
SALSA: Systematic Logic Synthesis of Approximate Circuits
Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy and Anand Raghunathan

School of Electrical and Computer Engineering, Purdue University
{venkata0,asabne,vkozhikk,kaushik,raghunathan}@purdue.edu

ABSTRACT
Approximate computing has emerged as a new design
paradigm that exploits the inherent error resilience of a wide
range of application domains by allowing hardware implemen-
tations to forsake exact Boolean equivalence with algorithmic
specifications. A slew of manual design techniques for approx-
imate computing have been proposed in recent years, but very
little effort has been devoted to design automation.

We propose SALSA, a Systematic methodology for
Automatic Logic Synthesis of Approximate circuits. Given a
golden RTL specification of a circuit and a quality constraint
that defines the amount of error that may be introduced in the
implementation, SALSA synthesizes an approximate version
of the circuit that adheres to the pre-specified quality bounds.
We make two key contributions: (i) the rigorous formulation
of the problem of approximate logic synthesis, enabling the
generation of circuits that are correct by construction, and
(ii) mapping the problem of approximate synthesis into an
equivalent traditional logic synthesis problem, thereby allow-
ing the capabilities of existing synthesis tools to be fully uti-
lized for approximate logic synthesis. In order to achieve these
benefits, SALSA encodes the quality constraints using logic
functions called Q-functions, and captures the flexibility that
they engender as Approximation Don’t Cares (ADCs), which
are used for circuit simplification using traditional don’t care
based optimization techniques. We have implemented SALSA
using two off-the-shelf logic synthesis tools - SIS and Synopsys
Design Compiler. We automatically synthesize approximate
circuits ranging from arithmetic building blocks (adders, mul-
tipliers, MAC) to entire datapaths (DCT, FIR, IIR, SAD,
FFT Butterfly, Euclidean distance), demonstrating scalabil-
ity and significant improvements in area (1.1X to 1.85X for
tight error constraints, and 1.2X to 4.75X for relaxed error
constraints) and power (1.15X to 1.75X for tight error con-
straints, and 1.3X to 5.25X for relaxed error constraints).

Categories and Subject Descriptors
B.7.1 [INTEGRATED CIRCUITS]: VLSI (Very large
scale integration)

General Terms
Algorithms, Design, Synthesis

Keywords
Logic Synthesis, Approximate Computing, Low Power Design,
Error Resilience

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

1. INTRODUCTION
Error resilience can be broadly defined as the characteris-

tic of an application to produce acceptable outputs despite its
constituent computations being performed imperfectly (with
errors). A plethora of emerging application domains, in both
embedded and general purpose computing, exhibit this in-
triguing trait. For example, applications in machine learning,
recognition and data mining [1] demonstrate significant algo-
rithmic resilience to errors. This tolerance can be attributed
to several factors like redundancies in large input data-sets;
non-existence of a unique golden result; aggregating nature of
the algorithms leading to errors averaging out, etc. [2]. Per-
ceptual resilience to errors is exhibited by applications that
involve a human interface. These systems could tolerate er-
rors provided that they are not perceivable by the end user.
Such applications abound in speech, video and graphics pro-
cessing domains [3]. In general, most of these applications
are highly compute intensive and their hardware implementa-
tions expend significant amounts of energy. By forsaking the
convention of designing precise circuits and by harnessing the
error tolerance provided by these application domains, signif-
icant savings in power and performance can be realized [2–8].

When it comes to the design of approximate circuits, there
have been two major schools of thought. The first class of
over-scaling based approximation methods induce timing er-
rors in circuits by subjecting them to voltage over-scaling [8].
In contrast, the other class of functional approximation tech-
niques approximate the logic functions computed by the cir-
cuits so as to reduce their implementation complexity, leading
to area and energy benefits.

Initial attempts to design functionally approximate circuits
focused on manual re-design of common arithmetic building
blocks [9–11]. However, these techniques are confined to spe-
cific well-studied circuits such as adders and multipliers and
for larger and more complex circuits, an automated synthesis
procedure is indispensable.

In this work, we present SALSA, a novel systematic method-
ology for logic synthesis of functionally approximate circuits.
Starting with an RTL description of the exact circuit and an
error constraint that specifies the type and amount of error
that the implementation can accommodate, SALSA automat-
ically synthesizes a functionally approximate version of the
circuit that adheres to the pre-specified error constraints. The
proposed methodology rigorously reformulates the problem of
Approximate Logic Synthesis (ALS) and maps it into a tradi-
tional logic synthesis problem. The problem formulation and
the solution approach adopted in SALSA beget the following
advantages:

• The proposed methodology provides an inherent guar-
antee that the specified bounds are never transgressed,
thus enabling synthesis of correct-by-construction ap-
proximate circuits.

• The transformations are completely independent of the
target error metric as well as the circuit considered for
approximation. In essence, this decouples the synthesis
procedure from the error metric, making this approach

796

flexible and general.

• Additionally, by virtue of transforming and mapping
ALS to a traditional logic synthesis problem, existing
off-the-shelf logic synthesis tools could just be re-used
for approximate circuit synthesis. This obviates the need
for developing a custom tool for ALS, thus lowering the
barrier to adoption. Further, this widens the scope of ap-
proximations that can be effected on the circuits, since
the entire power of existing logic optimization algorithms
can be leveraged.

We have prototyped SALSA using two different logic synthesis
tools to demonstrate its generality and used it to synthesize a
range of arithmetic circuits and datapaths. We demonstrate
that the circuits synthesized by SALSA achieve significant re-
ductions in area and power.

The rest of the paper is organized as follows. Section 2
overviews prior work pertaining to approximate circuit de-
sign and synthesis. The essence of the SALSA approach and
the required preliminaries are elaborated in Section 3. The
details of the proposed SALSA methodology are explained in
Section 4. The experimental methodology and results are sub-
sequently presented in Sections 5 and 6. Section 7 provides a
brief summary and concludes the paper.

2. RELATED WORK
Previous research efforts have exploited the error resilience

of applications at various levels of design abstraction. Compile
time software techniques like [6], architecture level approaches
like [5] and cross-layer methodologies like [7] are representative
examples at higher levels of design abstraction. In this section,
we provide a survey of techniques that apply approximations
at the logic and transistor levels of abstraction.

A number of previous works have focused on manually ap-
proximating specific circuits like adders [9, 10] and multipli-
ers [11] by taking advantage of their structural properties and
the difference in the significance of their output bits. However,
all these design techniques are confined to the specific circuits
that they target. Automation becomes necessary as circuits
grow functionally complex and the approximations that can
be performed on them become non-intuitive.

One class of automation techniques target synthesizing cir-
cuits that trade-off accuracy for power through voltage over-
scaling. Traditional synthesis optimizations result in circuits
that contain a large number of near-critical paths and impede
aggressive voltage scaling. To ensure a graceful degradation in
the number of timing violations under over-scaling, the path
delay distribution of the circuit is reshaped by increasing the
slack of frequently exercised paths through cell sizing [12].
Techniques are proposed in [13] to estimate and analyze the
errors caused due to such approximations.

Improvement in power and performance could be alterna-
tively achieved by simplifying the logic functions to reduce
their implementation complexity. The first automation effort
in this direction focused on two-level circuits, by complement-
ing the output for selected minterms to reduce the sum-of-
products implementation [14]. For multi-level circuits, [15]
proposes a scheme where a node in the circuit is assumed to
have a stuck-at-fault and the circuit is simplified by propagat-
ing this redundancy. The resultant errors are then estimated
using simulation and a modified automatic test pattern gen-
eration (ATPG) algorithm. This process is iterated until the
pre-specified bounds are violated. A similar iterative approach
is adopted in [16], however, pruning is instead carried out on
paths with lowest path activation probabilities.

A common attribute of the above techniques is that they
require design of a custom tool to perform the required ap-
proximations. In both cases, the quality metric is, in essence,
hardwired into their synthesis procedures i.e., the synthesis
tools need to be substantially modified for using them with
different error metrics. Also, these techniques do not perform
any structural modifications to circuits but rather simplify
circuits only through redundancy propagation or by pruning
gates exclusive to a path. Lastly, these techniques mostly rely
on simulations to testify if the approximate circuit adheres to
the quality bounds.

In contrast, SALSA takes a systematic approach to approx-
imate logic synthesis. The problem is reformulated using cir-
cuit transformations and cast in such a manner that existing
logic synthesis tools could be leveraged for approximate logic
synthesis. This vastly enhances the extent of approximations
applied, since the full suite of techniques used in logic syn-
thesis tools can be utilized. In addition to pruning/removing
gates, this approach provides the capability to transform the
functionality of circuit nodes. Also, SALSA decouples the syn-
thesis procedure from the target error metric, which makes the
approach more generic and easily adaptable. Finally, SALSA
provides an inherent guarantee that the synthesized approxi-
mate circuit adheres to the pre-specified quality bounds. We
believe that the above distinguishing traits make SALSA a
promising approach to approximate logic synthesis.

3. SALSA: PRELIMINARIES AND AP-
PROACH

The problem statement for approximate logic synthesis
could be articulated as follows. Given the description of a
logic circuit and a constraint on the errors that could be toler-
ated, the synthesis procedure should identify avenues for logic
simplification and generate a functionally approximate version
of the circuit that satisfies the pre-defined error bounds. This
section describes the approach used in SALSA to accomplish
this objective.

3.1 Quality Constraint Circuit
Figure 1 shows the Quality Constraint Circuit (QCC) that

is used in SALSA to formulate the problem of approximate
synthesis. The QCC is composed of three major blocks viz.
the Original circuit, the Approximate circuit and the Quality
function (Q-function). The original circuit block contains a
structural description of the circuit that needs to be approx-
imated and the error constraints that are to be satisfied are
encoded into the Q-function. From the problem definition,
both these blocks are available as inputs to SALSA. The task
of SALSA is to synthesize the approximate circuit, so that the
constraints set in the Q-function are never violated.

Figure 1: Quality constraint circuit

The inputs to the QCC are the primary inputs of the cir-
cuit considered for approximation. The output of the QCC
is a single bit Q that indicates whether the constraints en-
coded into the Q-function are satisfied. The Q-function takes
outputs from both the original circuit POorig and approxi-
mate circuit POapprox and decides if the quality constraints

797

are satisfied. A Q output of logic ‘1’ means that the approxi-
mate circuit conforms to the imposed quality bounds whereas
a logic ‘0’ output indicates a transgression. Thus, the QCC
determines the legitimacy of the approximate circuit. From a
functional viewpoint, for the approximate circuit to be valid,
we need to ensure that Q evaluates to ‘1’ for all possible input
combinations. Stated otherwise, the QCC with the synthe-
sized approximate circuit should evaluate to a tautology. At
all times during the approximate synthesis process, SALSA
preserves this invariant.

3.2 Quality Function
As mentioned earlier, the Q-function takes in outputs from

the original and approximate circuits and generates a single
bit output indicating quality. In a circuit with M primary
outputs, the Q-function maps 2M inputs into a one bit output.
Thus, in SALSA, any error metric that could be expressed as
a Boolean function of the original and approximate circuit
output bits could be specified as the Q-function.

For our experiments, we use two different quality metrics.
The first is error magnitude, where the approximate output
can differ from the correct output by no more than a specified
value. The other is relative error, in which the ratio of the
original and approximate values is constrained to differ from
1 by at most a certain margin. The Q-functions for these
quality metrics are provided in equations 1 and 2 and can be
easily encoded as logic functions.

Q =
` |POorig − POapprox| ≤ K

´
? 1 : 0 (1)

Q =

„
1 − K ≤ POapprox

POorig
≤ 1 + K

«
? 1 : 0 (2)

The results obtained by applying SALSA on a wide range
of circuits using these metrics are described in Section 6.

3.3 Approximation Don’t Cares
We next describe the strategy used in SALSA to transform

the ALS problem into a traditional logic synthesis problem. In
the QCC, the primary outputs of the original and approximate
circuit represent internal nodes. We know that the outputs
of the approximate circuit POapprox are valid provided that
they do not cause the value at Q to evaluate to ‘0’ for any
input value. In other words, we could functionally modify the
approximate circuit if the change can never affect the value of
Q.

In multi-level logic synthesis, the Observability Don’t Cares
(ODCs) of a node in a logic circuit can be defined as the set
of input values for which the primary outputs of the circuit
remain insensitive to the node’s output [17]. These input com-
binations can be used to simplify the node because they do
not affect the primary outputs of the circuit.

Applying this concept in our scenario, finding the observ-
ability don’t cares at a bit of POapprox (which is an internal
signal in the QCC) gives us the set of primary input values
for which Q is insensitive to an output of the approximate
circuit. SALSA uses this information to aid in approximating
the circuit, and by virtue of their special significance these
ODCs are termed as Approximation Don’t Cares (ADCs) of
the circuit.

The question that remains is how we could make use of the
ADCs to approximate the circuit. We know that External
Don’t Cares (EXDCs) of an output in a circuit are the set of
primary input combinations for which that primary output is
a don’t care. In our case, if the approximate circuit block is
looked at in isolation, the ADCs for a given bit of POapprox

could be considered as the external don’t cares for that out-
put. Therefore, by setting these input combinations (ADCs)
as EXDCs of an output in the approximate circuit, we could
legally simplify or (in our context) approximate the cone of
logic generating that output using standard don’t care based
synthesis techniques [18–20].

3.4 Iterative Simplification
In the above method, it is important to note that when one

output is being approximated, the functionality of all other
outputs remain unaffected. This is because the ADCs, by def-
inition, are specific to a given output bit and do not influence
other outputs in any way. However, there could be avenues
for approximation in the cones of logic of other output bits
and hence this process of approximation should be repeated
for all output bits. After each approximation, the QCC setup
is updated with the latest available approximate circuit before
computing the ADCs for the next output bit.

In summary, the key steps in SALSA are as follows

• Compute ODCs at an output bit of the approximate
circuit to derive the set of input combinations for which
Q is insensitive to that output.

• Set these ADCs as EXDCs for that output bit and sim-
plify the circuit under this condition.

• Update the QCC with the latest available approximate
circuit and iterate this process over all output bits.

The above procedure ensures that the approximations car-
ried out never violate the specified error bounds. Also, the
intermediate circuit produced after each iteration is legal and
synthesis can be stopped at any point to yield a valid approx-
imate circuit. As shown in later sections, these steps can be
realized using conventional logic synthesis tools, which vastly
increases the scope of optimization techniques used in ALS.

4. SALSA METHODOLOGY
This section describes the methodology that we use to re-

alize the approach proposed in the previous section. The po-
tential challenges in such an implementation and the speedup
techniques and heuristics to overcome the same are also de-
scribed.

4.1 SALSA Algorithm

Algorithm 1 SALSA

Inputs: O : Original Circuit
Q : Quality Function

Output : A : Approximate Circuit
Begin
Initialize A ⇐ O
for each POi ε POapprox do

STEP 1: Obtain ADCs as f(POorig ∪ POapprox -
POi) ##
ADC POi ⇐ Get ADC PO (Q, POi)
STEP 2: Obtain ADCs as f(PI)
ADCi ⇐ Get ADC (O, A, ADC POi)
STEP 3: Approximate POi using ADCs
Ai ⇐ Approx PO (A, POi, ADCi)
Update A ⇐ Ai

end for
Return A
End

Algorithm 1 provides an overview of the steps involved in
SALSA. For each output bit, SALSA computes the ADCs and

798

uses them to approximate the logic cone that generates it. The
process of finding the ADCs for a given output bit is carried
out in two steps. First, the ADCs are computed as a function
of other inputs to the Q-function in the QCC i.e., POorig and
POapprox with the exception of the output bit being processed.
Next, using the original and the approximate circuits, these
ADCs are expressed in terms of the primary inputs. After this,
the computed ADCs are specified as EXDCs for the output
bit under consideration and used to simplify its logic. The
approximate circuit thus obtained is retained as the starting
point for subsequent iterations. We describe below how these
steps can be implemented using off-the-shelf logic synthesis
tools.

STEP 1: In order to compute the ADCs of a primary out-
put bit POi of the approximate circuit, we should perform
ODC analysis at that node in the QCC. Finding ODCs of
an internal node in a circuit, as shown in Figure 2, involves
co-factoring the output with respect to the internal node and
finding the set of input combinations for which both the pos-
itive and negative co-factors are equal. The resultant circuit
contains a description of the ADCs of POi in terms of all out-
puts in POorig and all outputs in POapprox except POi. We
call this the ADC-PO circuit.

In this step, we have essentially extracted the information
about the sensitivity of Q to the primary output of interest.
This step is performed only with the Q-function and does not
involve the original circuit in any way. Once we have extracted
this information, the Q-function is not required any further in
the algorithm.

Figure 2: STEP1 - Obtaining ADCs of a primary out-
put in terms of other original and approximate circuit
outputs

STEP 2: After STEP 1, the ADCs for POi are available as
a function of other primary outputs in the ADC-PO circuit. In
this step, we express the ADCs in terms of primary inputs of
the circuit. As shown in Figure 3, we connect the approximate
and original circuits to the ADC-PO circuit obtained in the
previous step. This concatenated circuit is simplified and the
required ADCs for POi are thus obtained.

Figure 3: STEP2 - Obtaining ADCs of a primary out-
put in terms of primary inputs

STEP 3: Given a set of ADCs for an output bit, approxi-

mating its logic can be done in a fairly straight forward man-
ner. The computed ADCs are specified as External Don’t
Cares in the appropriate format required by the logic synthe-
sis tool and conventional don’t care based optimization tech-
niques are invoked to simplify the logic cone that generates the
output bit. The resultant circuit is used as the approximate
circuit in the next iteration.

Thus, SALSA efficiently implements the approach described
in Section 3 by reformulating the ALS problem using tradi-
tional logic synthesis operations. In each iteration of the al-
gorithm, the synthesis tool is called thrice — once to perform
each of the three steps in the algorithm.

4.2 Speedup Techniques and Other Heuristics
We next describe some optimizations that could be used

to enhance the scalability of the SALSA methodology. The
challenges to the above methodology could stem from two
different sources - the quality function and the original circuit.
If the Q-function is complex, the run-times of steps 1 and 2
of the algorithm are impacted. Also, if the original circuit
has a large number of inputs or outputs, then forming the
ADCs in step 2 could be a time consuming process. Speed
up techniques and heuristics to overcome these challenges are
discussed below.

4.2.1 Equating Un-approximated Output Bits
In SALSA, each iteration of the algorithm approximates

the logic cone that generates one output bit. The hitherto
unprocessed output bits should have their logic to be same as
the original circuit. Therefore, while calculating the ADCs,
we need not specify the entire approximate circuit, but only
the logic cones that generate the output bits that have been
previously approximated.

Figure 4: Equating un-approximated output bits

Using this observation, as shown in Figure 4, the unpro-
cessed output bits of the approximate circuit are set equal
to the corresponding output bits of the original circuit. This
vastly simplifies the logic for ADC generation (STEP 1 and
STEP 2), especially for initial output bits processed, and does
not result in loss of any optimality in the approximations.

4.2.2 Quality Function Decomposition
When the number of outputs present in the original circuit

is large, the complexity of the Q-function eventually grows
and STEP 1 and STEP 2 of the algorithm consume signifi-
cant time. A divide-and-conquer heuristic, shown in Figure
5, could be used to tackle this bottleneck. The idea is to de-
compose the Q-function into stages, with each stage only con-
sidering a subset of outputs from the original circuit. For the
first stage, the functionality of the Q-function does not change
because none of the bits have been approximated. However,
for subsequent stages, the maximum error that could occur in
the previously approximated bits should be considered while

799

designing the Q-function. For example, if an error magni-
tude based metric is used and the Q-function is decomposed
in chunks of 8 bits from the LSB to MSB, then while design-
ing the Q-function for the second set of 8 bits, the maximum
error that could accrue from the lower order 8 bits should be
subtracted from the actual error magnitude threshold.

Figure 5: Quality function decomposition

This heuristic is very powerful because Q-functions of any
arbitrary size can be handled by appropriately decomposing
them into stages. However, we do lose some optimality in
this procedure because we propagate the worst possible error
across stages.

4.2.3 Exploiting Input-Output Dependencies
The previous speedup techniques were targeted at address-

ing the challenge of the Q-function being complex or having
a large number of inputs. However, challenges may arise in
finding the ADCs when the circuit to be approximated itself
is large. We present two techniques to directly address this
issue.

We know that, for a given output bit, not all primary in-
puts lie in its cone of logic. Hence, when finding the ADCs
(in STEP 2) for a given output bit, we just need to define the
circuit in terms of primary inputs in its transitive fan-in and
generate the ADCs only in terms of these inputs. It is impor-
tant to note that, this technique is exploited when generating
the ADCs (STEP 2) and not when simplifying the circuit us-
ing these ADCs (STEP 3). This is because we would like to
preserve the logic sharing between the output bits. In the im-
plementation, we use the IO dependencies for ADC generation
but do not extract cones of logic during logic simplification.

4.2.4 Calculating Subset of ADCs
Although the above technique is efficient in many cases,

it is not effective when a primary output depends on most
of the primary inputs. This scenario happens in the output
MSB bits of arithmetic circuits, where the output depends
on all less significant input bits. To tackle this, we resort
to computing only a subset of the ADCs and use them for
circuit approximation. In the implementation, we set certain
dependent inputs in the cone of logic of an output to zero and
then calculate its ADCs using the usual procedure. In the
calculated ADC set, the condition for the dependent inputs
that were set to zero is appropriately added before using them
for circuit approximation. The above techniques allow us to
use SALSA on larger circuits and more complex Q-functions.

5. EXPERIMENTAL METHODOLOGY
In order to demonstrate the proposed approach, we tested

it on a wide range of circuits for two different error metrics
viz. error magnitude and relative error. To demonstrate gen-
erality, the methodology was implemented using two different
off-the-shelf synthesis tools, namely SIS [21] and Synopsys De-
sign Compiler [22]. The circuits used in the experiments, listed
in Table 1, range from simple arithmetic circuits to complex
datapaths. The complexity of the circuits in terms of number

Table 1: Circuits used in experiments

Name Function Bit Gate I/O
Width Count

RCA Ripple Carry Adder 32 1012 64/33
KSA Kogge Stone Adder 32 1361 64/33
CLA Carry Look-ahead Adder 32 926 64/33
MUL Array Multiplier 8 1055 16/16
WTM Wallace Tree Multiplier 8 1132 16/16
MAC Multiply and Accumulate 8 1910 48/33

with 32-bit accumulator

SAD
Sum of Absolute Differences

8
1241 48/33

(Used in Motion Estimation)

EU DIST
2D-Euclidean Distance Unit

8
1668 32/16

(sans square root)

BUT
Butterfly structure

8
496 16/18

(Used in FFT computation)
FIR 4-tap FIR filter 8 1719 32/16
IIR 4-tap IIR filter 8 2135 56/16

DCT
8-input Discrete Cosine

8
10817 64/72

Transform Block

of inputs, outputs, and gates is also listed. The circuits were
approximated for a range of error values. The original and
approximate circuits were mapped to the IBM 45nm technol-
ogy library using Design Compiler for iso-delay and evaluated
for area and power.

6. RESULTS
In this section, we present the results of experiments that

evaluate the approximate circuits generated by SALSA.
Figure 6 shows the relative area (ratio of approximate cir-

cuit to original circuit) vs. error magnitude and relative power
(ratio of approximate to original) vs. error magnitude plots
for the benchmark circuits. The error magnitude is shown as a
percentage of the maximum output value because the circuits
possess different numbers of output bits and thus errors of
the same magnitude have varying significance. The dynamic
ranges of feasible errors are accordingly different, prompting
the use of 2 different error ranges in the graphs. For 32-bit
circuits like adders, MAC, and SAD, the lower X axis scale is
used while other circuits, whose individual outputs have fewer
bits (9 for DCT, BUT and 16 for the rest), follow the upper X
axis. From the results, we see an exponential decrease (Note:
X axis is in log scale) in area and power initially, which then
commences to taper out as we move towards larger error val-
ues. This is explained by the fact that, in any arithmetic
circuit, adjacent output bits have an exponential difference in
their significance. So, for the same increase in error magni-
tude, the incremental potential for approximation is less as
the actual value of the error increases. Also, for a given error
magnitude, the cone of logic generating the LSB bits, that
have exponentially lower significance compared to their MSB
counterparts, have a large set of ADCs and hence have a bet-
ter chance of being approximated. From Figure 6, we see
that SALSA yields area savings in the range of 1.1X-1.85X
for tight error constraints (less than 1%) and up to 4.75X for
relaxed error constraints (upto 20%). Power benefits range
from 1.15X-1.75X and 1.3X-5.25X for similar tight and re-
laxed error constraints respectively.

The next set of graphs, in Figure 7, show the results ob-
tained for the relative error metric. The relative error is de-
fined as the ratio of the approximate output to the original
output. Similar trends with savings up to 1.7X in area and
1.65X in power are observed for this metric. We also observed
that the ADCs derived by SALSA for the relative error metric
and the error magnitude metric differed significantly. In case
of the relative error metric, for small actual values of output,
even a small change in the logic would prompt the output

800

(a) Area and power savings for arithmetic circuits

(b) Area and power savings for complex blocks and complete
datapaths

Figure 6: Results for error magnitude metric

to deviate by a large percentage relative to the golden value.
Moreover, the ADCs for the LSBs cannot depend on the MSB
inputs. Therefore, we get a comparatively larger ADC set for
the MSB output bits.

(a) Area and power savings of arithmetic circuits

(b) Area and power savings of functional blocks and datapath
modules

Figure 7: Results for relative error metric

The execution times of SALSA, on a server with an AMD
Opteron 6176 (2.29 GHz) processor and 198 GB RAM, ranged
from 4 minutes for smaller circuits (adders etc.) to 2.5 hours
for larger datapath units (DCT).

7. CONCLUSION
Error resilient applications provide designers with a unique

dimension for optimizing power consumption and area of a
circuit. Paradigms like approximate computing have enabled
a vast scope of implementation strategies for error resilient cir-
cuits. In our work, we have developed SALSA, a framework

to automatically synthesize approximate circuits for a given
error constraint. This framework, by virtue of transforming
approximate circuit synthesis into a well studied logic synthe-
sis problem, can make use of any underlying synthesis tool
to effect these approximations, thereby largely widening its
scope for application. Since SALSA completely separates the
notion of quality, or the error metric, from the actual synthe-
sis procedure, it is adaptable across different error metrics.
Further, it provides a guarantee that the error constraints are
respected. We demonstrated the utility of SALSA by approx-
imating various arithmetic circuits, complex blocks and entire
datapaths and evaluated the benefits in terms of power and
area savings.
Acknowledgment: This work was supported in part by the
National Science Foundation under grant no. 1018621.

8. REFERENCES
[1] Y. K. Chen, J. Chhugani, P. Dubey, C.J. Hughes, D. Kim,

S. Kumar, V.W. Lee, A.D. Nguyen, and M. Smelyanskiy.
Convergence of recognition, mining, and synthesis workloads and
its implications. Proc. IEEE, 96(5):790 –807, May 2008.

[2] S. T. Chakradhar and A. Raghunathan. Best-effort computing:
Re-thinking parallel software and hardware. In Proc. DAC, pages
865 –870, June 2010.

[3] M.A. Breuer. Multi-media applications and imprecise
computation. In Proc. Euromicro Conf. on Digital System
Design, pages 2 – 7, Aug.- Sept. 2005.

[4] K. Palem et. al. Sustaining moore’s law in embedded computing
through probabilistic and approximate design: Retrospects and
prospects. In Proc. CASES, pages 1–10, 2009.

[5] L. Leem, H. Cho, J. Bau, Q.A. Jacobson, and S. Mitra. ERSA:
Error resilient system architecture for probabilistic applications.
In Proc. DATE ’10, pages 1560 –1565, Mar. 2010.

[6] H. Hoffmann et. al. Dynamic knobs for responsive power-aware
computing. In Proc. ASPLOS, pages 199–212, 2011.

[7] V.K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S.T.
Chakradhar. Scalable effort hardware design: Exploiting
algorithmic resilience for energy efficiency. In Proc. DAC, pages
555 –560, June 2010.

[8] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing
via algorithmic noise-tolerance. In Proc. ISLPED, pages 30–35,
1999.

[9] V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, and
K. Roy. IMPACT: Imprecise adders for low-power approximate
computing. In Proc. ISLPED 2011, pages 409 –414, Aug. 2011.

[10] D. Shin and S.K. Gupta. A re-design technique for datapath
modules in error tolerant applications. In Proc. ATS, pages 431
–437, Nov. 2008.

[11] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for
power with an underdesigned multiplier architecture. In Proc.
VLSI Design, pages 346 –351, Jan. 2011.

[12] A.B. Kahng, S. Kang, R. Kumar, and J. Sartori. Slack
redistribution for graceful degradation under voltage overscaling.
In Proc. ASP-DAC, pages 825 –831, Jan. 2010.

[13] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.
MACACO: Modeling and analysis of circuits for approximate
computing. In Proc. ICCAD, pages 667 –673, Nov. 2011.

[14] D. Shin and S.K. Gupta. Approximate logic synthesis for error
tolerant applications. In Proc. DATE, pages 957–960, Mar. 2010.

[15] D. Shin and S.K. Gupta. A new circuit simplification method for
error tolerant applications. In Proc. DATE, Mar. 2011.

[16] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet.
Energy parsimonious circuit design through probabilistic pruning.
In Proc. DATE, 2011, Mar. 2011.

[17] Giovanni De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill Higher Education, 1st edition, 1994.

[18] H. Savoj and R. K. Brayton. The use of observability and
external don’t cares for the simplification of multi-level networks.
In Proc. DAC, pages 297–301, 1990.

[19] K. H. Chang, V. Bertacco, I. L. Markov, and A. Mishchenko.
Logic synthesis and circuit customization using extensive external
don’t-cares. ACM TODAES, 15:26:1–26:24, June 2010.

[20] S.C. Chang and M. M. Sadowska. Perturb and simplify:
optimizing circuits with external don’t cares. In Proc. ED TC,
pages 402 –406, mar 1996.

[21] E.M. Sentovich and K.J. Singh. SIS: A system for sequential
circuit synthesis. Technical report, EECS, UCB, 1992.

[22] Design Compiler. Synopsys inc.

801

