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Abstract. Parallel computing was the subject of great research in the
last decades and is increasingly being chosen as a solution for develop-
ing applications that require high computational power, such as Boolean
Satisfiability and Pseudo-Boolean Optimization problems. The research
in SAT solvers obtained significant results in the last years, achieving
significant reductions in execution times when solving the problem. Un-
fortunately, hard instancies of boolean satisfiability require large compu-
tational power and even efficient SAT solvers take huge execution times
to obtain their solution. Therefore, SAT solvers adaptation to parallel
computing systems began to be the subject of considerable research and
there already exist several parallel versions of popular SAT solvers. Yet,
this same field has not been well explored for the Pseudo-Boolean Op-
timization problem and therefore this project intends to contribute and
encourage the research into parallel solutions to this problem. The goal
of this project is to propose and implement a distributed Pseudo-Boolean
Optimization Solver using MPI (Message Passing Interface), focused on
an efficient search space partition, more specifically the partition of the
optimization search space.
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1. INTRODUCTION

1 Introduction

The well known Boolean Satisfiability (SAT) and Pseudo-Boolean
Optimization (PBO) problems gained a lot of attention in the last
years due to their possible application in many domains, such as
software and hardware verification. Since then, several algorithmic
solutions have been proposed to solve both problems and many of
them proved to be very efficient in solving several instances of the
problems. Many SAT solutions (known as SAT solvers), for instance
GRASP [24] and Chaff [22], contributed with several techniques to
improve the SAT resolution. Due to the relevant results on SAT
research, the PBO researchers embraced the SAT solvers efficiency
and proposed efficient ways to solve PBO instances by extending
SAT solvers to handle them.

Although SAT solvers are becoming more sophisticated to re-
duce execution time, using improvement techniques such as clause
learning, adaptive branching, non-chronological backtracks and many
more, the demand for more computation power led SAT researchers
to explore solutions taking advantage of parallel computing systems.
Parallel computing systems, like clusters and grids, allow the use of
several resources in parallel and enable the partition of a problem
for a concurrent resolution in such resources. Popular SAT solvers
have been migrated to the parallel computing world using the well
known Task Farm approach, which proved to be a successful solu-
tion to partition SAT solver instances in such environments. Unlike
SAT solvers, the migration of PBO solvers to parallel computing
systems has not been well explored. So the purpose of this project
is to develop a distributed implementation of Minisat+ [13] with
MPI (Message Passing Interface) technology, using the Task Farm
approach adopted by several parallel SAT solver implementations.

The document is organized as follows: definitions of the two prob-
lems addressed in the project are presented in Section 2 and Sec-
tion 3 describes important techniques responsible for the improve-
ments in SAT solvers. Some alternatives to solve PBO problems and
approaches to extend SAT solvers to handle PBO instances are pre-
sented in Section 4. In Section 5 are described parallel SAT solver
strategies and techniques to partition the search space of a SAT
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2. SATISFIABILITY PROBLEM

instance. The approaches for the implementation proposed for the
project are described in Section 6.

2 Satisfiability Problem

In this section are presented the definitions of two well-known prob-
lems that are the core of the context of this project, the Boolean
Satisfiability and Pseudo-Boolean Optimization problems.

2.1 Boolean Satisfiability Problem

The Boolean satisfiability problem (also known as SAT) consists of
determining if a Boolean formula is satisfiable or not. If exists at
least one variable assignment that evaluates the formula to true,
the formula is considered satisfiable, otherwise it is unsatisfiable. A
variable assignment that makes a formula satisfiable is known as
model.

Definition 1. A Boolean variable is a symbol that might assume
one of two values: true or false.

Definition 2. A Boolean formula represents a set of Boolean vari-
ables related by Boolean operators (and, or, not) and can be either
true or false depending on the variable values.

SAT was the first known example of a NP-Complete problem
and by definition there is no known algorithm that solves all SAT
instances efficiently, due its exponential worst case complexity [14].
SAT problem is particularly popular because of its easy application
in plenty of other domains, such as electronic design automation
(EDA) [20, 16] and Artificial Intelligence (AI) [7]. So there is a high
demand and research with the aim of finding fast and efficient solu-
tions for SAT.

2.2 Pseudo-Boolean Optimization Problem

Due to the complexity of some application domains, such as Dig-
ital Filters design [3, 17], there was the need to go beyond purely
Boolean representation constraints and use a more complex represen-
tation form known as Pseudo-Boolean constraints (PB-constraints),
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a generalization of clauses where each variable can contain a weight
associated.

Definition 3. A literal represents a Boolean variable or its comple-
ment.

Definition 4. A clause is a disjunction of literals.

A PB-constraint is an inequality C0p0 + C1p1 + ...+ Cn−1pn−1 ≥
Cn, where, for all i, pi is a literal and Ci an integer coefficient. The
inequality left-hand side will be abbreviated by LHS and the right-
hand constant Cn refereed as RHS. A coefficient Ci is activated under
a partial assignment if its corresponding literal pi is assigned to true.
If all constants Ci are 1, then the PB-constraint is equivalent to a
standard SAT clause.

The Pseudo-Boolean (PB) problem, also known as 0-1 integer lin-
ear programming (0-1 ILP), consists of determining if a PB-constraint
is satisfiable or not. A PB-constraint is said to be satisfied under an
assignment if the sum of its activated coefficients on the LHS exceeds
or is equal to the RHS constant, otherwise it is unsatisfied.

PB problems often contain an objective function, a linear term
that should be minimized or maximized under the given constraints.
An objective function is a sum of weighted literals on the same form
as a LHS. The Pseudo-Boolean optimization problem (PBO) is the
task of finding a satisfying assignment to a set of PB-constraints that
minimizes or maximizes a given objective function.

3 SAT Solvers

In yearly years, many effective algorithmic solution as been proposed
for solving SAT instances. The most popular type of complete and
efficient solvers of today are known as conflict-driven solvers.

Conflict-driven solvers are variations of the well known Davis-
Putman (DP) backtrack search algorithm [10] combined with efficient
improvement techniques, proposed in GRASP [24] and Chaff [22] al-
gorithms. Techniques such as clause learning, non-chronological back-
tracking, “two-watched-literals” unit propagation, adaptive branching
and random restarts are examples of the success in the research on
SAT and became a basis on SAT solvers since then.
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Popular conflict-driven solvers are Minisat [12], Sato [25], Pi-
coSAT [8], Berkmin [15], Glucose [6] and zChaff (implementation of
Chaff algorithm).

3.1 Davis-Putman backtrack search

Davis-Putman (DP) backtrack search algorithm [10](commonly named
DPLL), a refinement of the earlier Davis-Putman algorithm [11], is
a complete algorithm for determining the satisfiability of Boolean
formulas and is the core of most actual SAT solvers.

The DPLL algorithm operates in problems where formulas are
specified in CNF form, where a formula consists on a clause database.

Definition 5. A formula is in the conjunctive normal form (CNF)
if it is a conjunction of clauses.

The advantage of CNF is that, for a formula be satisfied, each clause
must be satisfied. A clause is satisfied if at least one of its literals is
true. The DPLL performs a depth-first search on a binary decision
tree where each node consists of a decision, i.e, an election of a
variable from the clause database to assign a value. The algorithm
has three main processes and its pseudo code is presented in Figure 1.

while(true){
if(!decide())

return satisfiable;

while(!bcp())

if(!resolveConflict())

return not satisfiable;

}

Fig. 1. Pseudo code of DPLL.

The decide() process decides a variable in the clause database,
among all unassigned ones, and assigns a value to it (true or false).
Each decision represents a node on the decision tree and has a de-
cision level associated. The decision level represents the depth of
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the node in the tree. The root (no assignments decided) has decision
level 0, the first decision has decision level 1 and so on.

The bcp() process, which carries out Boolean Constraint Prop-
agation (BCP), identifies new implications or conflicts produced by
the current variable state. Implications are produced by applying
the unit clause rule. When a clause of N literals has N-1 literals
with value false and one unassigned literal, the unassigned literal
has to be obligatorily true for the clause be satisfied. Such clauses
are known as unit clauses. Implications are then propagated and the
process is repeated. Each implication generated has the same deci-
sion level of the decision that triggered it. The bcp() process ends
when there is no more implications or a conflict is identified (an
assignment turns the problem unsatisfiable).

In case a conflict is detected during the BCP process, the process
resolveConflit() backtracks the search to the most recent decision
that was not tried both values (true and false) and undoes all as-
signment performed until then. The remaining value is decided to
proceed the search. If all previous decisions were tried both values,
the problem is considered unsatisfiable.

If during the search, there is no conflicts detected and no more
variables unassigned to decide, the problem is satisfiable.

3.2 Conflict Analysis

In order to reduce significantly the search space of the DPLL al-
gorithm, the authors of GRASP [24] proposed an extension of the
resolveConflit() process to handle conflict analysis techniques,
such as clause learning and non-chronological backtracks.

In the occurrence of a conflict during BCP process, the conflict
passes through a diagnose process where are discovered the assign-
ments responsible for the appearance of the conflict. Discovered such
assignments, a new clause denying such assignments is created and
added to the clause database of the problem. These clauses are
known as conflict-induced clauses. The addition of such clauses in
the problem restricts conflicting and unnecessary paths in the search
space. Another advantage of the diagnose process is the possibility
of non-chronological backtracks. By analysis of the conflict is possible
to know when there is no way of finding satisfying assignments until
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the search backtracks to a certain decision level. This level corre-
sponds to the last level where assignments that caused the conflict
were made and knowing that level, the search can jump immediately
to it to save time and effort.

To better explain the generation of conflict-induced clauses, the
following definitions are presented: R(x) correspond to the “reason”
of the assignment x and contains a set of antecedent assignments
to the unit clause ω that lead to the implication of x. For a clause
ω = {x+ y + ¬z} and an assignment {y = 0, z = 1}, the “reason” of
x = 1 is R(x) = {y = 0, z = 1}. Decision assignments have R(x) = ø.
δ(x) corresponds to the decision level of the assignment x. A con-
flicting assignment associated with a conflict c is denoted as RC(c)
and the respective conflict-induced clause as ωC(c). To facilitate the
computation of RC(c), the “reason” of an assignment x is partitioned
by decision levels and is given by:

Λ(x) = {y ∈ R(x)|δ(y) < δ(x)}
Σ(x) = {y ∈ R(x)|δ(y) = δ(x)} (1)

If a conflict c is detected, RC(c) is computed by the recursive defi-
nition:

RC(x) =

{
x if R(x) = ø

Λ(x) ∪
[⋃

y∈Σ(x)RC(y)
]

otherwise
(2)

The computation of a conflict-induced clause is simply the nega-
tion of the conflicted assignment. Computed a conflicted assignment
RC(k) = {x = 1, y = 0, z = 0, w = 1}, the conflict-induced clause
produced is ωC(k) = {¬x+ y + z + ¬w}.

The backtrack level of a conflict is computed according to:

B(c) = max {δ(x)|x ∈ RC(c)} (3)

When B(c) = d− 1, where d is the current decision level, the search
process backtracks chronologically. When B(c) < d − 1 the process
backtracks non-chronologically.

Conflict analysis introduces significant overhead and for small in-
stances of SAT can lead to larger run times, but for large instances
may contribute to a significant reduction in run times. Another
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drawback is the growth of the clause database during an execution.
Because of conflict-induced clauses addition, the size of the clause
database grows with the number of conflicts and in the worst case
such growth can be exponential in the number of variables.

3.3 Adaptive Branching

One key aspect of SAT solvers is how variables are selected at each
decision in the algorithm. Decisions affect the performance of an
algorithm and using a good heuristic is crucial to the efficiency of a
solver. Unfortunately there is no perfect heuristic and each heuristic
performs better in different ranges of SAT instances than others.
Over the years, many effective branching heuristics were proposed
and detailed descriptions are made in [21] by Silva.

The simplest heuristic, commonly known as RAND, is to simply
select the next decision randomly from among the unassigned vari-
ables. At the other extreme are the BOHM and MOM heuristics that
involve the maximization of some moderately complex functions of
the current variable state and the clause database.

Popular heuristics, somewhere in the middle of the spectrum,
are the DLIS and DLCS heuristics. This two heuristics count the
number of unresolved clauses in which a given variable x appears
as a positive literal, CP , and as a negative literal, CN . The DLCS
(Dynamic Largest Combined Sum) heuristic selects the variable with
the largest sum CP + CN and assigns the value true if CP ≥ CN or
false if CP < CN . The DLIS (Dynamic Largest Individual Sum)
heuristic selects the variable with the largest individual sum (CP or
CN) and assign true if a CP value is the largest, or false if a CN
value is the largest. Variations of DLIS and DLCS, referred to as
RDLIS and RDLCS, consist in randomly selecting the value to be
assigned to a given selected variable, instead of comparing CP and
CN values.

Another efficient heuristic, proposed by the authors of Chaff [22],
is VSIDS (Variable State Independent Decaying Sum). This heuristic
associates a counter to each literal and every time that a clause is
added, the counters of its literals are increased. The heuristic selects
the variable associated with the literal that has the highest counter.
Periodically, all counters are divided by a constant.
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3.4 Two Watched Literals Unit Propagation

In practice, for most SAT problems, a major portion of the solvers
is spent in the BCP process and so an efficient BCP engine is one
of the keys to any SAT solver. Each time an assignment is deduced
during a search, all newly implied clauses must be visited to generate
possible new implications. A clause is implied if and only if all but
one of its literals is assigned to false.

Chaff [22] authors proposed an efficient implementation tech-
nique to find newly implied clauses, avoiding constant visits to every
clause that contains a literal which the current assignment sets to
false. Instead of visiting a clause each time it is assigned a value to
its literals, to every clause are picked two any literals not assigned
to false, which can be watched at any given time, and a clause is
visited only if one of those watched literals is assigned to false. It
is guaranteed that until one of the two literals is assigned to false,
there cannot be more than N-2 literals, in the clause, assigned to
false and so the clause cannot be implied. When a clause is visited
but is not implied, means that at least one non-watched literal is
not assigned to false. That literal is chosen to replace the watched
literal assigned to false and the property is maintained.

Two watched literals technique reduces significantly the time
spent in the BCP process and at the time of backtracking, there
is no need to modify watched literals in the clause database. There-
fore, unassigning a variable can be done in constant time.

3.5 Restarts

A restart consists of clearing the state of all variables (including
all decisions) during an execution of a solver and starting the search
from the beginning. Any still-relevant conflict-induced clauses added
to the clause database are still preserved after the restart, so that the
solver does not repeat previous searches. The intention of restarts is
to provide a chance to change early decisions in view of the previous
problem state. If a search tend to a path where the probability of
finding a satisfiable assignment is reduced and a lot of effort is need
to leave it, a restart gives the possibility to follow a different path
that may have a highest probability of success. Restarts period is
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4. PSEUDO-BOOLEAN OPTIMIZATION SOLVERS

extended with each restart so that the completeness of the algorithm
is maintained.

4 Pseudo-Boolean Optimization Solvers

The demand and research for efficient solvers for the PBO problem
are recent and falls into two categories of algorithms: Generic ILP
solvers and specialized 0-1 ILP solver [4].

4.1 Generic ILP solvers

Generic ILP solvers are used to solve linear programming prob-
lems, in general, and since PB-constraints are a variant of linear pro-
gramming problems, they were traditionally handled by this kind of
solvers. Although generic ILP solvers fit naturally on PB problems,
they tend to ignore the Boolean nature of 0-1 variables. One popu-
lar type of generic ILP solvers are branch-and-bound algorithms [19]
and they have proven to be very effective for PB instances where is
not hard to find a variable assignment that satisfies all constraints.
Some of popular ILP solvers are CPLEX and SCIP [2].

4.2 Specialized 0-1 ILP solvers

Specialized 0-1 ILP solvers consist on an adaptation of conflict-
driven SAT solvers to handle PB-constraints. There are two strate-
gies to support PB-constraints: or the SAT solver is modified to han-
dle PB-constraints directly (known as native support solvers) or each
PB-constraint is translated into a set of equivalent CNF clauses, in
a pre-processing step, to be processed by an unmodified SAT solver.
The translation strategy has the advantage of using efficient SAT
solver procedures as a black box, but suffers the possible exponen-
tial growth of CNF clauses, due to the translation nature. Native
support solvers are more complex and imply a modification of the
BCP process to handle PB-constraints in the way that they handle
CNF clauses.

Popular solvers with native support are PBS [5] and Pueblo [23]
(an extension of Minisat to handle PB-constraints). A popular non-
native support solver is Minisat+ [13], a simple and well documented
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solver which uses Minisat as black box to handle translated con-
straints.

4.2.1 Processing of PB-constraints

Before start processing PB-constraints, it is advantageous to define a
normal form for all constraints in the constraint database. Normal-
ization of PB-constraints simplifies the implementation of a solver
by giving fewer cases to handle and may reduce the number of con-
straints in the problem. Several techniques are used in normalization
of constraints and each solver differs in the number of techniques im-
plemented. The basic normalization technique for a solver performs
the following steps:

– All constraints are changed to a common type (≤ or ≥) by negat-
ing all constants, if necessary.

– Negative coefficients are eliminated by changing the associated
literal x into ¬x and updating the RHS.

– Multiple occurrences of the same variable are merged into a single
term Cix or Ci¬x.

– The coefficients are sorted into the order of increasing Ci values.
– Coefficients greater than the RHS are replaced with the RHS.
– The coefficients of the LHS are divided by their greatest common

divisor (“gcd”). The RHS is replaced by dRHS/gcde.

Assign values to variables in a PB-constraint is a more complex
process than in pure CNF clauses. Each PB-constraint must contain
a field representing the current LHS value, the sum of all activated
Ci, and another field representing the maximum value possible for
the LHS, the sum of all activated Ci and all Ci associated with unas-
signed variables. For simplicity, the fields are designated by currLHS
and maxLHS, respectively.

Assigning true to a variable v implies traversing all PB-constraints
containing a literal of v. The currLHS of every PB-constraint con-
taining the positive literal of v is incremented by the coefficient as-
sociated with v in that constraint. On the other hand, the maxLHS
of every PB-constraint containing the negative literal of v is decre-
mented by the coefficient value associated with that literal. Undoing
an assignment of true to a variable v, entails the inverse process, the
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currLHS and maxLHS of every affected PB-constraint are decre-
mented and incremented, respectively. When the assigned value of a
variable v is false, the process is similar, only changes the currLHS
and maxLHS fields in the operations.

During the process of updating PB-constraint fields, new impli-
cations and conflicts can be found. Each PB-constraint type has
associated a set of rules for detecting implications and conflicts.
Given a PB-constraint of type “≤”, any literal xi, whose coefficient
is Ci > (RHS − currLHS), is implied to false. On the other hand,
given a PB-constraint of type “≥”, a literal xi is implied to true
if its coefficient is Ci > (maxLHS − RHS). Conflicts are detected
when the currLHS > RHS (for a PB-constraint of type “≤”) or
the maxLHS < RHS (for a PB-constraint of type “≥”).

PB-constraints of type “=” are divided into two constraints of
type “≤” and “≥” that have the same LHS and RHS.

4.2.2 Optimization Process

As described in Section 2.2, each PBO problem has an objective
function associated. By calling the SAT procedure recursively, it is
possible to find an assignment that minimizes or maximizes a given
objective function. Since the objective function is a linear term, it
can be added to the problem as a constraint that limits the sum of
its literals.

Assuming a problem with objective function f(x), the first search
of the solver into the set of constraints (without considering the ob-
jective function) will obtain an initial solution f(x0) = k. In the sec-
ond search is added the constraint f(x) < k (in the case of minimiza-
tion). If the problem is unsatisfiable, k is the optimal solution , oth-
erwise the process is repeated with the new solution found (adding
f(x) < knew as a new constraint). The process is repeated until an
optimal k is found. In maximization, the optimization process is the
same but constraints are added to the problem as f(x) > k.

4.2.3 Translation of PB-constraints

Translation of PB-constraints into CNF clauses is a technique used
in non-native support specialized 0-1 ILP solvers. Consist on a pro-
cess between the normalization of PB-constraints and the calls to
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the SAT solver. The translation process has two main steps: each
constraint is converted into a single-output circuit and then each
circuit is converted into CNF clauses by Tseitin transformations. A
more detailed description of this conversions is presented in [1, 13].

The goal of translating PB-constraints into CNF clauses is not
only to get a compact representation, but also preserve as many im-
plications between literals of the PB-constraints as possible. This
concept is known as arc-consistency. A translation maintains arc-
consistency when all assignments that could be propagated on the
original constraint can also be found on the SAT solver’s unit prop-
agation, operating on a translation of that constraint. Although arc-
consistency is always desirable, maintain such propriety without an
exponential growth in the translation is a very difficult task. So there
is a trade-off between arc-consistency and the translation size.

There are several approaches to convert a PB-constraint into a
single-output circuit. Each approach defines distinct properties on
the translation of constraints, having its advantages and drawbacks,
and until now there is no perfect conversion. Popular approaches are
conversions into BDDs, networks of adders and networks of sorters
[13]. BDDs guarantee arc-consistency in the translation, but suffer
from exponential size translation in the worst case. On the other
hand, networks of adders do not guarantee arc-consistency but re-
sult in a linear size translation. In the middle of the scope are the
networks of sorters, not arc-consistent but closer to the goal, with
an almost linear size translation.

5 Parallel Solvers

Due to the evolution and popularity of parallel computing systems,
it became evident that the future of research on SAT solvers would
fall into the world of parallel computing, like many other domains
did. Since hard instances result in huge search spaces, having several
resources to share the effort of the search became a very viable strat-
egy. The demand of algorithms for SAT, taking advantage of cluster
and grid architectures, is growing and the first strategies appear as
a stimulation to the research in this area.
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In this section are presented some popular techniques used in
parallel SAT solvers of today and a popular paradigm to develop
concurrent applications to parallel computing systems, called MPI.

5.1 MPI

The demand for more computational power lead the programmers to
adopt parallel computing systems to run their programs. Super com-
puters, clusters, grids and even actual personal computers (multi-
core computers) are considered parallel computing systems, although
with different characteristics. Unfortunately, developing programs
for parallel systems is more complex than programming in a se-
quential system, since parallel systems involve multiple processing
elements (processes) during a program execution. Parallel program-
ming systems are used to handle the communication and synchro-
nization between those processes and the MPI is one example of such
systems.

MPI (Message Passing Interface) is a popular and widely used
API that provides essential virtual topology, synchronization and
communication functionality between a set of processes in parallel
computing systems. MPI consists on a specific set of routines that
are directly callable from a variety of languages (for example, C and
C++) to integrate its features into any program. MPI was defined
with the contribution of many commercial and open-source vendors
with the aim of creating a parallel programming standard with high
performance, scalability and portability. Since then, it has become
the industry’s de-facto standard to implement portable parallel pro-
grams for a wide variety of parallel computing systems.

5.2 Parallel SAT Solvers

A popular and very used parallel SAT solvers approach is the Task
Farm, that uses the master/slave topology presented in the Figure 2.
The objective of this approach is to divide the search space among
all the slaves of the system so that different partitions of the search
space can be computed simultaneously.

A slave (also known as worker) consists on an independent SAT
solver that contains the entire clause database of a problem. The

15



5. PARALLEL SOLVERS

Fig. 2. Master/Slave topology

partition of the search space is managed by the master and the at-
tribution of such partitions to the workers is performed by a process
of task delivery. The master contains and manages a task reposi-
tory which includes all tasks that must be sent to workers. A task
consists on a set of initial assumptions (variable assignments) that
correspond to a partition of the search space. Each task contains a
different set of assumptions so that each worker computes distinct
areas of the search space. Workers are responsible for computing the
tasks received and responding to the master the obtained results
(sat or unsat), according to the assumptions defined. A sat response
may also include the model found, that satisfies the given problem,
and an unsat response includes a set of conflicting assignments that
originated the unsat result.

This approach is the core of several parallel SAT solvers such as
PSato [26] (parallel version of Sato), GrADSAT [9] (parallel version
of zChaff) and PMSat [18] (parallel version of Minisat). Although
this solvers implement the same approach (differing in some upper
level techniques), they differ in the parallel technologies used on their
implementations. PMSat is highlighted since it was implemented us-
ing MPI, which will be used in this project.

5.2.1 Search Process

Using the variables of the problem, the master initially creates a
task database by defining all necessary tasks (sets of assumptions) to
compute the problem, this technique is descibed in the Section 5.2.2.
After all tasks have been defined, the master initiates the search by
sending one task, pulled from the task database, to each worker and
waits for their responses.
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Receiving an unsat response from a worker, the master uses the
set of conflicting assignments received to remove unnecessary tasks
from the task database (tasks proven to be useless due to the con-
flicting assignments) and to stop possible workers that are computing
tasks proven to be unsat. When workers finish their tasks (or are or-
dered to stop one), a new task is pulled from the task database and
assigned to them. The search process ends when the master receives
a sat response from a worker or when the task database is empty
and all workers computed their tasks resulting in unsat responses
(the problem is unsatisfiable).

5.2.2 Assumptions Generation

Assigning values to a set of variables in a problem, redirects the
search into a specific subspace of the search space. Therefore, by
defining a specific group of assumptions, it is possible to partition
the search space in such a way that all workers could compute co-
operatively the entire search space. Defining such group of assump-
tions must guarantee two properties: the group must cover the entire
search space and each set of assumptions in the group must represent
a different subspace of the search space.

Fig. 3. Decision Tree of a problem with variables {y, p}

As an example, given a problem with two variables {y, p} and the
decision tree presented in the Figure 3, defining two assumptions
with y = true and y = false, respectively, will cover the entire
search space and each workers could compute half the search space
concurrently.

The example above is a very simple example, but generating
assumptions is not a simple process. Assumptions must be carefully
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created and aiming the “right” variables to assume may improve the
performance of a solver. The authors of PMSat [18] proposed some
generation methods to improve the generation of assumptions. The
methods proposed take into account the popularity of variables and
literals (the number of occurrences on clauses) and use the most
popular variables to start partitioning the search space.

5.2.3 Sharing Conflict-induced Clauses

As described in Section 3.2, conflict analysis techniques have several
advantages on SAT solvers. Since a worker consists on an indepen-
dent SAT solver, it can take advantage of conflict analysis techniques
and generate conflict-induced clauses during their searches. In a par-
allel SAT solver, each worker can compute several tasks during an
execution and each task may result in an addition of new clauses to
the clause database of a worker. This gathering of conflict-induced
clauses can be very advantageous since each task will have access to
the “knowledge” of the previous ones.

One technique adopted by several parallel SAT solvers is the
ability of sharing conflict-induced clauses among workers. Instead of
a task has access only to the “knowledge” of their correspondent
worker, it will have access to the global “knowledge” of the system.
To archive such goal, each worker includes, in their responses to the
master, a set of conflict-induced clauses generated during the task
computation. The master spreads the clauses received by including
them in the following attributions of tasks. The workers, after receiv-
ing a task, add the included conflict-induced clauses to their clause
database.

The use of sharing conflict-induced clauses technique may help
reducing the search space, avoiding unnecessary branches, but in-
cluding such clauses in the communication flow implies an extra
overhead in the execution. Some implementations restrict the size
and the number of clauses, that are shared, as a solution to amortize
the overhead imposed by this technique.
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6 A Distributed Pseudo-Boolean Optimization
Solver

In Section 5 were presented some results of the SAT research on
parallel computing systems. The proposed Task Farm approach con-
tributed for a successful migration of the SAT problem to the parallel
computing world. Although great effort is spent developing improved
parallel SAT solvers, there is no concrete results in the research
on Pseudo-Boolean Optimization problem in the parallel comput-
ing field. So the aim of this project is to propose and implement a
distributed PBO solver to contribute for PBO research.

6.1 Solver Approach

The good news for developing a parallel version of a PBO solver are
that the characteristics of the optimization process in PBO favor its
parallel implementation. Since the optimization process consists on
iterative calls of the search procedure with different objective func-
tion restrictions, it is obvious that performing a concurrent search
on the optimization search space will be a good strategy. Taking ad-
vantage of the well known Task Farm approach (described in Section
5.2), it is possible to propose a promising distributed implementation
for PBO. The goal is to use independent Pseudo-Boolean solvers as
workers and a master to manage and attribute tasks, where each task
corresponds to a specific objective function restriction that must be
explored. For simplicity, the solver will only handle the minimization
process, since the maximization is the inverse process.

Given an objective function f(x) with N variables, the size of
the optimization search space to be explored (in the worst case)
is 2N . The optimization search space can be defined by an interval
σ = [kmin, k0], where k0 corresponds to the first solution found (when
running the PB solver without considering the objective function)
and kmin corresponds to the solution obtained when all positive Ci
in the objective function are inactivated and all negative Ci are ac-
tivated. Not all the values in σ are considered and values obtained
only under a given assignment on the objective function are chosen
to be explored.
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Partitioning an interval σ in such a way that each worker com-
putes significant subspaces, with different objective function restric-
tions, is not an easy task. The intuitive approach is to perform a
binary search on the considered values of σ and restricting σ ac-
cording to the results obtained from the necessary tasks. To each
worker will be attributed a different value k ∈ σ which will be used
to produce the desired restriction contraint f(x) < k for each task.
The master manages and restricts the interval σ according to the
responses received from workers. If a task, associated with a k value,
results in an unsat response, means that there is no possible as-
signment which satisfies the given f(x) < k restriction. By logic, if
f(x) < k is unsatisfiable, ∀y ∈ σ, y < k | f(x) < y are also unsatisfi-
able. Using such property, the master substitutes the lower bound of
σ with value k and aborts all workers computing restriction values
lower then k. On the other hand, tasks resulting in sat responses lead
the master to substitute the upper bound of σ with value k, abort-
ing all workers computing restrictions higher then k. The process is
repeated until only one value is covered by σ, which is considered
the optimum solution.

During the optimization search, each worker will probably com-
pute several values of σ and some changes to the clause database of
a worker may be required between each task. The computation of
following tasks with lower values does not imply any changes on the
cause database, since the old objective function restriction does not
affect the new one. On the other hand, in the computation of higher
values, the old objective function restriction cancels the new search
to be explored. To avoid such property, a removal of all contraints,
created due the old objective function restriction, must be performed
before adding and computing the new objective function restriction.

6.2 Solver Implementation

The proposed implementation will consists on a distributed version
of Minisat+ [13] using the approach explained above. Minisat+ was
chosen because of its clarity in the code and its well documentation,
but we believe that this approach can be easily adapted in many
other specialized 0-1 ILP solvers, since they usually use the same
optimization process.

20



7. CONCLUSION

To handle the communication and synchronization between pro-
cesses, it will be used the MPI because, as explained earlier, it is the
industry’s de-facto standard and has high performance and porta-
bility.

6.3 Challenges

After implementing the approach proposed in Section 6.1, some pos-
sible challenges may be taken into account to improve the implemen-
tation performance. Like in parallel SAT solvers, deciding the “right”
tasks to be early computed can lead to a significant reduction in the
execution time. So defining new heuristics for a better partition of
the optimization search space (instead of the partition proposed)
would be a good approach to improve the partition algorithm.

Learnt constraints sharing between workers is another challenge
that can be explored. Sharing significant learnt contraints, which
are not created due to the objective function, between all workers
can result in a reduction on each task search space. However, this
technique is very complex, since a selection for significant contraints
must be performed at the end of each task, and imposes a significant
overhead to the solver execution.

For a more fined grained partition of the problem, partitioning
the search space in each task can be considered a good approach
for future work. Attributing each task to be computed by a mesh of
workers, which partition the search space among them, can lead to a
better management of effort to the several processes of the system.
Since Minisat+ can use any SAT solver as a worker, this challenge is
facilitated because of its possibility of integrating an existing parallel
SAT solver (such as PMSat) to operate as a worker.

7 Conclusion

The proposed PBO solver for this project aims to transport to the
PBO world the efficient and well explored results in parallel SAT
solvers research. Techniques such as Task Farm approach with mas-
ter/slave topology, efficient heuristics for partition the search space
and learnt clause sharing are examples that can be easily adopted to
implement an efficient distributed PBO solver. Besides an efficient
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approach to maximize the performance of a search, the use of the
MPI in the implementation, for communication and synchronization
of processes, guarantees a high level of portability and performance
on parallel computing systems, such as clusters or grids of comput-
ers.

Choosing Minisat+ [13] as the core for the solver proposed gives
the possibility to integrate the most techniques described in this
document. Since Minisat+ consists on a non-native support 0-1 ILP
solver, it allows the integration of an efficient and already imple-
mented parallel SAT solver, instead of using Minisat [12], to han-
dle translated constraints concurrently. It is advantageous not only
for its possibility of using efficient and well explored resources, like
parallel conflict-driven SAT solvers described in this document, but
also for the possibility of a more fine grained partition of the prob-
lem, partitioning not only the optimization search space but also the
search space of each Task, which will imply a better management and
usage of all resources in a parallel computing system.
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12. Niklas Eén and Niklas Sörensson. An Extensible SAT-solver [ver 1.2].
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18. Lúıs Miguel Silveira Lúıs Gil, Paulo Flores. Pmsat: a parallel version of minisat.
Journal on Satisfiability, Boolean Modeling and Computation, Volume 6, pages
71-98, November 2008.

23



REFERENCES

19. Vasco M. Manquinho. Research Note On Using Cutting Planes in Pseudo-Boolean
Optimization, 2005.

20. João P. Marques-Silva and Karem A. Sakallah. Boolean satisfiability in electronic
design automation. In Proceedings of the 37th Annual Design Automation Confer-
ence, DAC ’00, pages 675–680, New York, NY, USA, 2000. ACM.

21. João Marques-Silva. The Impact of Branching Heuristics in Propositional Satisfi-
ability Algorithms. In Proceedings of the 9th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence, EPIA ’99, pages 62–74, London,
UK, 1999. Springer-Verlag.

22. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient SAT solver. In Proceedings of the 38th annual
Design Automation Conference, DAC ’01, pages 530–535, New York, NY, USA,
2001. ACM.

23. Hossein M. Sheini and Karem A. Sakallah. Pueblo: A Modern Pseudo-Boolean
SAT Solver. In DATE ’05: Proceedings of the conference on Design, Automation
and Test in Europe, pages 684–685, Washington, DC, USA, 2005. IEEE Computer
Society.

24. João P. Marques Silva and Karem A. Sakallah. Grasp–a new search algorithm for
satisfiability. In Proceedings of the 1996 IEEE/ACM international conference on
Computer-aided design, ICCAD ’96, pages 220–227, Washington, DC, USA, 1996.
IEEE Computer Society.

25. Hantao Zhang. Sato: An efficient propositional prover. In Proceedings of the
14th International Conference on Automated Deduction, CADE-14, pages 272–275,
London, UK, 1997. Springer-Verlag.

26. Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. Psato: a distributed
propositional prover and its application to quasigroup problems. J. Symb. Com-
put., 21:543–560, June 1996.

24


