
0 SENVI,,,,(P) PerrV(P); 

ViableV( P ) ;  

2. regarding the estimation of the actual delay of a 

BenV 5 SENV = SENVI,,,, = ViableV 5 
circuit: 

DuYenV, PerreV. 

6. Conclusion 
The results presented in this paper represent our ef- 

fort to understand critical path problem. A framework 
which allows various previously proposed path sensiti- 
zation criteria to compare with each other in a unified 
way is presented. An exact and a looser path sensitiza- 
tion criteria based on the framework are also proposed. 
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