
1

MPBO - A Distributed PBO Solver
Nuno Santos, nunocsantos@ist.utl.pt

Technical University of Lisbon

Abstract—Parallel computing has been the subject of in-
tensive research in the last decade and is increasingly being
chosen as a solution for developing applications that require
high computational power, such as the Boolean Satisfiability
(SAT) and Pseudo-Boolean Optimization (PBO) problems.
Research in SAT solvers has obtained relevant results in
the last years, achieving significant reductions in execution
times. Unfortunately, hard instances of SAT require large
computational power and even efficient SAT solvers take
huge execution times to obtain their solution. Therefore,
SAT solvers adaptation to parallel computing systems be-
gan to be the subject of considerable research and there
already exist several distributed versions of popular SAT
solvers. However, the absence of distributed solvers for
the PBO problem is notorious. This work intends to con-
tribute and encourage the research into distributed solu-
tions to solve the PBO problem. The goal of this work is to
propose a distributed Pseudo-Boolean Optimization Solver,
named MPBO solver, based on MPI (Message Passing In-
terface) and focused on an efficient search space partition,
more specifically the partition of the problem optimization
search space. The proposed solver achieved significant re-
ductions in the time to solve hard PBO instances, when
compared to the MiniSat+ and pwbo solvers.

I. Introduction

The well known Boolean Satisfiability (SAT) and
Pseudo-Boolean Optimization (PBO) problems gained sig-
nificant attention in the last years, due to their possible ap-
plication in many domains, such as software and hardware
verification. Since then, several algorithmic solutions have
been proposed to solve both problems and many of them
proved to be very efficient when solving several instances
of the problems. Many SAT algorithmic solutions (known
as SAT solvers), for instance GRASP [1] and Chaff [2], con-
tributed with several techniques to improve the SAT reso-
lution. Due to the relevant results on SAT research, PBO
researchers embraced the SAT solvers efficiency and pro-
posed efficient ways to solve PBO instances by extending
SAT solvers to handle them.

Although SAT solvers are becoming more sophisticated
to reduce their execution time, adopting improvement
techniques such as clause learning, adaptive branching,
restarts and non-chronologically backtracks, the demand
for more computational power led SAT researchers to ex-
plore solutions taking advantage of parallel computing sys-
tems. Distributed systems, such as clusters and grids, are
a popular type of parallel computing environments and are
target of great adoption in the parallel developers commu-
nity, since they allow the use of several remote resources,
connected through a network, and enable the execution of
distributed algorithms that can divide a problem for a con-
current resolution in such resources. Many popular SAT
solvers have been migrated to such environments, adopting
the well known Task Farm approach, which proved to be
a successful solution to partition SAT problem instances
for concurrent searches. However, unlike SAT solvers,

the migration of PBO solvers to distributed systems has
not been well explored yet. Taking such gap in consid-
eration, this work is intended to give one more step for
such migration by proposing the MPBO (Message Pass-
ing Pseudo-Boolean Optimization) solver, an efficient dis-
tributed PBO solver that obtains significantly reduced ex-
ecution times when solving hard problem instances. The
MPBO solver was implemented resorting to the industry’s
defacto MPI (Message Passing Interface) API to allow its
portability through the different distributed environments
and is based on the core of the well known MiniSat+ [3]
solver. The solver presented achieved speedup values of
500 in the time to solve hard PBO instances, when com-
pared to MiniSat+, and speedups of 6 when compared to
the parallel pwbo solver [4].

From the analysis of the objective function of a PBO
problem, it is possible to calculate an interval where all
solution candidates for the problem are included, known
as the optimization interval, and such interval represents
the optimization search space that must be explored. The
approach behind the MPBO solver engine is the partition
of the optimization search space by the available resources
in a distributed environment, to be explored concurrently.
Based on the well known Task Farm approach, the solver
is composed by two entities. The workers, which are re-
sponsible to computed the assigned tasks, and the mas-
ter which manages the workers through the computation
of the problem. The workers are composed by a mecha-
nism to communicate with the master, to receive tasks and
send the calculated results, and the modified core of the
MiniSat+ solver to compute the tasks received. The mas-
ter is responsible to assign the necessary tasks and contains
a mechanism to identify the tasks to compute to reach the
optimal solution for the problem. Each task corresponds
to a specific restriction to the objective function of the
problem that must be computed, representing a specific
value of the optimization interval, and each task results
in a sat or unsat response, according to the satisfiability
of the given restricted problem. Through the problem op-
timization search, the master manages the optimization
interval according to the results obtained by the computed
tasks and restricts such interval until only one value re-
mains, which is considered the optimal solution for the
problem. The MPBO solver features two task assignment
approaches: the simple approach, where the optimization
search space is divided in a binary search fashion, and the
optimized approach, where the optimization search space
is divided considering the objective function to minimize.
The optimized approach reduces significantly the number
of task assignments performed during the execution of the
solver and achieves an average speedup gain of almost 80%
than the simple assignment approach.


