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Exploiting Parallelism for Improved Automation of
Multidimensional Model Order Reduction
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Abstract—This paper addresses the issue of automatically
generating reduced order models of very large multidimensional
systems. To tackle this problem we introduce an efficient parallel
projection based model order reduction framework for param-
eterized linear systems. The underlying methodology is based
on an automated multidimensional sample selection procedure
that maximizes effectiveness in the generation of the projection
basis. The parallel nature of the algorithm is efficiently exploited
using both shared and distributed memory architectures. This
leads to a highly scalable, automatic, and reliable parallel
reduction scheme, able to handle very large systems depending
on multiple parameters. In addition, the framework is general
enough to provide a good approximation regardless of the model’s
representation or underlying nature, as will be demonstrated
on a variety of benchmark examples. The method provides the
potential to tackle, in an automatic fashion, extremely challenging
models that would be otherwise difficult to address with existing
sequential approaches.

Index Terms—Multidimensional sampling, parallel model or-
der reduction, parameterized systems.

I. Introduction

MODEL ORDER REDUCTION (MOR) methodologies
are a set of techniques aimed at compressing the

information contained in detailed models representing phys-
ical effects [2], [3] allowing for more efficient simulations.
The most relevant linear MOR techniques can be broadly
characterized into those based on subspace generation and
projection [4], [5], and those based on balancing techniques
[6]. MOR methodologies have also been proposed to handle
parameterized systems, where the response depends on a set
of parameters modeling operating, environmental and process
variations that affect the underlying physical system. The
goal of these parameterized model order reduction (pMOR)
methods is to generate an approximate reduced order model
(ROM) with equivalent I/O response for the whole multi-
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dimensional space of interest. Most of the pMOR methods
rely on the generation of a low order subspace that spans the
solution of the system, followed by a projection of the orig-
inal system into that subspace. Different techniques propose
different methods for the subspace generation, either based on
multidimensional moment matching [7]–[9], or in multipoint
sampling approaches [10], [11].

Either way, the application of such approaches still suffers
from some drawbacks that prevent a more widespread adoption
by the EDA industry. Two of the more relevant stumbling
blocks are related to the automation of the procedure and the
excessive cost of handling models of very large scale networks.
Furthermore, moment matching methods are unable to effi-
ciently handle a large number of parameters, whereas sampling
on a large number of dimensions may became too expensive.

Nowadays the availability and extensive use of multicore
architectures, GPUs, and distributed environments are rev-
olutionizing the implementation of algorithmic solutions to
relevant problems, allowing for widespread low-cost high-
performance parallel approaches able to overcome some of the
existing bottlenecks in certain applications. In the framework
of MOR there has been relatively little work devoted to the
usage of such architectures. Moreover, most of these efforts
have been directed toward the parallelization of the underlying
linear algebra routines [12]–[14]. Little effort has been devoted
in particular to the application of such architectures to the
pMOR problem, even though it is one of the most challenging
tasks, and could readily take advantage of the availability of
such parallel environments.

This paper addresses the automatic generation of reduced
models of general parameterized linear systems, which can
be simulated more efficiently than the original ones while
maintaining the same IO response for a wide parameter and
frequency range. In particular, we focus on the development
of efficient parallel algorithms that will speed up the model
build-up and generation step. Unlike most previously proposed
approaches, instead of focusing on the parallelization of the
underlying linear algebra routines, our target is a paralleliza-
tion at a higher level, that will prove to be very effective and
scalable. The framework proposed relies on multidimensional
sample-based methods [10] for the generation of a suitable
basis, combined with an automated sample selection approach
such as the one in [11]. It will be shown that the procedure
is robust and reliable, provides considerable automation and
shows good results, regardless of system representation and
characteristics, without degrading the efficiency. As a result,
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it enables the otherwise difficult reduction of large challenging
models depending upon multiple parameters.

This paper is structured as follows. In Section II an overview
of the MOR paradigm is presented, along with a discussion of
existing approaches relevant for this paper, their pros and cons
and the opportunities for parallelization, at different levels,
that they offer. In Section III the initial sequential approach is
introduced, and in Section IV the proposed implementation is
presented, along with a study and discussion of its complexity
and relevant computational issues. In Section V several exam-
ples are shown that illustrate the performance of the proposed
technique and in Section VI conclusions are drawn.

II. Background

A. Parameterized Systems and Model Order Reduction

A considerable number of MOR techniques are geared
toward the reduction of a state space linear time-invariant
system representation, where the output y is related to the input
u via some inner states x. When parametric variations are taken
into account, the system is represented as a parameterized
state-space descriptor, with an associated frequency-domain
transfer function

C(λ)ẋ(λ) + G(λ)x(λ) = Bu y(λ) = Ex(λ)
H(s, λ) = E(sC(λ) + G(λ))−1B

(1)

where C, G ∈ Rn×n are, respectively, the dynamic and static
matrices, B ∈ Rn×m is the matrix that relates the input vector
u ∈ Cm to the inner states x ∈ Cn and E ∈ Rp×n is the
matrix that links those inner states to the outputs y ∈ Cp,
and H(s, λ) ∈ Cp×m is the transfer function matrix. We
assume here, as is common, that the elements of C and G,
as well as the states x, depend on a set of Q parameters
λ = [λ1, λ2, . . . , λQ] ∈ RQ which model the effects of the
uncertainty. Usually, but not always, the input (B) and output
(E) matrices do not depend on the parameters.

The representation of parametric dependence is often ob-
tained via first order sensitivity computation of the discretized
elements with respect to the parameters [15]–[17]. Therefore,
matrices C and G in (1) can be represented in a polynomial
form with respect to the parameters.

The most common procedure to obtain an accurate and
structurally similar ROM is to use an orthogonal projection
on the polynomial matrix representation (as advocated in [7]),
leading to a structurally equivalent reduced polynomial for-
mulation. Standard pMOR methodologies rely on the gener-
ation of a suitable low order subspace (spanned by the basis
V ∈ Rn×q), where the original system matrices C(λ), G(λ),
B and E are subsequently projected. Then a reduced model
such as (3) can be obtained, that captures the behavior of the
system under parameter variations

Ĉ(λ) = VT C(λ)V Ĝ(λ) = VT G(λ)V
B̂ = VT B Ê = EV x(s, λ) = V x̂(s, λ)

(2)

where V ∈ Rn×q spans the projection subspace of reduced
dimension q, and Ĉ, Ĝ ∈ Rq×q, B̂ ∈ Rq×m, Ê ∈ Rq×p, and
x̂ ∈ Cq define the reduced order model of dimension q � n (q

is the reduced order). These matrices provide an approximated
transfer function

Ĥ(s, λ) = Ê(sĈ(λ) + Ĝ(λ))−1B̂ ≈ H(s, λ) ∀ {s, λ} . (3)

To ensure the accuracy of the ROM, the basis V ∈ Rn×q

must be able to capture the behavior of x(s, λ) for the relevant
{s, λ} space, or in other words

x(s, λ) ≈
q∑

i=0

αi(s, λ)Vi ∀ {s, λ} (4)

where Vi is the ith column of the projector V , and αi ∈ C.
Different projection based pMOR approaches have been pre-
sented, which differ in how to generate the matrix V .

B. Multidimensional Moment Matching

Most of the methods in the literature choose to extend the
standard moment matching paradigm [4] to the multidimen-
sional case [7]–[9]. Therefore they generate a basis V that
spans the multidimensional moments of the transfer function
around an expansion point, and can be used as a projector. In
general, these methods, which rely in local matching around
the expansion point, suffer from model oversize when the
number of moments to match is high, either because high
order is required, or because the number of parameters is large.
Also, for efficient implementation, they require the availability
of a Taylor series based representation of the system matrices,
a feature that is not always present. When this is the case,
linearization schemes are necessary, but Taylor series of order
higher than one are hard to handle. A different problem faced
by these approaches is the lack of automation as it is very
difficult to determine the number of moments to match, both
in frequency and with respect to the parameters, in order to
generate an accurate model.

1) Basic Operations and Parallelization Potential: The
moment matching approaches usually rely on Arnoldi iterative
methods, which are very computationally efficient (see [4],
[9] for actual implementation details). The main operations
that these methods require, for matching q moments, are a
single point evaluation of the system matrix A (at cost O(z)
with z the number of non-zeros of A), a single LU matrix
factorization (whose cost is problem dependent, and that we
will denote as O(S)), and q sparse matrix dense block vectors
multiplications (O(qzm), with m the number of columns of
B), q solves with m right hand sides (with cost dependent on
the problem), and q block orthonormalizations (dense oper-
ations with approximate overall cost O(nq2m2)). Due to the
iterative nature of the method, parallelizations of these type of
algorithms usually rely on the parallelization of the underlying
linear algebra routines. Since the dominant cost comes from
the LU factorization, parallelization of this routine seems to
be the most critical operation. Shared or distributed memory
based parallelization such as [18] and [19] may provide good
results. The rest of the operations usually rely on efficient
linear algebra operations, and thus efficient parallel versions
of BLAS-type operations may improve performance. Due to
the iterative nature of the method, where computations for
matching a given moment q require information from matching
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moment q − 1, parallelization usually implies considerable
data dependencies and seemingly discourages further efforts
into higher-level parallelization. But in this paper we seek
exactly such high-level concurrency in an algorithm, hopefully
leading to a scalable procedure that will allow handling of very
large scale problems. For this reason and the issues previously
presented in terms of automation and generality, we are not
pursuing a parallelization of this family of MOR methods.

C. Multidimensional Sampling

An alternative approach to the moment-matching techniques
are the multipoint methods. The goal of multipoint approaches
is to generate the projection basis either by generating the
transfer function moments from multiple expansion points
ψj =

{
sj, λj

}
, or from solving the system at different sample

points on the relevant space

xj = x(ψj) = A(ψj)−1B = (sjC(λj) + G(λj))−1B (5)

where x(ψj) ∈ Cn is the sample vector generated at the
sample point ψj =

{
sj, λj

}
, and is directly related to the

zeroth order moment at ψj . Here the most relevant vectors
among those generated by such quadrature are selected, for
instance, via singular value decomposition, in order to build
the projection matrix V . This approach is more reliable as
it is less sensitive to the number of parameters, but, on the
other hand, depends on a good sampling selection scheme.
This leads to the main problems of these approaches: without
sampling guidance the ability to reliably generate an accurate
ROM may be compromised. Furthermore, sample solution
may end up being too expensive, and thus covering the
whole domain of interest with sampling points may be out
of question. General and automated sample selection schemes
are thus absolutely necessary for this technique to be practical.

1) Basic Operations and Parallelization Potential: The
multipoint methods require the evaluation and solution of
the system at each of a set of K sampling points. Here the
computational cost is dominated by the solves (O(KS)), which
depends on the problem, plus an overall orthonormalization of
the basis, a dense operation whose cost can be approximated
by O(nK2m2) and usually represents a small fraction of the
total cost. The data independence inherent to the sampling step
is very appealing for parallelization and makes this family of
methods as ideal for a high level parallelization. Evaluations
and solves are independent, and thus theoretically perfect
parallelization can be achieved in this step.

D. Automated Sample Selection Schemes

Recently, in [11], an automatic sampling scheme was
proposed, which aims at obtaining a minimum number of
vectors (thus minimizing the number of solves) so that a good
approximation of the states vector can be obtained, i.e., a
minimum set q so that (4) holds. The approach seeks to retrieve
the “best” samples to solve for among an initial candidate set,
with the sample selection being done before actually solving
them. The method requires computing the residues obtained

at every point in a candidate set and assumes that this residue
is a good and cheap proxy for the true error

rj = b(ψj) −
k∑

i=1

αi(ψj)A(ψj)vi (6)

where rj ∈ C
n is the residue of the system b(ψj) =

A(ψj)x(ψj), evaluated at the multidimensional point ψj , when
we approximate x(ψj) by a basis V of k column vectors
(vi ∈ Rn with associated multiplier αi ∈ C). The error, on
the other hand is defined as

ej = x(ψj) −
k∑

i=1

αi(ψj)vi (7)

where ej ∈ Cn is the error, which is computationally expensive
to generate, as we need to solve the system for x(ψj).

After computing all the residues, the candidate point ψj

with largest residue norm (or sum of norms in the case of
multiple input multiple output systems) is deemed as the best
new sample, i.e., the one that improves accuracy the most.
Therefore, only after we have selected the best suited candidate
ψj , do we solve the system to generate the block vector
(see [11] for details).

The advantage is that the number of solves is drastically
reduced in order to obtain an accurate model, and the points
to solve for are automatically selected from an initial candidate
set. On the other hand, if this candidate set is too large,
the sample selection, which requires computing the residue
at every candidate in every iteration, may become expensive.

1) Basic Operations and Parallelization Potential: The
methodology described generates, at each iteration, the residue
at every point on the candidate set. This requires evaluating
the system A (at a cost of O(z), where again z is the number of
non-zeros of A) and to compute the sparse matrix dense matrix
product AV (at cost O(zkm), with k the iteration number and
m the number of columns of B), plus the orthonormalization of
B against the basis of AV , which requires dense matrix mul-
tiplications and orthogonalizations with approximated overall
cost of O(nk2m2). Notice that the cost depends on the number
of columns in V , km, which increases with every iteration
k. These operations must be repeated for every candidate in
the set, but independently, which provides the opportunity for
efficient parallelization.

III. Sequential Approach

The main goal of this paper is to generate a general and
efficient automated projection-based MOR methodology, able
to effectively reduce parameterized linear systems regardless
of their representation and with minimal human interaction
(ideally none at all). Pursuing on the facts presented in the
previous section, to achieve this goal we are going to focus
on the parallelization of a multipoint methodology combined
with the presented sample selection scheme [11]. A detailed
depiction can be seen in Algorithm 1.

A. Sequential Algorithm Implementation

The algorithm can be divided into four main tasks. The first
task is the initialization (steps 1–3 in Algorithm 1). We set
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the tolerance thresholds for the stopping criteria, and, starting
from the original system and the (multidimensional) domain
of interest, we define an initial candidate set � = {ψ1 . . . ψT }
with T multidimensional samples ψj , covering the whole
domain. Each candidate has an associated residue norm R(j).
In order to automate the candidate generation and improve the
coverage, a logarithmic mesh is defined in complex frequency,
with increasing number of samples per decade as the frequency
increases, and for each frequency point a number of different
parameter perturbations are performed following for instance a
low-discrepancy sequence [11], [20]. The number of samples
per decade and parameter samples per frequency are defined
according to a defined discretization level. The reasoning
for such a scheme comes from the fact that the range of
variation of frequency is typically much wider than that of the
parameters, and frequency has in general a larger impact on the
performance of electric circuits than the remaining parameter
perturbations. Other schemes can be applied.

The second task (steps 4 and 5 in Algorithm 1) is the system
evaluation and solve for the candidate ψj to generate the block
vector xj . In the first iteration, a sample is chosen blindly
(DC is usually a good choice), whereas in future iterations the
sample to evaluate and solve for is already selected. This step
requires a direct or iterative solve of the system, and thus is
one of the more expensive steps.

Next, the third task (step 6) is the orthonormalization of
the new vector xj with respect to the existing basis V (in
the first iteration V is empty, and thus we only need to
orthonormalize xj column-wise). Generally this orthonormal-
ization can be done by an incremental rank revealing QR
operation [21]. The maximum norm of the columns of xj after
block orthogonalization w.r.t. V is stored in variable nv for the
stopping criteria. It is important to notice that complex samples
generate complex vectors. In these cases, in order to match the
equivalent subspace to xj while maintaining V real, we must
work with both the real and imaginary parts of xj separately.

The forth task (step 7) is the residue generation. The
current basis V is used to update the residue at the required
(remaining) candidate points in the set. This requires a series
of operations detailed at (step 7) of Algorithm 1. Once the
maximum residue at the remaining candidates is found, we
check the stopping criteria: if the current residue norm R(k)
and maximum norm of the vectors nv fall below a given
(relative) threshold, we assume that our basis is a good
approximation to the solution for all the candidates, and that
the vectors generated are not adding relevant rank to our basis.
Thus we can stop the procedure. Otherwise the candidate with
maximum residue is selected as next sample, and the procedure
repeated (from step 4). The final basis V can be used as a
projector in the congruence transformation for the reduction.

B. Computational Complexity Analysis

The overall cost of this algorithm can be attributed to
three operations: the solve (direct or iterative method), the
orthonormalization, and the sample selection.

The cost of the solve for sparse matrices is very dependent
on the matrix characteristics in terms of sparsity pattern and
number of non-zeros, and varies with the problem. We will

Algorithm 1 Detailed Sequential Version
Given the system and the domain of interest,

1: Define stopping thresholds for the residue tr and the vectors tv
2: Generate a set of T candidate sample points � = {ψ1 . . . ψT }
3: Initialize: k = 1; V = [ ]; R(i) = 2 ‖B‖ ∀i = 1 : T ;
4: Evaluate the system: Ak = A(ψk); Bk = B(ψk);
5: Solve the system: Akxk = Bk for xk

6: Orthonormalization: k++
vk = xk − V (VHxk); nv = ‖vk‖; V =

[
V vk/nv

]
;

7: FOR i = k : T
Ai = A(ψi); X = AiV ; X = QR(X);
ri = B − X(XHB); R(i) = ‖ri‖;
IF R(i) >= R(i+1) BREAK

8: Sort R in decreasing order, and � accordingly
9: IF R(k) > tr and nv > tv

GOTO 4
10: Use V in a congruence projection on the system

denote the cost of these operations O(S), and thus, after K

iterations (where K is the number of samples required to
generate the appropriate basis), the cost is Xsolve = O(KS).

The orthonormalization of K block vectors of size m (m the
number of ports) is a dense matrix operation whose overall
cost can be approximated by [11] Xorth = O(nm2K2).

For the sample selection, the cost is dominated by the
computation of the residue, which requires the orthogonal-
ization of Bj against AjV for each candidate point. To the
authors knowledge there is no incremental approach that can
be used to overcome this bottleneck without running into other
problems (for example, to store and reuse the factorization at
each candidate point would speedup the residue computation
but lead to huge memory requirements). The basic operations
required are: the sparse dense product X = AjV (with cost
O(zkm) if z is the number of non zeros of Aj and km the
columns of V at iteration k), to orthonormalize X (dense
operations at cost O(nk2m2)), to orthogonalize B against X

to generate the residue, (dense operations at cost O(nkm2)),
and to compute the column-wise norm of the residue (O(nm)).
The cost is dependent upon the number of columns in V ,
which increases with the iteration k, and is dominated by the
orthonormalization O(nk2m2). Therefore, if we have T initial
candidate points of a system with n states and m ports, the
cost associated with the sample selection is [11]

Xss = O(
K∑
i=1

(T − i)n(im)2) (8)

where i indicates the iteration, and thus im is the rank of the
current basis, and K is the final number of iterations required
to generate the basis (K < T ). After some algebra, (8) can be
approximated by

Xss = O(nm2K3(T − K)). (9)

This cost is highly dependent on the number of points in the
initial candidate set, T , and the dimension of the basis required
for a good accuracy, which is related to K.
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IV. Exploiting Parallelism

Although the methodology outlined in the previous section
provides good results in terms of accuracy and reduction for
both single and multidimensional systems, it can be expensive
for large domains, with multiple dimensions, and large size,
both in the original and reduced systems.

To illustrate the main costs related to Algorithm 1, and
help to understand the selected parallelization scheme, Table I
shows a comparison of the times of the main linear algebra
routines in which the MOR algorithms are based upon. Let
us take a single iteration, for example k = 25 of Algorithm 1,
in which we have 50 vectors on the current basis V . Step 5
requires a LU and back solve, which according to Table I
would elapse 1107′′. Step 6 requires a QR, elapsing 3′′. Step 7
requires to perform, for each candidate left, a complex sparse
matrix dense matrix product (3′′), a dense complex QR (6′′),
and to compute the residue and its norm, operations with a cost
similar to a QR factorization (6′′). Therefore, if we have 100
candidates left, the overall elapsed time will be approximately
1500′′. It is important to recall that the cost of step 7 depends
on multiple factors, such as the number of vectors in the basis
and number of candidates, and thus varies from iteration to
iteration. With these numbers in mind, efficiently speeding up
the algorithm implies reducing the number of iterations (which
also reduces the number of solves) more so than speeding
up the individual operations themselves. But in addition, the
parallelization efforts should focus on the reduction of the cost
of the sample selection (critical for multidimensional models
that require a large candidate set).

We propose a simple yet highly effective parallelization of
the algorithm that will overcome the main drawbacks of the
serial version, while keeping the same accuracy, robustness
and reliability. It is important to point out once more that the
goal of this paper is not related to efficient parallelization of
the underlying linear algebra routines (which can neverthe-
less be combined with the proposed methodology to provide
further speedups). Instead, we will focus on parallelization at
a higher, more abstract level. With the advent of multicore
processors and fast network connections, most computational
environments are now hybrid shared and distributed memory
architectures. The kind of parallelization we seek to apply
can take advantage of both architectures, and although each
can be pursued independently, we propose in fact an hybrid
framework exploiting both. In the following we will assume
an hybrid architecture is available, denote P as the number
of cores per machine (processors with shared memory), and
M as the number of nodes or machines in a distributed
environment (processors with distributed memory). For the
parallelization routines we will use the standard nomenclature
of the OpenMP [22] and OpenMPI [23] languages, which are
the most commonly used libraries and the ones we used in
our implementation.

A. Shared Memory Parallelization Opportunities

Shared memory are uniform memory access architectures in
which a common, global memory is accessed by all the pro-
cessors. Usually the memory is local, even if multiple memory

TABLE I

Comparison of Linear Algebra Routines: A Is Sparse with Size

179 272 and 1 898 327 Nonzeros, and X Is Dense with 50 Columns

AX (Lapack) QR(X) (UMFPack) LU and Solve
Real 1′′ 3′′ 404′′

Complex 3′′ 6′′ 1107′′

levels are present, such as in the case of multicore CPUs, and
thus the access is very fast. This allows for a finer granularity
on the parallelization, since the communication time is rather
small. On the other hand, some attention must be paid to
data-races or concurrent access to the same memory. Shared
memory based parallelization achieves its best performance in
vectorial operations, i.e., operations that are independent and
with small data dependencies.

Looking at (9), searching for a suitable sampling point can
be costly if there is a large number of vectors in the basis
and a large candidate set. This is usually the case for systems
where many parameters have a critical impact on the behavior
of the model. A first parallelization can be efficiently applied
to this sample selection procedure where computation of the
residue at each remaining point in the candidate set can be
done independently at each point, as there are no data races
or concurrency issues, and it has relatively small memory
requirements. Therefore, shared memory parallelization is
appropriate and a simple distribution of the candidates among
the available cores, with negligible overhead, can provide a
theoretical near perfect speed-up for this sample selection step.
Note that the parallelization is done at a high level, avoiding
the parallelization of the underlying routines. Each one of the
P cores perform the same operations with different data input.
We thus propose a shared memory parallelization of the loop
in step 7 of Algorithm 1.

B. Distributed Memory Parallelization Opportunities

A different kind of parallelization which can be easily com-
bined with the shared memory approach above, is to use the
distributed environment. Distributed memory environments are
a set of connected machines or processors, named nodes, each
one with its own memory, so an explicit communication takes
place whenever remote data is required. Typical architectures
are clusters or grids, i.e., sets of machines connected by a
(dedicated) fast network. In this scenario, the communication
time may be relevant in the performance, and needs to be
minimized. Coarse granularity parallelization, with operations
as independent as possible, is prone to be applied here. On the
other hand, the total amount of memory increases, thus larger
problems or higher level parallelization becomes amenable.

We propose to exploit the distributed memory capabilities
in two steps of the algorithm: the sample selection and the
factorization and solve. With respect to the sample selection,
we can divide the remaining candidate points among the
different nodes, and at each node generate the respective
residues. However, since this is a distributed environment, care
must be paid to the communication between nodes. In our case,
the residue generation is independent for each candidate set,
and thus, as long as the basis and the system matrices are in
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Fig. 1. Distributed multicore algorithm graph.

the node, we only need the point coordinates to generate the
residue, with no communication with the rest of the nodes.
Therefore, in the case of identical machines, we distribute the
remaining points evenly among the nodes, in order to obtain
the residues in parallel. When the distributed environment
is composed of machines with different characteristics, a
different strategy may be used, in order to maintain a good
balancing and avoid idle computational resources.

With respect to the solve step, from the analysis in Section
III-B and previous sections, it is clear that there are two factors
to consider as cost: one is the cost of a single solve O(S), and
another is the fact that we must perform K solves. Improving
the complexity of the system solve O(S) has been exploited
by parallel implementations of linear algebra routines [19],
also with application to MOR [13]. This reduces both the
cost in CPU and in memory, and a similar approach could
be combined with the parallelization proposed so far.

However, we will assume that the solve can be performed in
a single machine without memory issues, and take advantage
of the multipoint methods to focus on reducing the cost related
to the factor K. Since each node in a distributed environment
has its own memory, the solves can be done in parallel. If
the system is already loaded in the node, it only needs the
point coordinates to solve (the communication overhead is
minimum). Once we have selected a suitable point, each solve
can be done independently. In order to cope with the memory
limitations, sparse factorizations or iterative methods can be
applied. Therefore, at each iteration we are solving M points,
one on each node, with a potential reduction of the overall
solve time by a factor of M.

C. Combined Proposed Implementation

After having identified the algorithmic parts that are prone
to be parallelized, let us discuss the mapping and implemen-
tation. The methodology is detailed in Algorithm 2, and the
main steps illustrated for M = 2 in Fig. 1.

Algorithm 2 Parallel Version-3P0r
Given the system and the domain of interest,

1: Define stopping thresholds for the residue tr and the vectors tv
2: Generate a set of candidate sample points � = {ψ1 . . . ψT }
3: Generate an array with candidate indexes ϒ = [1, . . . T ]
4: Generate a residue array R = [r1, . . . rT ], ri = 2 ‖B‖
5: MPI initialization, M nodes: N = node number; � = T/M;
6: Initialize: V = [ ]; k = 1
7: Mapping Local set: i = kM, TN = 0, While(i < T )

ϒN = [ϒNϒ(i : i + �)]; i+=�; TN+=�
8: Select first local sample: j = ϒN (1), ψj

9: Evaluate system matrix: Aj = A(ψj)
10: Solve the system: Ajxj = B for xj; X(:, N) = xj

11: MPI BROADCAST X
12: Orthonormalization:

vk = X − V (VHX); nv = ‖vk‖; V =
[
V vk/nv

]
;

13: OMP PARALLEL i = 1 : TN

j = ϒN (i); Ai = A(ψj); X = AiV ; X = QR(X);
ri = B − X(XHB); RN (i) = ‖ri‖;

14: MPI BROADCAST RN so that R =
[
R0 . . . RM−1

]
15: MPI BROADCAST ϒN so that ϒ =

[
ϒ0 . . . ϒM−1

]
16: Sort R in decreasing order, and Global ϒ accordingly; k++
17: IF R(0) > tr and nv > tv

Set � to desired size, � < T − kM, and GOTO 7
18: Use V in a congruence projection on the system

1) Initialization, Load and First Solve (Steps 1–10): The
first step is the system load and the generation of the global
candidate set � that covers the region of interest. The thresh-
olds for the stopping criteria must also be set. A global residue
array R and index array ϒ are initialized, as well as an array X

that will contain the generated vectors. These are redundant in
all nodes to avoid unnecessary communications. The element
R(i) will contain the residue of the ϒ(i) candidate, ψϒ(i). These
arrays will be used for communication among the different
nodes.

Each node N will define a local residue and index array, RN

and ϒN , which are related to the global candidates. However,
at each iteration, each node only works with a subset of TN

candidates (the workload distribution among the nodes will
be discussed later). Each node will select the first candidate in
its local set, ϒN (0), generate the system matrix and solve the
system at that point. This step is done in parallel, and since
each node has a disjoint subset of the global candidates, M

samples are generated at each iteration.
2) Vector Communication and Orthonormalization (Steps

11, 12): Once the samples are computed, in order to use global
information in the generation of the residues, we need to gather
all the vectors at each node. To this end, each node N copies
the solution vector to the Nth column of X (if m > 1, a
block vector is generated and the columns for each node start
in the position Nm), and broadcasts the vector, i.e., an array
of nm elements starting from the first element of the column
Nm. Broadcast is a global communication routine in MPI, and
thus a very efficient way to transmit data among all nodes.
Broadcasts are blocking in MPI, and thus the communication
cannot be overlapped with any other computation. However,
the communication time is small in comparison with other
linear algebra operations. In addition, the blocking operation
works as a barrier, allowing for a synchronization of the nodes.
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Now all the nodes have all the sample vectors generated
in the previous stage. The next step is an incremental or-
thonormalization of the new vectors with respect to the ones
already stored in the basis V . In the general case where
the samples are complex, each vector is broken into its real
and imaginary parts, in order to span the same subspace as
the original complex vector, avoiding using complex algebra,
and maintaining real system matrices after projection. Recall
that all the nodes have the same information, and thus each
node does the same operation in parallel. This redundancy
avoids further communications. Since the orthonormalization
is done on a relative small set of vectors, and it is a linear
algebra routine that relies on efficient cache reuse, this option
is preferred to a distributed implementation. However, shared
memory or GPU based implementations could be applied here.

3) Residue Generation and Communication (Steps 13–15):
The next step is the generation of the residues with the new
upgraded basis, and selection of the sample to solve next.
In order to speed up the procedure, each node generates the
residues for its subset of candidates. Therefore, each processor
will have to compute the residues at TN = (T − kM)/M
candidates, with k the iteration number, T the overall number
of candidates, and M the number of machines. Notice that
prior to this step, each node N has all the global information:
the basis and the global candidate set, plus two local arrays
RN and ϒN that indicates its subset of candidates. Here the
multicore parallelization proposed in Section IV-A can again
be applied for independent residue generation at each node.
Each node stores the corresponding residue of the candidate
with index ϒN (i) in the element RN (i), for all its elements
with the exception of the first one (recall that the first one
was used as the assigned sample to solve). Once the residues
are generated, each node copies its local array RN and ϒN to
the global arrays R and ϒ starting at position N(T − kM)/M.
Once the arrays R and ϒ have the updated information, a
broadcast is performed transmitting TN starting in their first
element N(T − kM)/M. Again, this broadcast is a blocking
operation that works as a synchronization barrier, and the
iteration counter is increased.

4) Candidate Mapping and Sample Selection (Steps 16,
17): Once the broadcast is completed, at each node we have
all the global information, with R containing the residues of
the candidates indexed by ϒ. To find the best candidates for the
next iteration, we sort the elements in R in descending order,
and those in ϒ accordingly. Since all the nodes have the same
data, the sorting is done locally, avoiding further communica-
tions and providing data coherence. The maximum residue
of the candidates left and the norm of the orthogonalized
vectors at this iteration are checked against the convergence
thresholds. If convergence is not achieved, the remaining
T −kM candidates are distributed among the nodes to perform
the next iteration. Notice that since all the candidates are stored
in each node, no communication is required in this step: a
simple assignment of the indexes ϒ of the candidates left to
the nodes is enough.

An issue not yet discussed is how to distribute the candidates
among the different nodes. This mapping can have a critical
effect on the results of the algorithm, as the first sample

of the local subset is used to solve the system, and thus
to generate the global sample. In the initial iteration, there
is no indication of how to select the samples, and thus we
have to make a guess. For the type of linear models we are
interested in, frequency is often the most relevant parameter,
the one with the more relevant effect on the behavior of the
system. In order to obtain vectors as different as possible, a
solution is to use samples that are separated in frequency. If
the candidates are sorted in frequency, the initial set can be
split into M subsets of size � = T/M, and each assigned to
a node. For the remainder of the iterations k > 1, we already
have the residues and indexes sorted in the arrays R and ϒ,
with the initial kM elements related to solved samples and the
indexes. We divide the array ϒ in chunks of size �, and assign
chunks alternatively to the nodes (i.e., chunks 0, M, 2M, . . .

are assigned to the first node, chunks 1, M+1, 2M+1, . . . to
the second, and so forth).

If we divided ϒ into M chunks, � = (T − kM)/M, the
node N = M − 1 will be loaded with the candidates with
small residue, and thus may generate a vector that will add
“small” or no rank to the current basis. On the other hand,
if we take � = 1, the first M samples indexed by ϒ (and
with the larger residue) will be assigned to the M nodes
and solved, one at each node (recall the first sample of the
subset is the one to solve). This may not be the best option
in every scenario. Imagining a fine discretization of the space
of interest, the candidates are “close” in the discretized space.
Linear systems are characterized for their continuity, and thus
if the candidates are “close,” the behavior (the vector solution)
of the system may be similar (and thus it may not be a
good idea to solve for both vectors), and they will also have
similar residue. Therefore, if we solve the first M samples
it may happen that they span a rank-deficient set of vectors
(note that the serial implementation has no such problem since
at each iteration only a sample is solved for, and thus the
residue information about the remaining candidates is updated
before the next choice). The optimal value for � depends
upon multiple factors, such as the model behavior or the
discretization of the space to sample, and, in addition, may
vary at each iteration. We propose an intermediate option, and
to take a relatively small value for �, yet larger than one,
in order to maximize the probability of generating relevant
yet different vectors. This has direct consequences on the
optimality of the sample selection, since we are no longer
taking the “best” sample (according to the residue) at each
iteration. There is one node that solves that “best” sample,
whereas the remainder choose probable good samples. This
may be translated in an optimality loss with respect to the
sequential approach.

D. Computational Complexity Analysis

Let us study the efficiency of this parallelized approach.
We have T initial samples, and we need a total number of K

samples to achieve a good model in the sequential case. Again,
let us suppose we have M machines with P cores each, and the
cost of the communication at each iteration is O(tx). At each
iteration we solve for M samples, and thus, we can potentially
reduce the number of iterations by a factor of M. Thus the



44 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

Fig. 2. Theoretical complexity growth of the sample step (12) with the
number of block vectors in basis, for M = 1, 2, 4, 8 and 32 nodes and P = 1,
with n = 1e6, m = 2, and T = 5000. Markers indicate when a new sample is
solved (i.e., a new iteration k++).

overall cost of factorization and solve is

XMPsolve = O(�K/M	 S). (10)

Potentially, if the cost of the solves dominates, a speedup close
to M can be achieved in these stages. Notice that this perfor-
mance can be further improved if shared memory parallelized
approaches of the solve and orthonormalization are applied
(i.e., trying to reduce O(S)). We have however not pursued
that. Since we are not parallelizing the orthonormalization and
it is done on the same number of vectors, the cost is essentially
the same as in the sequential case (all the processors perform
this operation simultaneously)

XMPorth = O(nm2K2). (11)

With respect to the sample selection, at each iteration the
task of residue generation is divided by the number of nodes
plus the number of cores at each machine. In addition we
have reduced the number of iterations to

⌈
K
M

⌉
, although at

each iteration Mm new vectors are generated. Therefore the
cost of this step is

XMPss = O(
�K/M	∑

i=1

(T − iM)

MP
n(iMm)2) (12)

which can be approximated by

XMPss = O( nm2M
P

⌈
K
M

⌉3
(T − M

⌈
K
M

⌉
). (13)

Notice that we reduce the number of residues generated
by each core by a factor of MP . Since these operations are
independent, the speedup should be close to that value. But
in addition, we are reducing the number of iterations by a
factor M, which is translated into a potential speedup larger
than MP . To illustrate this, Fig. 2 shows the (theoretical)
complexity growth with the increase of the number of vectors
in the basis (and thus with the number of iterations K) by
evaluation of (12) with n = 1e6, m = 2, and T = 5000,
for M = 1, 2, 4, 8, and 32, with a single core (P = 1).
Notice that as M increases the number of iterations quickly
decreases (the markers for each line are further apart) leading
to a strong complexity reduction. A quick computation shows
this reduction to be superlinear.

This effect is thus not surprising, since, as mentioned,
we solve for M samples at a time, and thus perform the
sample selection once per M solves, whereas in the sequential
approach we recompute the residues after the solve at every

iteration. In a sense we are trading optimality for efficiency
(only one sample is optimal in terms of maximum residue),
which is translated into slightly larger reduced orders, but as
we shall see, this optimality loss is small in comparison with
the efficiency gains. Clearly, the same scheme could be applied
on a single machine, performing multiple sequential solves
at each iteration. While this can be pursued in the sequen-
tial version, the advantages are debatable: the computational
cost is slightly reduced (as less residue recomputations are
performed), but not the overall solve time, and would incur
in the same optimality loss. On the parallel version however,
this is a natural option: the availability of M processors makes
it inefficient if less than M samples are computed at a time,
and the consequent optimality loss may be compensated by
the large speedup achieved in the model generation.

With respect to the communication overhead in distributed
environments, this cost is very small in comparison with the
overall elapsed time. Notice that the communication only
involves a broadcast of the solution vector (Mnm complex
numbers, with M the number of nodes, n the size of the system
and m the number of ports), and a broadcast of the residue
norms (T doubles) for each iteration.

The overall cost can be approximated by the sum of the
costs in (10), (11) and (12), plus the communication costs.
The parallelization is more effective in cases where the sample
selection elapsed time is a large fraction of the overall time and
cases that require a large subspace for a good approximation
(i.e., the number of vectors in the basis, and thus the iterations
required for the convergence).

E. Potential Improvements

We have opted for the implementation of a general algo-
rithm, whose results will be presented in the next sections,
and which is able to tackle fairly complex and challenging
models with very different characteristics and representations,
and difficult to handle with existing sequential approaches.
However, the proposed framework is very flexible, allowing
to include small modifications that allow to handle specific
models or special cases more efficiently. In the next we present
some of these possibilities.

A simple modification can help reduce the optimality loss.
In the general proposed scheme each node performs an in-
dependent solve, reducing the cost related to the number of
iterations K. As already mentioned, and as will be shown in
the results, in cases when the number of iterations K required
for good accuracy is close to the number of nodes M, there
is a high probability to generate redundancies when solving
M points at a time (recall that only one is the best suited
according to our criteria). This is translated in larger ROMs
for the same accuracy. A solution is to divide the distributed
resources in order to minimize both the cost related to number
of iterations K and the cost related to the solve O(S). This
can be done by grouping the M nodes in sets of D nodes
and applying a distributed solve routine (e.g., [19]) on each of
them. Therefore we are solving 
M/D� points at a time, but
with reduced cost (that depends, of course, of the performance
of the distributed solve). This option, which is best suited when
the number of available nodes M is very large, also allows
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TABLE II

Benchmarks Characteristics

Example D-Spiral K-Spiral pRLC Heat
Modeling FIT K-element MNA FD
Size/#IO 179 272/4 89 134/1 7551/1 3481/1
nnz (A) 1 898 327 613 102 22 531 17 169
State Space First order Second order First order First order
Parameterized No Fourth TS First TS Fourth HP
# λ/Terms 0/1 1/5 45/46 16/4845
Freqs. (GHz) 0.5–60 40–60 0–100 0–0.001
# Validation 750 6000 116 000 100 000
# Candidate 400 700 4800 2300

to deal with very large models that cannot be solved with
the memory constraints of a single node. This is a particular
case of combination of high level parallelization with an
efficient parallelization of linear algebra routines. As already
mentioned, there is nothing that prevents both approaches to
be combined in any form that may take advantage of the
underlying architecture or of some prior knowledge on the
original model characteristics. Efficiently parallelized linear
algebra subroutines can be easily adopted within the proposed
framework and may largely improve its performance. The
possibilities are vast and represent a very interesting field of
research. An optimal combination is likely to require an exact
tuning that will depend on the underlying architecture and
resources available, as well as on the problem.

Another option is related to the initial set and sample
selection. In the proposed approach, even though dynamic
candidate sets can be readily handled, we have chosen to use
a static initial set fine enough to cover the complete domain.
The algorithm is greedy, treating all points independently with
no particular regard for spatial distribution and with similar
weight. The added computational power of multiple nodes
would allow us to look upon residue minimization region-wise
in addition to pointwise. This requires maintaining hierarchical
information for the mapping, tying points in nearby regions in
order to estimate an average residue error in a given region.
If accuracy in certain regions appear to be slowly improving,
we can refine the candidate set in that region, and map it into
a set of nodes. This allows to identify and focus in certain
complex regions to improve accuracy and convergence. This
can of course be done in the serial implementation, but the
cost of such a procedure could be overwhelming, specially
because the benefit is unknown, potentially nil. The ability to
do these computations in parallel makes the extra cost almost
negligible and the potential benefits more enticing.

V. Simulation Results

The algorithms were implemented in C/C++, with double
precision and using OpenMP [22] and OpenMPI [23] for
the parallelization. Tests were run on a cluster of 8 Intel
Q6600 (4-core, 2 × 4 MB L2 Cache) at 2.4 GHz machines
with 8G RAM, connected by a dedicated gigabit net. In all
cases sparse algebra routines were use when possible to to
minimize the memory requirements. For the LU and solve, the
sequential UMFPack of the SuiteSparse package [24]–[26] was

Fig. 3. Performance evolution with the number of nodes for (a) D-Spiral,
(b) K-Spiral, (c) pRLC, and (d) Heat examples.

used. COLAMD [27], [28] and AMD [29] were used as pre-
ordering algorithms to minimize fill in for the non-symmetric
and symmetric matrices, respectively. The rest of the algebra
routines were not particularly tuned for the kind of systems
under study. LAPACK [30] functions were used for dense
matrix operations, such as dense matrix multiplications and
QR factorizations. For the sampling, no prior knowledge of the
system was assumed, other than the frequency and parameter
variation range. The initial candidate set was automated with
different levels of discretization, which fixed a number of
frequency samples per decade, and a number of parameter
samples per frequency sample. Notice that prior knowledge of
the system behavior could help reducing the number of initial
candidates, and thus improving the efficiency.

Table II presents the characteristics of the set of mid-large
benchmarks. The description includes the technique used for
the original model generation (Modeling), the original number
of states and the number of ports (Size/#IO), the number of
non-zeros of the system matrix [nnz(A)], the order of the
state space representation (State Space) and the parameterized
representation (Parameterized), either Taylor series (TS) or
Hermite polynomial (HP) expansions, the number of parame-
ters and the number of matrix terms of the polynomial param-
eter representation (λ/Terms), the frequency range (Freqs.),
the number of points used as candidates (# Candidate), and
the number of points used to compute the error and validate
the ROMs (# Validation). The number of candidates for
each example represents a fine enough discretization and has
been chosen in order to ensure the complete coverage of the
multidimensional space of interest. Finer discretization would
not report changes in the ROM size or accuracy, nor in the
parallelization speedup. However, the number of candidates
will have a relevant impact on the overall elapsed time, as
presented in (13). The number of points to validate the ROMs,
on the other hand, represent an extremely fine grid, in order
to show that a small fraction of candidates can generate an
accurate response in the complete domain, an indication of the
method’s robustness. Fig. 3 shows the evolution of the elapsed
times with the number of nodes, for 1 and 2 cores, for all the
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TABLE III

Cache Interference Effect (Sample Selection Times)

Proc. Specs. 1 Core 2 Core 4 Core 8 Core
Quad Q6600 3682′′ 2386′′ 2552′′ –

(4-core, L2 2 × 4 M) 1.0X 1.54X 1.44X –

K
-S

pi
ra

l

2× Xeon E5410 7846′′ 4465′′ 2278′′ 1840′′

2×(4-core, L2 2 × 6 M) 1.0X 1.75X 3.44X 3.26X

Quad Q6600 619′′ 315′′ 325′′ –
(4-core, L2 2 × 4 M) 1.0X 1.96X 1.90X –

H
ea

t

2× Xeon E5410 741′′ 385′′ 200′′ 197′′

2×(4-core, L2 2 × 6 M) 1.0X 1.92X 3.70X 3.76X

TABLE IV

D-Spiral Arnoldi Moment Matching Performance

Size/Moments Abs. Err. LU Solve Orth. Total
269/80 41.5 (>100%) 401′′ 988′′ 271′′ 1724′′

examples, where the speedup is defined as the ratio of the
time elapsed in the parallel procedure with respect to the time
elapsed in the sequential algorithm. Details and discussion on
the performances will be presented in the next subsections,
where the routines related to the sample selection are labeled
as sample, the routines of factorization and system solve as
solve, and the routines related to basis orthonormalization as
orth.

A. Cache Limitations in Multicore Architectures

An interesting aspect that we verified when implementing
the algorithm and believe is interesting to report has to do
with architectural cache limitations. The performance of the
multicore parallelization of the sample selection was good with
two cores, but disappointing when applied on all the four
cores of the Q6600 machines. Little speed up is achieved
in comparison with what was expected. We realized that
the degradation of the performance was caused by cache
interference of the highly efficient LAPACK routines at the
core of this step. These routines are based on BLAS, which
rely on cache hit for efficiency improvement. The Q6600 is a
quad-core processor formed by two dual-core in the same die.
Each pair of dual-core share a L2 cache block, and thus when
independent routines are executed at the same time, cache hit
ratio drops. In order to validate this assumption, we performed
tests in a different machine, with two Xeon E5410 processors
at 2.33 GHz, each with four cores and 2 × 6 MB of L2 cache.
The cores are also grouped in pairs, and share the L2 memory.
Table III shows a comparison of the times elapsed in the
sample selection for two of the benchmarks, and how do the
performance evolve with the number of processes running. It is
clear that the performance drops when the number of processes
is larger than the number of L2 blocks. The achievable speedup
is therefore reduced in such cases, a point that should be noted.

B. Integrated Double Spiral

The first example (D-Spiral) is a non-parameterized EM
model of two integrated spiral inductors, obtained with
FIT [31], [32], and taking into account substrate and upper air.

TABLE V

D-Spiral: Proposed Parallelization Results

Nodes Iter. Abs. Err. Sample Solve Orth. Total
Cores Size Rel. Err.

1 12 5.2e-2 26 457′′ 13 590′′ 45′′ 40 093′′

1 96 0.18% 1X 1X 1X 1X

1 12 5.2e-2 19 689′′ 13 626′′ 45′′ 33 365′′

2 96 0.18% 1.34X 1.00X 1.00X 1.20X

2 6 6.9e-2 5901′′ 6778′′ 46′′ 13 134′′

1 96 0.74% 4.48X 2.00X 0.98X 3.05X

2 6 6.9e-2 4372′′ 6778′′ 46′′ 11 329′′

2 96 0.74% 6.05X 2.00X 0.98X 3.54X

4 4 5.7e-2 3081′′ 4534′′ 75′′ 7776′′

1 120 0.18% 8.57X 3.00X 0.60X 5.16X

4 4 5.7e-2 2354′′ 4534′′ 75′′ 7057′′

2 120 0.18% 11.24X 3.00X 0.60X 5.68X

8 3 9.4e-3 1139′′ 3398′′ 109′′ 4796′′

1 137 0.08% 23.23X 4.00X 0.41X 8.36X

8 3 9.4e-3 872′′ 3398′′ 109′′ 4494′′

2 137 0.08% 30.34X 4.00X 0.41X 8.92X

Fig. 4. D-Spiral example. (a) |Z21(s)| from the measurements (up to 40 GHz)
and the EM model and PRIMA and proposed ROMs. (b) Relative error in
|Z21(s)| for the ROMs w.r.t. the EM model.

This realistic benchmark was also manufactured and measured.
For comparisons in this example, we present in Table IV the
results of an Arnoldi based moment matching approach [4].
Table V shows the details on the performance of the proposed
methodology. Both sample selection and system solve are
expensive in this example, and thus the distributed memory
parallelization is more effective. It can also be seen that
performance, in terms of speedup, degrades as the number
of machines increases. This is caused by the ROM size: at
one point the number of samples required for good accuracy
is almost the same as the number of machines. This limits
the scalability of the methodology. In any case the proposed
approach, although more CPU expensive, automatically gen-
erates a much smaller ROM with better accuracy than the
moment matching approach, which, even for a large number
of moments, is unable to match the original response at high
frequencies. Fig. 4 shows the frequency domain impedance
|Z21(s)|, for the original EM model, and for the Arnoldi and
proposed reduced models. We have also included the physical
measurements. The figure also shows the relative error of the
ROMs with respect to the original EM model.

C. Parameterized Integrated Spiral

The second benchmark (K-Spiral) is an RCK model of
an integrated spiral inductor, whose side length varies up to
37 μm around the nominal value of 187 μm. It is modeled
with a parameterized second order system (i.e., the system
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TABLE VI

K-Spiral: Proposed Parallelization Results

Nodes Iter. Abs. Err. Sample Solve Orth. Total
Cores Size Rel. Err.

1 23 8.3e-2 3682′′ 1237′′ 11′′ 4931′′

1 46 3.1e-3% 1X 1X 1X 1X

1 23 8.3e-2 2386′′ 1237′′ 11′′ 3634′′

2 46 3.1e-3% 1.54X 1.00X 1.00X 1.36X

2 12 1.4e-1 1496′′ 644′′ 13′′ 2157′′

1 48 2.2e-3% 2.46X 1.92X 0.85X 2.27X

2 12 1.4e-1 984′′ 644′′ 13′′ 1641′′

2 48 2.2e-3% 3.74X 1.92X 0.85X 3.00X

4 6 6.8e-2 537′′ 325′′ 14′′ 899′′

1 47 4.4e-3% 6.86X 3.80X 0.78X 5.48X

4 6 6.8e-2 357′′ 325′′ 14′′ 717′′

2 47 4.4e-3% 10.31X 3.80X 0.78X 6.88X

8 4 9.2e-2 296′′ 218′′ 19′′ 547′′

1 56 1.3e-3% 12.44X 5.67X 0.58X 9.01X

8 4 9.2e-2 204′′ 218′′ 19′′ 442′′

2 56 1.3e-3% 18.05X 5.67X 0.58X 11.16X

Fig. 5. K-Spiral example: real and imaginary parts of Z11 for the original
and ROM for three parameter values.

equations have a (Y (λ) + sC(λ) + K(λ)/s)x = Bu structure),
in which each matrix is represented as a fourth order Taylor
Series (i.e., we have five matrix terms) to model the parameter
dependence. The model has 5124 resistors, 20 736 capacitors
and 381 120 susceptances. In this case both the sampling and
the solves are critical in the execution time, and thus the paral-
lelization is very effective, achieving good speedups. Table VI
shows the details on the performance of the parallelization, and
it is clear that the distributed environment approach generates
excellent results. However, since the number of samples is
relatively small, the performance slightly degrades for a lot
of machines. Fig. 5 shows the frequency domain real and
imaginary parts of the impedance for three different parameter
settings. It can be seen that the parameter largely affects the
system behavior, which is perfectly matched by the ROM.

D. Parameterized RLC

The third benchmark (pRLC) is a parameterized MNA for-
mulated set of five connected lossy lines. Each line is divided
into three parts modeled with 100 RLC segments in which the
p.u.l. values of each part depend locally on three parameters,
with a total of 45 parameters. The artificial parameters modify
the R, L, and C values of each part up to 20% of their
nominal value. The system is represented as a 46-term Taylor
series formulation for the static and dynamic system matrices.

TABLE VII

pRLC: Proposed Parallelization Results

Nodes Iter. Abs. Err. Sample Solve Orth. Total
Cores Size Rel. Err.

1 100 1.2e-1 18 895′′ 1′′ 53′′ 18 952′′

1 198 6.0% 1X 1X 1X 1X

1 100 1.2e-1 12 017′′ 1′′ 53′′ 12 074′′

2 198 6.0% 1.57X 1X 1X 1.57X

2 52 1.1e-1 9181′′ < 1′′ 55′′ 9239′′

1 204 5.6% 2.05X 1X 0.96X 2.05X

2 52 1.1e-1 5893′′ < 1′′ 55′′ 5955′′

2 204 5.6% 3.20X 1X 0.96X 3.18X

4 27 1.6e-1 3874′′ < 1′′ 62′′ 3938′′

1 209 8.2% 4.88X 1X 0.85X 4.81X

4 27 1.6e-1 2494′′ < 1′′ 62′′ 2553′′

2 209 8.2% 7.57X 1X 0.85X 7.42X

8 15 1.4e-1 1880′′ < 1′′ 68′′ 1948′′

1 225 7.4% 10.05X 1X 0.78X 9.73X

8 15 1.4e-1 1202′′ < 1′′ 68′′ 1275′′

2 225 7.4% 15.72X 1X 0.78X 14.86X

Although relatively simple, this example is very challenging
in terms of sample selection, due to the large frequency range
(0–100 GHz) and the flat response at low frequencies and large
resonances at high frequencies decreasing with small ripples
until the transfer function falls to zero. In addition, the large
number of parameters modify the amplitude and location of
the resonances, as can be seen in Fig. 6.

Table VII presents the performance details of the proposed
methodology. In this case the sample selection is by far the
most expensive task, since the a large amount of samples are
required to refine the accuracy in the areas of small resonances.
The method scales well, and the parallelization, in particular
the one based on distributed environments, is very efficient.

Fig. 7 shows the absolute error distribution for the ROMs
generated with 1, 2, 4 and 8 machines. All ROMs have a
similar worst case accuracy, which is < 0.2 in a validation
set of 116 000 points, but it can be seen that the optimality is
degraded as the number of machines increases. This effect is
clear in the deviation of the error. For one node the deviation is
small, indicating that the algorithm makes good choices in the
sample selection in order to minimize the maximum. As the
number of machines increases, the ROM order and deviation
slightly increases, indicating that some samples are not placed
in the best choice (oversampling). This was expected, since
we are performing a number of extra solves at each iteration
that were not the optimal (as defined) point: in a sense we are
trading optimality for efficiency.

E. Parameterized Heat Model

The last benchmark (Heat) is a parameterized first order
model obtained from the discretization of a heat equation
with a log normal diffusivity field using finite differences [33].
The system and input matrices depend on 16 parameters, and
the parameter effect is modeled via a fourth order multivari-
ate Hermite polynomials (HP), which generates 4845 matrix
terms. This means that the system is fully parameterized,
represented as ẋ = A(λ)x + B(λ)u, where the matrix A(λ) can
be represented as a 4845-term polynomial matrix function,
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Fig. 6. pRLC example frequency response. Red line is the nominal |Z11(s)|,
whereas the gray area shows the possible values form the 116 000 parameter
settings considered in the validation.

Fig. 7. pRLC: distribution of absolute errors of ROMs obtained with dif-
ferent number of machines. On the y-axis are the number of the occurrences
out of the 116 000 validation settings, whereas on the x-axis are the absolute
errors. Note that although the maximum error is similar for all ROMs, the
optimality reduces with the number of machines (ROM size increases for
equivalent accuracy).

Fig. 8. Heat time domain simulation: original (line) and ROM (dashed)
time response for three random parameter settings (each color represents a
parameter setting).

and the IO matrix B(λ) also depends on the parameters.
This representation is hard to handle with multidimensional
moment matching approaches. On the other hand, the proposed
multidimensional sampling framework can handle it with min-
imum modifications. Instead of using the explicit HP, we use a
compressed form with 65 matrix terms for the evaluation of the
matrices A and B. The rest of the procedure remains exactly
the same. Table VIII shows the details on the performance.
In this case the solve time is almost negligible, and the main
cost is driven by the sample selection. Parallelization is very
effective and exhibits a good scalability in this case, since the
ROM requires a relative large amount of samples for the given
accuracy. Fig. 8 shows a time domain simulation of the original
and reduced models, for three different parameter settings and
different input signals. It can be seen that the original and
ROM responses are indistinguishable.

TABLE VIII

Heat: Proposed Parallelization Results

Nodes Iter. Abs. Err. Sample Solve Orth. Total
Cores Size Rel. Err.

1 50 4.2e-3 619′′ 2′′ 7′′ 628′′

1 99 0.7% 1X 1X 1X 1X

1 50 4.2e-3 315′′ 2′′ 7′′ 324′′

2 99 0.7% 1.96X 1.0X 1.0X 1.94X

2 27 4.1e-3 276′′ 1′′ 9′′ 286′′

1 101 0.7% 2.24X 2.0X 0.77X 2.19X

2 27 4.1e-3 126′′ 1′′ 9′′ 138′′

2 101 0.7% 4.91X 2.0X 0.77X 4.55X

4 14 6.2e-3 108′′ 1′′ 9′′ 118′′

1 106 1.0% 5.73X 2.0X 0.77X 5.32X

4 14 6.2e-3 60′′ 1′′ 9′′ 70′′

2 106 1.0% 10.32X 2.0X 0.777X 8.97X

8 8 3.4e-3 58′′ < 1′′ 9′′ 67′′

1 116 0.5% 10.67X 2.0X 0.77X 9.23X

8 8 3.4e-3 29′′ < 1′′ 9′′ 40′′

2 116 0.5% 21.34X 2.0X 0.77X 15.7X

VI. Conclusion

A distributed and shared memory parallel framework for pa-
rameterized linear model order reduction has been presented.
The underlying method relies on multidimensional sampling,
providing robustness and reliability, and the combination with
the sample selection approach provides a high level of automa-
tion. In addition, it is general enough to be applied to differ-
ent scenarios and model representations, and can efficiently
handle single and multidimensional problems with large sets
of parameters. The proposed parallelization is done at the
algorithmic level and has been proven to be very effective
regardless of the model’s original size and characteristics. The
major benefit from the proposed framework is the potential
to tackle large and complex models depending on multiple
parameters in an automatic fashion in a reasonable time. Large
processing farms are available that can be used to reduce
extremely challenging models, otherwise difficult to address
with sequential approaches.
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