3POr - Parallel Projection based Parameterized Order
reduction for multi-dimensional linear models

Jorge Fernandez Villena*, Luis Miguel Silveira*$
*INESC ID / IST, TU Lisbon. Rua Alves Redol 9, 1000-029 Lisbon, Portugal. jorge.fernandez @inesc-id.pt
§Cadence Research Labs. Rua Alves Redol 9, 1000-029 Lisbon, Portugal. Ims@inesc-id.pt

Abstract— This paper introduces a distributed and shared memory
parallel projection based model order reduction framework for parame-
terized linear systems. The proposed methodology is based on a sampling
scheme followed by a projection to build the reduced model. It exploits
the parallel nature of the sampling methods to improve the efficiency
of the basis generation. The sample selection scheme uses the residue
as a proxy for the model error in order to improve automation and
maximize the effectiveness of the sampling step. This yields an automatic
and reliable methodology, able to handle large systems depending on the
frequency and multiple parameters. The framework can be used in shared
and distributed memory architectures separately or in conjunction. It is
able to deal with different system representations and models of different
characteristics, is highly scalable and the parallelization is very effective,
as will be demonstrated on a variety of industrial benchmarks, with super
linear speed-ups in certain cases. The methodology provides the potential
to tackle large and complex models, depending on multiple parameters
in an automatic fashion.

I. INTRODUCTION

Model Order Reduction (MOR) methodologies are a set of tech-
niques aimed at compressing the information contained in detailed
models representing physical effects [1]. Within the EDA industry,
these techniques have been routinely applied to compress excessively
large models obtained after modeling and extraction steps, allowing
for efficient simulation. In the case linear models, the most relevant
MOR techniques can be broadly characterized into those based on
subspace generation and projection [2], [3], and those based on bal-
ancing techniques [1]. MOR methodologies have also been proposed
to handle parameterized systems, where the response depends on
the frequency plus a set of parameters modeling environmental and
process variations affecting the underlying physical system. The goal
of these Parameterized Model Order Reduction (pMOR) methods is to
reduce the order of linear systems depending on multiple dimensions,
and generate a Reduced Order Model with equivalent I/O response for
the whole frequency and parameter space of interest. Many pMOR
methods rely on the generation of a low order subspace spanning
the solution of the system, and projection of the original system
into that subspace. Different techniques propose different methods for
the subspace generation, either based on multi-dimensional moment
matching [4], [5], or in multi-point sampling approaches [6], [7].

Nowadays the extensive use of multi-core architectures, GPUs,
and distributed environments are revolutionizing the algorithmic
implementation, allowing for widespread low-cost high-performance
parallel approaches able to overcome some of the existing bottle-
necks in some applications. However, there is little work in the
use of these architectures to the framework of MOR, and most
of it is aimed at parallelizing the linear algebra routines that the
algorithms are based upon [8]. A particular limitation of current
EDA oriented MOR methods comes from the memory footprint
even though storage of these sparse models is not necessarily the
main issue. However, the reduction of such models usually relies on

This work was partially supported by FCT through the PIDDAC
Program funds. Jorge Ferndndez Villena was supported by FCT grant
SFRH/BD/61213/2009.

978-1-4244-8194-1/10/$26.00 ©2010 IEEE

factorizations and decompositions of the matrices (e.g. LU factor-
izations for the generation of Krylov subspaces or for solving the
system for sampling). Memory requirements in these operations can
be very high for multiple expansion points. To deal with this issue,
iterative methods with incomplete factors as preconditioners have
been presented and successfully applied [9]. Also, some approaches
for sparse factorizations [10], [11] are reporting excellent results in
terms of fill-in minimization. In this respect, some applications have
successfully applied parallel approaches in order to deal with the
increasing size of the matrices [12], [13].

In this paper we propose a combined shared and distributed
memory parallel Model Order Reduction framework for linear models
depending on single and multiple dimensions. The proposed method-
ology will not be focused on the parallelization of the underlying
linear algebra routines. Instead it will be geared towards to a
higher level parallelization that will prove to be very effective and
scalable, both in terms of initial model and reduced model sizes. The
framework relies on multi-dimensional sample-based methods [6]
for the generation of a suitable basis, combined with an automated
sample selection approach such as the one in [7]. It will be shown that
the procedure is robust and reliable, providing good results in many
situations, and also very flexible, allowing the handling of models
with different representations and characteristics without degrading
the efficiency. As a result, it enables the reduction of large models
depending upon multiple parameters in a fraction of the original time.

The paper is structured as follows: in Section II an overview
of the MOR paradigm is presented, along with a discussion of
existing approaches relevant for this work. In Section III the initial
sequential approach is introduced, and in Section IV the proposed
implementation is presented, along with a study of its complexity
and computational issues. In Section V several examples are shown
that illustrate the performance of the proposed technique, and in
Section VI conclusions are drawn.

II. BACKGROUND

The main techniques in MOR are geared toward the reduction
of a state space linear time-invariant system, obtained by some
modeling methodology, and representing a physical system. In such
representation, the output y is related to the input w via some inner
states . When parametric variations are taken into account, the
system is represented as a parametric state-space descriptor, with an
associated frequency-domain transfer function,

C(N)E(A) + G(N)z(N\) = Bu, y(\) = Ez()\) 0
H(s,\) = E(sC(A\) + G(\)) ™' B,

where C, G € R™*" are respectively the dynamic and static matrices,
B € R™™™ is the matrix that relates the input vector u € C™ to
the inner states x € C™ and E € RP”*" is the matrix that links
those inner states to the outputs y € CP, and H(s,\) € CP*™ is
the transfer function matrix. We assume here, as is common, that the
elements of C' and G, as well as the states z, depend on a set of Q

536

parameters A = [A1, Az, ..., Ag] € R? which model the effects of
the uncertainty. Usually the system is formulated so that the input
(B) and output (£) matrices do not depend on the parameters.

The representation of parametric dependence is often obtained via
first order sensitivity computation of the discretized elements with
respect to the parameters [14], [15]. Therefore, matrices C' and G
in (1) can be represented in a polynomial form via a Taylor Series
expansion with respect to the parameters, as advocated in [4]

G =Go.o+ 24, 50 MorvqGunvg
CA) =Co.o+ 20, oo Nor00C01.00

where Go...o and Cjy...o are the nominal values for the matrices,
Go,...60 and Cy, .4, are the joint sensitivities of order (¢1 ... #q)

(@)

w.r.t. to the) parameters, and Ay, .. 4o = AP /\ZQ.

The most common procedure to obtain an accurate and structurally
similar ROM is to use some form of projection scheme on a
sensitivity-based Taylor Series Representation, such as (2), combined
with an orthogonal projection scheme, as presented in [4]. Standard
pMOR methodologies rely on the generation of a suitable low order
subspace (spanned by the basis V' € R™*9), in which the original
system matrices C'(\), G(\), B and E are projected. Then a reduced
model such as (4) can be obtained, that captures the behavior of the
system under parameter variations.

a¢1~~¢Q = VTC¢1~~</5QV G4>1~»4>Q = VTG4>1~~¢QV

e L 3
B=VTB E=EV x(s,\) = VZ(s, \))

where V' € R™* spans the projection subspace of reduced dimension
q, and 6’7@ € RI%%, B ¢ RI*™ [¢ RPX9, and T € C? define the
Reduced Order Model of dimension ¢ < n (q is the reduced order).
These matrices provide an approximated transfer function,

H(s,\) = E(sC(\)+G\) 'Br H(s,\) V{s,A}. @&

To ensure the ROM’s accuracy the basis V' € R™*? must be able to
capture the behavior of z(s,\) for the relevant {s, A} space, e.g.,

SU(S,)‘) ~ E;‘Z:O ai(57 /\)‘/1 v {87)‘}7 (5)

where V; is the i-th column of the projector V, and «; € C. Different
projection based pMOR approaches have been presented, which differ
in how to generate the matrix V. Most of the techniques in the
literature choose to extend the moment matching paradigm [2] to the
multi-dimensional case [4], [5]. Therefore they generate a basis V' that
spans the multi-dimensional moments of the transfer function around
an expansion point, and can be used as a projection matrix. In general,
these methods, which rely in local matching, suffer from oversize of
the models when the number of moments to match is high, either
because high order is required, or because the number of parameters
is large. Also they need a Taylor Series based representation (2)
for efficient implementation. Other approaches are based on Multi-
Point methods. The goal of Multi-Point approaches is to generate
the basis either by generating the transfer function moments from
multiple expansion points 1»; = {s;, A;}, or from solving the system
at different sample points on the relevant space,

2 = z2(P;) = A(h;) T B = (s;C(\;) + G(\;) "B, (6)

where z(1;) € C" is the sample vector generated at the sample
point ©; = {sj,A;}, and is directly related to the zero-th order
moment at 1;. The most relevant vectors among those generated
by such quadrature are selected, for instance, via Singular Value
Decomposition (SVD), in order to build the projection matrix V.
This approach, is more reliable as it is less sensitive to the number

of parameters, but, on the other hand, depends on a good sampling
selection scheme. Recently, in [7], an automatic sampling scheme
was presented, which aims at obtaining a minimum number of vectors
(thus minimizing the number of solves) so that a good approximation
of the states vector can be obtained, i.e. a minimum set ¢ so that (5)
holds. The approach seeks to retrieve the “best” samples to solve for
among an initial candidate set, with the selection done before actually
solving them.

III. AUTOMATED SEQUENTIAL APPROACH

The underlying algorithm that we will use is the one presented
in [7]. The sample selection is done by finding which point from an
initial candidate set W, has an associated vector that is less similar
to the vectors already computed. This is done by using the residue
r; as a proxy for the error ej,

rj = Aje; = B— Y0 g ai(¥;) A3 Vi, (M

where A; = A(v);) is the system matrix evaluated at the candidate
point 1;, and V; is the i-th vector of the current basis V € R™**
at the current refinement iteration of the algorithm. Therefore, to see
if the system {A;, B} is well approximated by a set of vectors V,
we simply orthogonalize vector B against the set of vectors A;V €
C™**, and generate the norm

[l = [1BLA; V|, ®

where r; is the residue after the orthogonalization (L) of B against
the set of vectors A;V. The advantage of this procedure is that (7)
entails a cheap computation, whereas (6) is expensive. Next we
describe some details of the implementation proposed.

A. Sequential Implementation

The initial candidate set ¥ = {¢1 ...} is generated, with
T samples, where each 1; is a point in the space of interest. ¥
is a set that covers such space of interest (joint frequency and
parameter space). In order to improve the coverage of this initial
set, a logarithmic mesh is defined in the complex frequency, and for
each frequency point different parameter perturbations are performed
following a Low-Discrepancy sequence [16]. The reason for the
differentiated treatment for frequency comes from the fact that the
range of variation of frequency is much wider, and frequency has in
general a larger impact in the performance of electric circuits than
the remaining parameter perturbations. Low-Discrepancy sequences
are routinely used in numerical integration of large dimensional
problems. Since we are doing a numerical quadrature in a large
dimensional space, the points generated by such schemes provide
a better alternative to linear or pure random schemes, and ensure
that each sample is different.

From this initial set, a candidate sample is taken and solved
to generate the first vector. It is orthonormalized and its real and
imaginary parts are added to the real basis V' (recall that the samples
are complex, and thus we need the real and imaginary part to span the
same subspace). We then perform the operations in (8) to generate
the residues at each remaining candidate point. From these residues,
we select the point with maximum residue norm, and solve it. The
vector generated is orthonormalized against the previous ones (via an
incremental Rank Revealing QR operation RRQR [17]), and added
to the basis V. The procedure is then iteratively repeated: residue
generation, sample selection, sample solve and orthonormalization.
In order to stop the procedure, a tolerance for the norm of the vectors
and the residue is set. When both the norm of the generated vector
after the RRQR and the maximum norm of the residue fall below

537

a pre-defined threshold, the procedure is stopped: the small residue
indicates that the approximation in the remaining samples is good
enough, and the small norm of the vector indicates that the generated
vector does not add rank to the current basis. A more clear depiction
can be seen in Algorithm 1.

B. Computational Complexity Analysis

The cost of this algorithm can be divided into three main parts: the
cost of solve (the LU or the methodology used for solving the system,
if an iterative method is used), the cost of the orthonormalization and
basis expansion, and the cost of the sample selection. The cost of the
(LU and) solve for sparse matrices is very dependent on the matrix
characteristics in terms of sparsity pattern and number of non-zeros.
For the case of banded matrices arising for linear circuits, its cost
is close to linear, but it may be different for matrices generated by
EM modeling methodologies, or if long inductive effects are taken
into account. We will denote the cost of these operations O(.S), and
thus, after K iterations (where K is the number of samples required
to generate the appropriate basis), the cost is Xsoiwe = O(KS).

The cost of the orthonormalization, a RRQR of a rectangular
matrix of dimensions n x ¢ is O(ng?), and thus, after generating
K block vectors of size m (m the number of ports), the overall cost
of orthonormalization is Xy,-tp = O(anK 2).

For the sample selection, the cost is dominated by the computation
of the residue, which requires the orthogonalization of B against
AVj for each candidate point. To the authors knowledge there is no
incremental approach that can be used to overcome this bottleneck
without running into other problems (for example, to store and reuse
the factorization at each candidate point would speed-up the residue
computation but lead to huge memory requirements). Therefore, if
we have T initial candidate points of a system with n states and m
ports, the cost associated with the sample selection is

Xss = O, (T = i)n(im)?), ©)
where 7 indicates the iteration, and thus ¢m is the rank of the current
basis, and K is the final number of iterations required to generate
the basis (K < T'). After some algebra we arrive at the following
expression for the right-hand side of (9)

Tnm?
(0]
(6
which can be simplified to
Xss = O(nm>K*(T — K)). (11)
This cost is highly dependent on the number of points in the initial
candidate set, 7", and the dimension of the basis required for a good

accuracy, which is related to K. The overall final cost is the sum of
solve, RRQR and sample selection costs.

2
(2K° + 3K?* + K) — %(K4 +2K°% + K?)), (10)

IV. PARALLEL IMPLEMENTATIONS

Although the methodology outlined in the previous section pro-
vides goods results in terms of accuracy and reduction for both single
and multi-dimensional systems, it can be expensive under certain
circumstances, namely for large domains, with multiple dimensions,
and large size, both in the original and reduced systems.

We propose a simple yet highly effective parallelization of the
algorithm that will overcome the main drawbacks of the serial
version, while keeping the same accuracy, robustness and reliability.
It is important to point out that the goal of this work is not related
to efficient parallelization of the underlying linear algebra routines
(which can nevertheless be combined with the proposed methodology
to provide further speed-ups). Instead, we will focus on parallelization

Algorithm 1 Sequential Version
Given the system and the domain of interest,

1: Define stopping thresholds for the residue ¢, and the vectors ¢,
: Generate a set of candidate sample points ¥ = {t1 ...¢r}
. Initialize: V=]], k=0
: Evaluate system matrix: Ap=A(Yy)
: Solve the system: zk:A,:lB
: Orthonormalization: V= RRQR([V zx]), k++
: Fori=k: T
Ai=A(;), i=BLA;V, R(i) = ||rs]|
: Sort R in decreasing order, and ¥ accordingly
: IF R(k) >t and |jvg|| > to
GOTO 4
10: Use V in a congruence projection on the system

~N O R W

Nelies)

at a higher, more abstract level, that provides both high performance
in terms of speed-up and scalability.

With the advent of multi-core processors and fast network con-
nections, most computational environments are now hybrid shared
and distributed memory architectures. The kind of parallelization
we seek to apply can take advantage of both architectures, and
although each can be pursued independently, we propose in fact
an hybrid framework exploiting both. However, the characteristics
of these architectures lead to different parallelization strategies.
Shared memory are uniform memory access architectures in which a
common, global memory is accessed by all the processors. Usually
the memory is local, even if multiple memory levels are present,
such as in the case of multi-core CPUs, and thus the access is
very fast. This allows for a finer granularity on the parallelization,
since the communication time is rather small. On the other hand,
some attention must be paid to data-races or concurrent access to
the same memory. Shared memory based parallelization achieves
its best performance in vectorial operations, i.e. operations that are
independent and with small data dependencies. Distributed memory
environments are a set of connected machines or processors, named
nodes, each one with its own memory, so whenever remote data
is required, an explicit communication must be performed. Typical
architectures are clusters or grids, i.e. sets of machines connected by
a (dedicated) fast network. In this scenario, the communication time
may be a relevant factor in the performance, and thus needs to be
minimized. Coarse granularity parallelization is prone to be applied
here, with operations as independent as possible. On the other hand,
since each node has its own memory, the total amount of memory
is increased, thus larger problems or higher level parallelization
becomes amenable.

A. Parallelization Opportunities

In the following we will assume an hybrid architecture is available,
denote P as the number of cores per machine (processors with
shared memory), and M as the number of nodes or machines in
a distributed environment (processors with distributed memory). For
the parallelization routines we will use the standard nomenclature of
the OpenMP [18] and OpenMPI [19] languages, which are the most
commonly used libraries and the ones we used in our implementation.

Looking at (11), searching for a suitable sampling point can be
costly if there is a large number of vectors in the basis and a
large candidate set. This is usually the case for systems where many
parameters have a critical impact on the behavior of the model. A
first parallelization can be efficiently applied to this sample selection
procedure where computation of the residue at each remaining point
in the candidate set can be done independently at each point, as there

538

Set tresholds
Candidate Set

Evaluate System
Incremental RRQR

Set tresholds
Candidate Set

Evaluate System
LU and Solve

Incremental RRQR

28K 2 2K

PARALLEL FOR
Generate Residues Generate Residues

v Vv N

Sort Residues,
Retrieve Sample

Sort Residues,
Retrieve Sample

Fig. 1. (Left) Serial and (Right) Multi-Core Algorithm Graphs

are no data races or concurrency issues, and it has relatively small
memory requirements. Therefore, shared memory parallelization is
appropriate and a simple distribution of the candidates among the
available cores, with negligible overhead, can provide an almost
perfect speed up for this sample selection step. Here we have used a
parallel for cycle with dynamic schedule, which reduces the cost of
the sample selection step by a factor of P. An illustration of this flow
and comparison with a sequential approach is shown in Figure 1.

A different kind of parallelization which can be easily combined
with the shared memory approach above, is to use the distributed
environment. In this case, the communication cost may be larger,
but the possibility of using several machines provides more CPU
capabilities, as well as more memory. This fact has been exploited
by parallel implementations of linear algebra routines [13], also with
application to MOR [8]. In the proposed method, we can exploit
these capabilities in two steps of the algorithm: the sample selection
and the factorization and solve. With respect to the sample selection,
we can divide the remaining candidate points among the different
nodes, and at each node generate the respective residues. However,
since this is a distributed environment, care must be paid to the
communication among nodes. In our case, the residue generation is
independent for each candidate set, and thus, as long as the basis
and the system matrices are in the node, we only need the point
coordinates to generate the residue, with no communication with the
rest of the nodes. Therefore, in the case of identical machines, we
distribute the remaining points evenly among the nodes, in order
to obtain the residues in parallel. When the distributed environment
is composed of machines with different characteristics, a different
strategy should be used, in order to maintain a good balancing
and avoid idle computational resources. In such cases, an initial
distribution of a subset of the candidates can be done, and the rest can
be assigned later according to the workload at each node. In order
to reduce communication delays, non-blocking communications can
be used and overlapped with the computations. With respect to the
solve step, from the analysis in III-B, it is clear that there are two
factors to consider as cost: one is the cost of a single solve O(.S), and
another is the fact that we must perform K solves. As mentioned,
in this paper we are not addressing the parallelization of the solve,
and thus not trying to improve the complexity O(S) (which can
however be done and taken advantage of here). On the other hand,
the cost related to the factor K can be efficiently addressed. The
solve operation is expensive both in terms of CPU and memory.
Therefore, to perform several solves in parallel is not an option
in shared memory architectures (note that each solve relates to a

Set tresholds

Global C Set
Nodes = M I l NODE 1

Divide Candidates Left and Divide Candidates Left and
Assign Local Candidate Set Assign Local Candidate Set

NODE 0

[Evaluate System [Evaluate System

[LU and Solve: v1 I I LU and Solve: v2 |
BROADCAST v1 - BROADCAST v1
BROADCAST v2 <~ BROADCAST v2

V=RRQR [V V1 v2] |

o

PARALLEL FOR
Generate Residues
forLocal Set

| V=RRQR [VVv1v2] |

i

PARALLEL FOR
Generate Residues
forLocal Set

[BROADCAST Local Residues =

BROADCAST Local Residues
BROADCAST Local Residues €—

BROADCAST Local Residues
v
Gather Residues Gather Residues
Sort Global Candidate Set Sort Global Candidate Set

|
o

(Return Basis)

Fig. 2. Distributed Multi-Core Algorithm Graph

Algorithm 2 Parallel Version - 3POr
Given the system and the domain of interest,

: Define stopping thresholds for the residue ¢, and the vectors ¢,
: Generate a set of candidate sample points ¥ = {1 ... ¢}
: Generate an array with candidate indexes T = [1,...T]
: Generate a residue array R=[r1,...r7), r;=2||B||
: MPI initialization, M nodes: N = node number, A=T"/M
. Initialize: V=]], k=0
: Mapping Local set: i=kM, Tn=0, While(: < T')

TNZ[TNT(Z 114 A)}, +=A, TN+=A
8: Select first local sample: v;, j=" n(0)
9: Evaluate system matrix: A;=A(v;)
10: Solve the system: z]-:A;lB, X(:, N)=z;
11: BROADCAST X
12: Orthonormalization: V=RRQR([V X])
13: PARALLEL FOR DYNAMIC i=1: T

j=TN(i), T‘,L'=BJ_A]'V, RN(Z)=HT7,”
14: BROADCAST Ry so that R=[Rg ... Ryr—1]
15: BROADCAST T so that Y=[Yo...Tpr—1]
16: Sort R in decreasing order, and Global Y accordingly, k++
17: IF R(0) > ¢, and |jvg|| > to
Set A to desired size, A < T — kM, and GOTO 7

18: Use V in a congruence projection on the system

N O R W N =

different sample point and essentially uses a different matrix). On
the other hand, each node in a distributed environment has its own
memory, so in this case the solves can be done in parallel. If the
system is already loaded in the node, it only needs the point to
solve, and thus the communication overhead is minimum. Once we
have selected a suitable point for solving, each solve can be done
independently on each separate machine. In order to cope with the
memory limitations, sparse factorizations or iterative methods can be
applied. Since this operation is done in parallel, at each iteration we
are solving M points, with a potential reduction of the overall solve
time by a factor of M.

B. Proposed Implementation

After having identified the algorithmic parts that are prone to be
parallelized, let us discuss the mapping and implementation. The
methodology is detailed in Algorithm 2, and the main steps illustrated
for M = 2 in Figure 2.

539

Initialization, Load and First Solve [steps 1-10]

The first step is the system load and the generation of the global
candidate set W that covers the region of interest. The thresholds
for the stopping criteria must also be set. A global residue array R
and index array Y are initialized, as well as an array X that will
contain the generated vectors. These are redundant in all nodes to
avoid unnecessary communications. The element R(z) will contain
the residue of the Y (i) candidate, 1 (;). These arrays will be used
for communication among the different nodes.

Each node N will define a local residue and index array, Ry and
Y, which are related to the global candidates. However, at each
iteration, each node only works with a subset of T candidates (the
workload distribution among the nodes will be discussed later). Each
node will select the first candidate in its local set, T (0), generate
the system matrix and solve the system at that point. This step is
done in parallel, and since each node has a disjoint subset of the
global candidates, M samples are generated at each iteration.

Vector Communication and Orthonormalization [steps 11-12]

Once the samples are computed, in order to use global information
in the generation of the residues, we need to gather all the vectors at
each node. To this end, each node N copies the solution vector to the
N-th column of X (if m > 1, a block vector is generated and the
columns for each node start in the position N'm), and broadcasts the
vector, i.e. an array of nm elements starting from the first element
of the column Nm. Broadcast is a global communication routine
in MPI, and thus a very efficient way to transmit data among all
nodes. Broadcasts are blocking in MPI, and thus the communication
cannot be overlapped with any other computation. However, the
communication time is small in comparison with other linear algebra
operations. In addition, the blocking operation works as a barrier,
allowing for a synchronization of the nodes.

Now all the nodes have all the sample vectors generated in the
previous stage. The next step is an incremental RRQR orthonormal-
ization of the new vectors with respect to the ones already stored
in the basis V. In the general case where the samples are complex,
each vector is broken into its real and imaginary parts, in order to
span the same subspace as the original complex vector, avoiding
using complex algebra, and maintaining real system matrices after
projection. Recall that all the nodes have the same information, and
thus each node does the same operation in parallel. This redundancy
avoids further communications. Since the orthonormalization is done
on a relative small set of vectors, and it is a linear algebra routine
that relies on cache hits for efficiency, this option is preferred to a
distributed implementation. However, shared memory or GPU based
implementations could also be applied here.

Residue Generation and Communication [steps 13-15]

The next step is the generation of the residues with the new
upgraded basis, and selection of the sample to solve next. In order
to speed up the procedure, each node generates the residues for its
subset of candidates. Therefore, each processor will have to compute
the residues at Ty = (T — kM) /M candidates, with k the iteration
number, 7" the overall number of candidates, and M the number of
machines. Notice that prior to this step, each node N has all the
global information: the basis and the global candidate set, plus two
local arrays Ry and Yy that indicates its subset of candidates. Here
the multi-core parallelization proposed in Section IV-A can again be
applied for independent residue generation at each node.

Each node stores the corresponding residue of the candidate with
index Y () in the element Ry (i), for all its elements with the

exception of the first one (recall that the first one was used as the
assigned sample to solve). Once the residues are generated, each
node copies its local array Ry and Y n to the global arrays R and
T starting at position N(T'—kM) /M. Once the arrays R and T have
the updated information, a broadcast is performed transmitting 7'
starting in their first element N (7 — kM)/M. Again, this broadcast
is a blocking operation that works as a synchronization barrier, and
the iteration counter is increased.

Candidate Mapping and Sample Selection [steps 16-17]

Once the broadcast is completed, at each node we have all the
global information, with R containing the residues of the candidates
indexed by Y. To find the best candidates for the next iteration,
we sort the elements in R in descending order, and those in Y
accordingly. Since all the nodes have the same data, the sorting is
done locally, avoiding further communications and providing data
coherence. The maximum residue of the candidates left and the norm
of the orthogonalized vectors at this iteration are checked against the
convergence thresholds. If convergence is not achieved, the remaining
T — kM candidates are distributed among the nodes to perform the
next iteration. Notice that since all the candidates are stored in each
node, no communication is required in this step: a simple assignment
of the indexes T of the candidates left to the nodes is enough.

An issue not yet discussed is how to distribute the candidates
among the different nodes. This mapping can have a critical effect on
the results of the algorithm, as the first sample of the local subset is
used to solve the system, and thus to generate the global sample. In
the initial iteration, k=0, there is no indication of how to select the
samples, and thus we have to make a guess. For the type of linear
models we are interested in, frequency is often the most relevant
parameter, the one with the more relevant effect on the behavior
of the system. In order to obtain vectors as different as possible,
a solution is to use samples that are separated in frequency. If the
candidates are sorted in frequency, the initial set can be split into
M subsets of size A = T'/M, and each assigned to a node. For the
remainder of the iterations k > 0, we already have the residues and
indexes sorted in the arrays R and Y, with the initial kM elements
related to solved samples and the indexes. We divide the array YT
in chunks of size A, and assign chunks alternatively to the nodes
(i.e. chunks 0,M,2M, ... are assigned to the first node, chunks
1, M+1,2M+1, ... to the second, and so forth).

If we divided Y into M chunks, A = (T — kM)/M, the node
N = M — 1 will be loaded with the candidates with small residue,
and thus may generate a vector that will add ”“small” or no rank to
the current basis. On the other hand, if we take A = 1, the first M
samples indexed by Y (and with the larger residue) will be assigned
to the M nodes and solved, one at each node (recall the first sample
of the subset is the one to solve). This may not be the best option in
every scenario. Imagining a fine discretization of the space of interest,
the candidates are “close” in the discretized space. Linear systems
are characterized for their continuity, and thus if the candidates are
“close”, the behavior (the vector solution) of the system may be
similar (and thus it may not be a good idea to solve for both vectors),
and they will also have similar residue. Therefore, if we solve the
first M samples it may happen that they span a rank-deficient set of
vectors (note that the serial implementation has no such problem
since at each iteration only a sample is solved for, and thus the
residue information about the remaining candidates is updated before
the next choice). The optimal value for A depends upon multiple
factors, such as the model behavior or the discretization of the space
to sample, and, in addition, may vary at each iteration. We propose

540

10"

EEEZTZTE

®» o oD

Complexity

- *

T T L
2m0 260 a0

.‘ == WE‘IEI 150

block vectors in basis
Fig. 3. Theoretical complexity growth of the sample step (14) with the
number of block vectors in basis, for M=1, 2,4, 8 and 32 nodes and P=1,
with n=1e6, m=2, and T'=5000. Markers indicate when a new sample is
solved (i.e. a new iteration: K++).

an intermediate option, and to take a relatively small value for A, yet
larger than one, in order to maximize the probability of generating
relevant yet different vectors. This has direct consequences on the
optimality of the sample selection, since we are no longer taking the
”best” sample (according to the residue) at each iteration. There is one
node that solves that “best” sample, whereas the remainder choose
probable good samples. This may be translated in an optimality loss
with respect to the sequential approach.

C. Computational Complexity Analysis

Let us study the efficiency of this parallelized approach. We have T’
initial samples, and we need a total number of K samples to achieve
a good model in the sequential case. Again, let us suppose we have
M machines with P cores each, and the cost of the communication
at each iteration is O(ts). At each iteration we solve for M samples,
and thus, we can potentially reduce the number of iterations by a
factor of M. Thus the overall cost of factorization and solve is

X Psotve = O([K/M] S). (12)
Potentially, if the cost of the solves dominates, a speed-up close to
M can be achieved in these stages. Notice that this performance can
be further improved if shared memory parallelized approaches of the
solve and orthonormalization are applied (i.e. trying to reduce O(S)).
We have however not pursued that. Since we are not parallelizing the
orthonormalization and it is done on the same number of vectors, the
cost is essentially the same as in the sequential case (all the processors
perform this operation simultaneously),
XrrpPorth = O(anKz)- (13)

With respect to the sample selection, at each iteration the task of
residue generation is divided by the number of nodes plus the number
of cores at each machine. In addition we have reduced the number
of iterations to (%], although at each iteration Mm new vectors are
generated. Therefore the cost of this step is

Xmpss = O(Z{fl/lm (T;{ig{)n(iMm)z),

(14
which after some algebra, similarly to (10) can be approximated by

15)

X}MPSS = O(nm}j]ﬂ ’V%]S(T - M{%‘D

Notice that we reduce the number of residues to generate by each
core by a factor of M P. Since these operations are independent,
the speed-up should be close to that value. But in addition, we are
reducing the number of iterations by a factor M, which is translated
into a potential speed-up larger than M P.

To illustrate this, Figure 3 shows the (theoretical) complexity
growth with the increase of the number of vectors in the basis (and
thus with the number of iterations K) by evaluation of (14) with
n=1e6, m=2, and T=5000, for M=1,2,4,8, and 32, with a single

TABLE 1
BENCHMARKS CHARACTERISTICS AND SEQUENTIAL REDUCTION

[i Example [[Sp-Nwell [[K-Spiral [pRLC]
Modeling FIT K-method MNA
" Order 15% ond 15%
= g Size 39759 89134 30011
= A/ Terms —/— 1/4 15/15
p=ffts w (GHz) 0.5-60 40-60 0-200
Validation 10000 6000 50000
Candidate 1179 700 6048
|| Sample Selection 17740 605741" *
=9 LU and Solve 377337 997227 ¥
58 RRQR 001" 018" 7
2l
Overall 55'16" 7067177 *

core (P=1). These results show the potential of the proposed paral-
lelization, that can achieve improvements larger than M P (close to
M? P for a large number of iterations). However, these are theoretical
results, and in general, as the number of machines increases, the
optimality of the sample selection is decreased (only one sample is
optimal in terms of maximum residue). This is translated into slightly
larger reduced orders. In addition, communication costs can slow
down the overall performance.

The overall cost can be approximated by the sum of the costs
in (12), (13) and (14), plus the communication costs. In cases where
the sample selection elapsed time is a large fraction of the overall
time, potential super linear speed-ups can be achieved, with good
scalability. In addition, the parallelization effectiveness in terms of
speed-up is increased with the size of the subspace required for a
good approximation (i.e. the number of vectors in the basis, and thus
the iterations required for the convergence). This comes from the fact
that we are reducing the number of iterations by a factor of M, but
also the residue generation at each machine is done on a smaller
number of candidates.

V. SIMULATION RESULTS

The algorithms discussed were implemented in C/C++, with
double precision and using OpenMP and OpenMPI for the par-
allelization. As mentioned parallelization was not applied to the
underlying algebra routines, and thus the results could still be
considerably improved. For the LU and solve, the sequential KLU
algorithm of the SuiteSparse package [10], [11] was used, in order
to minimize memory requirements. Tests were run on a cluster of 8
Intel Q6600 (4-core) @2.4GHz machines with 8G RAM, connected
by a dedicated gigabit net. In the KLU routines we used AMD for
the symmetric second order systems, and COLAMD for the non-
symmetric first order systems. For the sampling, no prior knowledge
of the system was assumed, other than frequency and parameter
variation ranges.

As benchmarks we will use an example depending solely on
the frequency, and two parameterized systems. Sp-Nwell is a non-
parameterized EM model of an integrated spiral inductor over an N-
Well, obtained with FIT, and taking into account substrate and upper
air. K-spiral is an RCK second order EM model of a integrated spiral
inductor, whose side length varies up to 37um around the nominal
value of 187um, and is modeled with a 4** order Taylor Series.
PRLC is an distributed RLC model of a interconnect with 5 metal
lines and 3 ports, in its MNA formulation. Each line depends on 3
parameters, with total of 15 parameters (plus the frequency). Table I
presents the characteristics of the benchmarks, including the number
of candidate sets for the procedure and the number of points used
to compute the error in the validation of the ROMs. Also shown are
detailed reduction times for each benchmark, divided among the main

541

TABLE II
PARALLELIZATION AND REDUCTION RESULTS

of ROM size 1 4 Abs.Err.

Nodes Iterations core cores Rel.Err.

M =1 24 55716" 41756" 8.8e — 4

12 1X 1.318X 7.3¢ —6

5 M =2 24 247217 20723" 1.5e —4
2 6 2.269X 2.711X 4.6e — 6
Z ar=3 £ 157487 || 13377 || 24e—3
2 4 3.497X 4.058X 2.6e — 5
M =38 44 117327 107137 6.le — 4

3 4.791X 5.409.X 4.9e — 6
M=1 102 706'177 28076" 1.12¢ — 2

51 1X 2.521X 1.7¢e — 6
= M=2 110 3237547 1387117 1.00e — 2
-3, 28 2.180X 5.111X 1.5¢ — 6
X M =4 117 1447407 6740”7 1.12e — 2
o 15 4.882X 10.437X 1.7¢e — 6
M = 124 65"15" 337217 1.0de — 2

8 10.824 X 21.177X 1.6e — 6

steps (for the pRLC model, * indicates the simulation was aborted
due to excessive time). Although mid-size models, it can be seen
that in some cases the cost of solving the system is relatively large.
The proposed framework is able to maintain, and even increase, its
effectiveness for larger models.

For the Sp-Nwell, most of the time is devoted to the sampling
(solves) in the sequential algorithm. Therefore, in this case, the
parallelization gain obtained is mostly due to the fact that we perform
M solves at each step. Table II shows the performance of the
algorithms, for different number of nodes, and for single and 4 core
machines. Since the parallelization of the solves is driven by the
number of nodes, the speed-up is close to M. The use of the multi-
core approach here provides some extra gain, but is not critical since
the number of iterations required is small (and so is the ROM size),
and the parallelizable fraction in the shared memory parallelization is
small (the sample selection takes ~ 32% of the overall elapsed time
in the sequential case). This of course limits the scalability of the
method (at some point we are generating more vectors than required
for the basis, so we can no longer reduce the number of iterations).

The K-spiral example is a large second order model with 5124
Resistors, 20736 Capacitors and 381120 Susceptances; each of the
3 system matrices is represented by the nominal plus 4 Taylor
Series terms with respect to a design parameter that strongly affects
the system behavior. The proposed framework is able to handle it
with minimum modifications in the flow (evaluation of the system
matrix is done with 3 matrices instead of 2). In this case both
the sampling and the solves are critical in the execution time, and
thus the parallelization is very effective, achieving good speed-ups.
Table II shows the details on the performance. It can be seen that the
distributed parallelization with single core reports super linear speed
up. This is due to the fact that the small redundancy achieved is
compensated by the super linear speed-up of the sample selection step
(which comprises 85.76% of the sequential time). With 4 cores the
speed-up is increased by a factor larger than 2, which is a reasonable
speed-up if we take into account the parallelizable fraction we are
using in the shared memory approach.

The pRLC example is shown as a qualitative case. It is a
simple yet very challenging model in terms of sample selection:
many parameters and a large frequency range require a large initial
candidate set (6048 points), with a behavior almost "flat” at low
frequencies, but with multiple resonances at high frequencies. A large
number of vectors is required for aceptable accuracy. The sequential
approach is unable to reduce the model in a reasonable time. On

the other hand, the proposed parallelization with AM=8 and 4 cores
generates a 573-states ROM with 12 iterations in 326’35, with the
desired accuracy checked in a validation set of 50000 points.

VI. CONCLUSIONS

A distributed and shared memory parallel framework for pa-
rameterized linear model order reduction has been presented. The
underlying method relies on multi-dimensional sampling, providing
robustness and reliability, and the combination with the sample
selection approach provides a high level of automation. In addition, it
is general enough to be applied to different scenarios and model rep-
resentations, and can efficiently handle single and multi dimensional
problems with large sets of parameters. The proposed parallelization
is done at the algorithmic level and has been proven to be very
effective regardless of the model’s original size and characteristics.
The major benefit from the proposed framework is the potential to
tackle large and complex models depending on multiple parameters in
an automatic fashion in a reasonable time. Large processing farms are
available that can be used to reduce extremely challenging models,
otherwise difficult to address with sequential approaches.

REFERENCES

[11 A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.
Philadelphia, PA, USA: SIAM, 2005.

[2] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: passive reduced-
order interconnect macromodeling algorithm,” IEEE TCAD, vol. 17,
no. 8, pp. 645-654, August 1998.

[3] J. R. Phillips and L. M. Silveira, “Poor Man’s TBR: A simple model
reduction scheme,” IEEE TCAD, vol. 24, no. 1, pp. 43-55, Jan. 2005.

[4] L. Daniel, O. C. Siong, S. C. Low, K. H. Lee, and J. K. White, “A
multiparameter moment-matching model-reduction approach for gen-
erating geometrically parametrized interconnect performance models,”
IEEE TCAD, vol. 23, no. 5, pp. 678-693, May 2004.

[5] Z.Zhu and J. Phillips, “Random sampling of moment graph: a stochastic
krylov-reduction algorithm,” in Proc. DATE, April 2007, pp. 1502-1507.

[6] J. Phillips, “Variational interconnect analysis via PMTBR,” in ICCAD,
San Jose, CA, USA, November 2004, pp. 872-879.

[71 J. FE. Villena and L. M. Silveira, “ARMS - automatic residue-
minimization based sampling for multi-point modeling techniques,” in
Proc. DAC, San Francisco, CA., USA, 26-31 July 2009, pp. 951-956.

[8] P. Benner, E. S. Quintana-Orti, and G. Quintana-Orti, “State-space
truncation methods for parallel model reduction of large-scale systems,”
Parallel Computing, vol. 29, pp. 1701-1722, 2003.

[9]1 Y. Saad, Iterative Methods for Sparse Linear Systems.
Co., 1996.

[10] T. A. Davis, “Direct methods for sparse linear systems,” ser. The
Fundamentals of Algorithms. SIAM, Philadelphia, September 2006.

[11] T. A. Davis and E. P. Natarajan, “Algorithm 8xx: Klu, a direct sparse
solver for circuit simulation problems,” Submitted to ACM Transactions
on Mathematical Software.

[12] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel
supernodal algorithm for sparse gaussian elimination,” SIAM J. Matrix
Analysis and Applications, vol. 20, no. 4, pp. 915-952, 1999.

[13] X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” ACM
Trans. Mathematical Software, vol. 29, no. 2, pp. 110-140, June 2003.

[14] Y. Bi, K.-J. van der Kolk, D. Ioan, and N. van der Meijs, “Sensitivity
computation of interconnect capacitances with respect to geometric
parameters,” in JEEE EPEP, San Jose, CA, October 2008.

[15] B. Dewey, I. Elfadel, and T. El-Moselhy, “An efficient resistance

sensitivity extraction algorithm for conductors of arbitrary shapes,” in

Proc. DAC, San Francisco, CA., USA, 26-31 July 2009, pp. 770-775.

P. Bratley, B. L. Fox, and H. Niederreiter, “Implementation and tests

of low-discrepancy sequences,” ACM Transactions on Modeling and

Computer Simulation, vol. 2, no. 3, pp. 195-213, July 1992.

[17] C. H. Bischof and G. Quintana-Orti, “Computing rank-revealing QR
factorizations of dense matrices,” ACM Trans. Math. Softw., vol. 24,
no. 2, pp. 226-253, 1998.

[18] The OpenMP API specification, “http://openmp.org/wp/.”

[19] The Open MPI Project, “http://www.open-mpi.org/.”

Pws Publishing

[16

542

