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Abstract—The last two decades progresses have led Proposi-
tional Satisfiability (SAT) to be a competitive practical approach
to solve a wide range of industrial and academic problems.
Thanks to these advances, the size and difficulty of the SAT
instances have grown significantly. The demand for more compu-
tational power led to the creation of new computer architectures
and paradigms composed by multiple machines connected by a
network to act as one machine, like clusters and grids. However,
extra computing power is not coming anymore from higher
processor frequencies, but rather from a growing number of
computing cores and processors. It becomes clear that exploiting
this new architecture is essential for the evolution of SAT solvers.

Search space splitting is probably the most commonly used
strategy to explore the parallelism provided by the search space.
However, it is not clear how to find the relevant set of variables
to divide the search space. This paper extends a method based on
the VSIDS heuristic to find the initial set of partition variables. A
drawback of search space splitting is load balancing. To overcome
this problem, we propose the use of a hybrid approach between
search space splitting and portfolio. Preliminary results show
that both these techniques improve the performance of the solver
and reveal that combining search space splitting and portfolio
approaches can lead to better results.

I. INTRODUCTION

In addition to the traditional hardware and software veri-
fication domains, Propositional Satisfiability (SAT) is becom-
ing popular in new domains. For instance, SAT solvers
are used for general theorem proving and computational
biology [22], [10]. This widespread use is the result of the
efficiency gains made during the last two decades. Many
industrial problems with hundreds of thousands of variables
and millions of clauses can now be solved within a few
minutes. This impressive progress can be related to both the
algorithmic improvements and the ability of SAT solvers to
exploit the hidden structure of a practical problem.

However, many new applications with instances of increas-
ing size and complexity are challenging modern solvers, while
at the same time, it comes clear that the gains traditionally
given by low level algorithmic adjustments are scarce. As a
result, a large number of industrial instances from the last
competitions remain challenging for state of the art SAT
solvers. Nowadays, multicore processors are becoming preva-
lent. While in general it is important for existing applications
to exploit this new architecture, for SAT solvers this becomes
crucial. As a result, work has been done on parallelizing
SAT solvers for its use on asynchronous distributed sys-
tems, using some form of message passing. Examples are
PaMiraXT [27], c-SAT [23] and others [31], [17], [29],

[7], [15]. However, message passing is slow and requires
an additional overhead when compared to a well designed
shared memory system. Recent works address multithreaded
shared memory solvers, such as ySAT [13], MiraXT [18],
PMiniSAT [8] and ManySAT [16]. Despite search space
splitting being one of the most used strategies for parallel SAT
solving, lately there has been an increasing interest in portfolio
approaches, which seem to have a better performance [16],
[23].

Two of the major challenges for search space splitting are
(1) choosing the partition variables: for a given large SAT
instance with hundreds of thousands of variables it is difficult
to find the most relevant set of variables to divide the search
space, and (2) load balancing: for some subproblems it is
easier to prove (un)satisfiability than others. Since the time
needed to prove (un)satisfiability for the subproblems cannot
be predicted, the work cannot be balanced prior to search.
Therefore, dynamic work stealing is expected to balance the
work between all processors. Without such procedure, some
processors might be quickly idle while others can take a
long time to solve their subproblem. To overcome these
difficulties, this paper proposes to extend a method based
on the VSIDS heuristic [21] for choosing the initial set of
partition variables [25] and to use a hybrid solver that includes
a heuristic to switch from search space splitting to a portfolio
approach when load balancing becomes an issue or when a
cutoff is reached.

To evaluate these techniques, they were implemented in
a parallel solver called SAT4J// which was developed to
be run in a multicore architecture. This parallel solver is
built upon the sequential SAT solver SAT4J [1]. SAT4J is
implemented in Java and allows the configuration of solvers
through the use of different heuristics and learning schemes.
Moreover, Java is a multithreaded programming language that
makes programming with threads easier, by providing built-in
language support for threads. Even though SAT4J is not as
efficient as other SAT solvers, it is probably one of the most
used solvers. Due to its implementation in Java, it can be
easily incorporated into other Java applications that require a
SAT solver. Since multicore machines with a small number of
cores are now common, it is useful to have a parallel version
of SAT4J for a multicore architecture.

Preliminary results show that the techniques proposed in this
paper improve the performance of a parallel solver and reveal
that combining search space splitting and portfolio approaches
can lead to better results.
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The main contributions of this paper are the following:
(1) extension of a method based on the VSIDS heuristic for
choosing the initial set of partition variables in a multicore
environment, (2) inclusion of a transaction heuristic that allows
a parallel solver to change from search space splitting into
a portfolio approach, and (3) building of the first parallel
SAT solver implemented in Java and designed for a multicore
architecture.

This paper is organized as follows. The next section in-
troduces some background on Propositional Satisfiability as
well as the framework of a modern SAT solver. Section III
briefly presents the most noticeable parallel SAT solvers. Next,
section IV describes the techniques proposed in the paper to
improve the search space splitting for parallel SAT solving.
Section V describes the implementation of the different ver-
sions of the new parallel solver SAT4J//. Section VI presents
experimental results that show the improvements due to choos-
ing the partition variables and using a hybrid approach. Finally,
section VII concludes the paper and suggests future work.

II. PRELIMINARIES

Propositional formulas are commonly represented in Con-
junctive Normal Form (CNF). A CNF formula is represented
using n Boolean variables x1, x2, . . . , xn, each of which can
be assigned truth values 0 (false) or 1 (true). A literal l is
either a variable xi (i.e., a positive literal) or its complement
¬xi (i.e., a negative literal). A clause ω is a disjunction of
literals and a CNF formula ϕ is a conjunction of clauses.

A literal lj of a clause ω that is assigned truth value 1
satisfies the clause, and the clause is said to be satisfied. A
literal that is assigned truth value 0 can be removed from a
clause. A clause with a single literal is said to be unit. Given
a unit clause, the unit clause rule [11] may be applied: the
unassigned literal has to be assigned value 1 for the clause
to be satisfied. The derivation of an empty clause indicates
that the formula is unsatisfied for the given assignment. The
formula is satisfied if all its clauses are satisfied.

The SAT problem consists of deciding whether there exists
a truth assignment to the variables such that the formula
becomes satisfied.

A. Conflict-Driven Clause Learning SAT Solvers

One of the main reasons for the widespread use of SAT
in many applications is that Conflict-Driven Clause Learning
(CDCL) SAT solvers are so effective in practice. Since their
inception in the mid-90s, CDCL SAT solvers have been
applied, in many cases with remarkable success, to a number
of practical applications.

Algorithm 1 shows the standard organization of a CDCL
SAT solver first proposed by Marques-Silva and Sakallah [20].
In Algorithm 1, the following auxiliary functions are used:

• UnitPropagation consists of the iterated application
of the unit clause rule. If an unsatisfied clause is identi-
fied, then CONFLICT is returned.

• AssignBranchingVariable consists of choosing
a variable to assign and its respective value. Different

Algorithm 1 CDCL SAT Solver(ϕ)
1: dl← 0
2: if (UnitPropagation(ϕ) == CONFLICT) then
3: return UNSATISFIABLE
4: while (not AllVariablesAssigned(ϕ)) do
5: dl← dl + 1
6: AssignBranchingVariable(ϕ)
7: while (UnitPropagation(ϕ) == CONFLICT) do
8: β ← ConflictAnalysis(ϕ)
9: if (β < 0) then

10: return UNSATISFIABLE
11: else
12: Backtrack(ϕ,β)
13: dl← β
14: return SATISFIABLE

heuristics have been explored in the past, including
the VSIDS (Variable State Independent Decaying Sum)
heuristic [21] which is considered to be one of the most
effective. This heuristic associates an activity counter
with each literal. Whenever a learnt clause is created
after a conflict, each literal that occurs in the clause has
its activity incremented by a certain value. Periodically,
all activity counters are divided by some experimentally
tuned number. When AssignBranchingVariable
is called, the highest-value unassigned literal is chosen.

• ConflictAnalysis consists of analysing the most
recent conflict and learning a new clause from the con-
flict. This is done by analysing the structure of unit
propagation and deciding which literals to include in the
learnt clause [20], [21]. If there is no way to overcome
this conflict, then UNSATISFIABLE is returned.

• Backtrack procedure backtracks the search to the de-
cision level computed by ConflictAnalysis. Back-
tracking can be non-chronological, i.e. it can be done
to an earlier decision level. A decision level of a vari-
able denotes the depth of the decision tree at which
the variable is assigned a value. While backtracking,
all variables assignments at decision levels higher than
the one computed by ConflictAnalysis become
unassigned.

• AllVariablesAssigned tests whether all variables
have been assigned, in which case the algorithm termi-
nates indicating that the CNF formula is satisfiable.

Algorithm 1 illustrates how modern SAT solvers work. It
receives a propositional formula ϕ and applies unit propaga-
tion (line 2). Next, if a conflict is found then the formula is
trivially unsatisfiable. Otherwise, the search process begins.
The search is done until all variables are assigned a value
or until unsatisfiability is proved. At each step, the solver
increases the decision level (dl) (line 5). Next, it chooses
a variable and its respective value (line 6) and applies unit
propagation (line 7). If no conflict is found, the three steps
shown in lines 5 to 7 are repeated. Otherwise, if a conflict
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is found, conflict analysis is performed in order to learn a
clause that will prevent similar conflicts from occurring in the
future and to determine the decision level to which the solver
can safely backtrack to (β in line 8). Notice that if β is less
than zero, then the conflict does not depend on any variable
assignment. Therefore, backtracking cannot be performed and
so the formula is unsatisfiable. Otherwise, backtracking is
performed and all assignments made at decision levels higher
than β are undone (line 12). The decision level is updated to
the current backtrack level and the solver returns to line 7 to
repeat this process.

III. PARALLEL SAT SOLVING

Parallel computing has become an affordable reality, forcing
a shift in the programming paradigm from sequential to
concurrent applications, in particular those which demand
significant computation power or large search spaces. There
are a few parallel solving approaches dedicated to the SAT
problem. Most of them use the message passing paradigm
and search space partitioning to assign work to the available
processors during the runtime. This often leads to use a
master-slave scheme where the most difficult part consists
of balancing the workload. Among the parallel SAT solvers
mentioned in the literature, we enumerate the following most
noticeable ones:

• PSATO [31] (1996): This solver introduces the important
notion of guiding paths, which is the most common form
of search space splitting for parallel SAT solving. The
guiding path describes the current state of the search
process. It does so by keeping track of the assigned
variables until the current point of execution. For each
one of these variables, the guiding path associates the
currently assigned truth value, as well as a Boolean flag
that represents whether there has been an attempt to
assign both values to the given variable. A variable for
which there was an attempt to assign both Boolean values
is said to be closed, while one for which there was an
attempt to assign only one value is open. Open variables
represent junctions on the guiding path that lead to a yet
unexplored search space.

• Solver by Böhm et al. [5] (1996): It dynamically divides
the input formula into disjoint subformulas. Each sub-
formula is solved by a sequential SAT solver running
on a particular processor. The algorithm uses optimized
data structures to modify the formulas. Additionally,
workload balancing algorithms are used to achieve a
uniform distribution of workload among the processors.

• PSatz [17] (2001): An important characteristic of a
SAT instance search-space is its unbalanced distribution.
The use of a guiding path accentuates the unbalanced
phenomenon, which is counterbalanced with dynamic
workload balancing. This solver follows a master-slave
model, where the master is responsible for distributing
the work among the slaves.

• PaSAT [29] (2001): This solver presents clause sharing
between the different processors following a master-

slave model, where the master is also responsible for
sharing the conflict clauses recorded by each slave. Since
adding all conflict clauses to the formula can result in an
exponential blow-up, only clauses that have less than a
fixed number of literals are exchanged.

• NAGSAT [14] (2002): It implements nagging, which
involves a master and a set of slaves called naggers.
In NAGSAT, the master runs a standard SAT algorithm
with a static variable ordering. When a nagger becomes
idle, it requests a nagpoint which corresponds to the
current state of the master. Upon receiving a nagpoint,
it applies a transformation (e.g., a change in the ordering
of the remaining variables), and begins its own search on
the corresponding subproblem. While the search of the
master and naggers is semantically equivalent, they will
be searched differently.

• GridSAT [7] (2003): This distributed solver is especially
dedicated to grid computing. Its philosophy is to keep
the execution as sequential as possible and to parallelize
tasks when it is advantageous. The master maintains a
distributed learning clause database and schedules the
jobs requesting the available resources list.

• Solver by Blochinger et al. [4] (2003): It uses an archi-
tecture similar to GridSAT. However, a client learns a
shared clause only if it is not subsumed by the current
guiding path constraints. In practice, clause sharing is
implemented by mobile-agents.

• PaMira [26] (2005): It uses a master-slave architecture
with a dynamic search space partitioning through guiding
paths. Dynamic work stealing and several clause selecting
strategies are implemented.

• Solver by Plaza et al. [25] (2006): It proposes the use of
the VSIDS heuristic to determine the partition variables.
Its learning strategy is based on clause activity instead of
the traditional clause size. Additionally, it implements a
parallel preprocessing based on recursive learning.

• PMSat [15] (2008): It uses a master-slave scenario to im-
plement a classical divide-and-conquer search. The user
can select among several partitioning heuristics. Learnt
clauses are shared between the processors, and can also
be used to stop efforts related to search spaces that have
been shown to be irrelevant. PMSat runs on networks
of computers through a Message Passing Interface (MPI)
implementation and is based on MiniSAT [12].

• JaCk-SAT [28] (2008): It presents an approach that
does not use a search-space decomposition but rather a
cut and join scheme of the variables set. The idea is to
decompose the input problem into simpler subproblems
with less variables that can be independently solved.
Within a parallel framework, the list of variable solutions
of each subproblem are computed. Finally, these partial
interpretations are joined and checked to exhibit a global
solution, if one exists.

• PaMiraXT [27] (2009): It follows a master-slave model
based on message passing, making it suitable for any kind
of workstation cluster. For the slaves, MiraXT is used,
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which itself is a thread-based parallel solver designed
to take advantage of current and future shared memory
multiprocessor systems.

• c-SAT [23] (2009): A parallelization of MiniSAT using
a MPI. It employs a layered master-slave architecture,
where the master handles clause sharing, deletion of
redundant clauses and the dynamic partitioning of search
trees, while the slaves perform search using different
heuristics and random number seeds. Therefore, it com-
bines search splitting with a portfolio of algorithms for
each subspace of the search tree.

Recently, the SAT community is looking at multicore ap-
proaches. The SAT-Race 20081 had a special track for parallel
SAT solvers, where each of them could use four cores. Next,
we present multithreaded SAT solvers.

• ySAT [13] (2005): It shares the original clauses from the
CNF formula, while each thread maintains its own local
conflict clause database. As for the master-slave model, it
synchronizes a list of available tasks to minimize the idle
threads. This solver shows a detrimental effect on cache
performance, thus degrading the overall performance of
the entire solver.

• MiraXT [18] (2007): It uses a divide-and-conquer ap-
proach where threads share a unique clause database
which represents the original and the learnt clauses.
Currently, this is the only multicore solver that shares
its entire clause database. When a new clause is learnt
by a thread, it uses a lock to safely update the common
database. Read access can be done in parallel.

• PMiniSat [8] (2008): It is a multithreaded version
of the sequential solver MiniSAT that uses a standard
divide-and-conquer approach based on guiding paths. It
further exploits the knowledge on these paths to improve
clause sharing. It also improves unit propagation by using
cache conscious data structures [9]. To reduce the idle
time, a central queue of work is kept which is topped up
by the longer running threads. The idle threads can then
steal from this central queue without having to wait for
other threads to respond.

• ManySAT [16] (2008): This solver is the winner of the
parallel track of the SAT-Race 2008. ManySAT uses a
portfolio of complementary sequential algorithms based
on MiniSAT. Additionally, each sequential algorithm
shares clauses to improve the overall performance of the
whole system. This contrasts with most of the parallel
SAT solvers generally designed using the divide-and-
conquer paradigm.

• MTSS [30] (2009): The MultiThreaded SAT Solver
(MTSS) uses a collaborative approach where a rich thread
is in charge of the search-tree evaluation and where a
set of poor threads yield logical or heuristic information
to simplify the rich task. This approach is based on
collaborative solving instead of the traditional search
space splitting strategies or the portfolio approaches.

1Results available at http://baldur.iti.uka.de/sat-race-2008/.

IV. IMPROVING SEARCH SPACE SPLITTING

Search space splitting is commonly done through the use of
guiding paths. However, it is not clear which variables should
be chosen to construct the initial guiding path. Gil et al. [15]
propose to choose the partition variables as those variables
that occur more frequently or the variables that occur in larger
clauses. Alternatively, Plaza et al. [25] propose to sequentially
run the master for a small amount of time in order to allow
the VSIDS heuristic to produce information that can be used
to choose the partition variables.

We propose to extend the method introduced by Plaza et
al. into a multicore environment. Instead of running only the
master to gather the VSIDS information, we propose to use
all threads. Since the VSIDS heuristic converges with each
conflict, the number of conflicts is used as a measure instead
of time. Each thread runs a sequential SAT algorithm until a
certain number of conflicts is reached. In order to increase the
information that is gathered, each thread searches a different
initial search space. This is done by randomizing the initial
position of the variables in the heap of the VSIDS heuristic.
With this approach we have an initial stage of weak portfolio,
since each thread searches in a different part of the search
space. Our motivation with this approach is two-fold: first, we
can solve easy instances with the weak portfolio approach,
i.e. without even splitting the search tree; second, in this first
stage more information is collected about the variables that
will allow to choose better partition variables.

Algorithm 2 PartitionVariables()
1: if (conflicts ≥ k) then
2: for pos = 1 to n do
3: var ← VSIDS[pos− 1]
4: infoV ars[var]← infoV ars[var] + pos
5: threadInfo← threadInfo+ 1
6: if (threadInfo == nrThreads) then
7: workQueue← ConstructInitialGPs(nPart)
8: currentGP ← workQueue.pop()
9: notifyAll()

10: else
11: wait()
12: currentGP ← workQueue.pop()

Algorithm 2 describes the proposed procedure for choosing
the partition variables. Consider n variables. After k conflicts
(line 1), the variables that have the highest activity are con-
sidered the most interesting ones to branch on. The VSIDS
score of each thread is analysed and for each variable is given
a score from 1 to n according to its position in the heap of the
VSIDS heuristic (lines 2 to 4). With this counting, method the
score of each variable in infoVars will not be dominated by the
VSIDS score of a thread. If the current number of threads that
gathered information (threadInfo) is less than the total number
of threads (nrThreads), then the current thread waits for the
remaining threads to gather information before continuing
(line 11). Otherwise, if it is the last thread that gathered
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information (line 6), then it builds the initial guiding paths (line
7) based on the sum of all the scorings for each variable. The
chosen partition variables are the ones with the lowest score in
infoVars, which means that according to the VSIDS heuristic
of all threads these variables are the best candidates for being
partition variables. ConstructInitialGPs builds the ini-
tial guiding paths. Note that nPart partition variables produce
2nPart guiding paths. Afterwards, the thread gets its current
guiding path (currentGP) from the work queue (workQueue)
(line 8). Finally, it notifies all threads (line 9) that are waiting
to continue their execution. The threads that are awaken (line
11) also get their current guiding path from the work queue
(line 12).

A clear drawback of search space splitting is load balancing,
since the branches of a search tree are typically extremely
imbalanced and may require a non-negligible overhead of
communication for work stealing. To overcome this difficulty,
we propose to switch from search space splitting to portfolio
when load balancing becomes an issue or when a cutoff is
reached.

In the recent past, have been proposed a few hybrid ap-
proaches between search space splitting and portfolio, which
will be described next.

Blochinger [3] proposes to use an adaptive competition by
starting with a search space splitting strategy and switching
into a portfolio approach when a particularly hard region of
the search space is encountered. In order to steer the transition
from search space splitting to portfolio, a transition heuristic
is employed to evaluate the progress of the solving process of
an individual subproblem. Next, it decides when to switch
to a portfolio approach. When a transition is initiated, the
respective subproblem is additionally treated using different
search heuristics. Further search splitting is disabled and if
this subproblem is proved to be satisfiable, then the search
finishes. Otherwise, if it is proved to be unsatisfiable, then the
solver returns to a search space splitting strategy. This process
is iterated until a solution is found or the problem is proved
to be unsatisfiable.

Alternatively, c-SAT [23] uses search space splitting to
begin the search and in each subspace of the search tree it uses
a portfolio of SAT algorithms. Since this parallel SAT solver
is designed for a workstation environment, it tries to take
advantage of a high number of machines by combining search
space splitting with a portfolio approach. Similarly, Bordeaux
et al. [6] use a hybrid approach between search space splitting
and portfolio in their experiments with massively parallel SAT
solving. Initially, a partial fixing of the variable ordering is
used. Three variables are chosen randomly and the search
process is biased so that these variables are always branched
on first; the solver then continues branching with its normal
strategy.

We propose to begin with an initial stage of search space
splitting, switching to a portfolio approach when load bal-
ancing becomes an issue or when a cutoff is reached. After
this switch, the solver does the remaining search in a portfolio
mode. Our motivation is to use search space splitting when

this approach is more efficient and then to change to a
portfolio approach when difficulties arise. This is done using
the following heuristic:

1) If a given thread is searching for more than k conflicts
and has created work that occupies the majority of the
work queue, it means that the thread is currently search-
ing in an hard subspace of the search tree and the work
queue is being filled with guiding paths corresponding
to this area. At this point, we switch into a portfolio
mode, by changing the heuristics of each SAT algorithm
on each thread. Additionally, the existing guiding paths
are merged in order to find variable assignments that
were already found to be necessary. Clauses learnt
previously by each thread are also kept when changing
into portfolio mode.

2) Alternatively, it could be the case that most threads
are searching in hard subspaces of the search tree, i.e.
the solving process of most subproblems is not making
sufficient progress. In practice, a cutoff is used to prevent
reaching hard subspaces. This happens when a given
thread is searching for more than z conflicts (z >> k)
and condition 1) was yet not verified. Although this is
not the case that a subspace of a thread is dominating
the others, the diversification of the search through the
use of a portfolio approach tends to lead to better results.
Therefore, in this case we also change into a portfolio
mode as described above.

Algorithm 3 HybridHeuristic()
1: if (conflicts ≥ z) OR

(conflicts ≥ k AND
createdWork > workQueue.size()/2) then

2: workQueue.add(currentGP )
3: threadPort← threadPort+ 1
4: if (threadPort == nrThreads) then
5: portfolioGP ← mergeGP(workQueue)
6: changeToPortfolio()
7: notifyAll()
8: else
9: wait()

10: changeToPortfolio()

Algorithm 3 shows the hybrid heuristic. When conditions
1) or 2) occur (line 1), the solver enters into portfolio
mode. createdWork is a local variable for each thread that
is initialized to 0 each time the thread starts searching in
a new subproblem, and increased by 1 each time it puts
work in the form of guiding paths into the work queue
(workQueue). Each thread starts by adding its own guiding
path to the work queue (line 2). If the current number of
threads that entered the portfolio mode (threadPort) is less
than the total number of threads (nrThreads), then it waits
for the remaining threads to enter into portfolio mode (line
9). Otherwise, if the current thread is the last one to enter
into portfolio mode (line 4), it then merges all guiding paths
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TABLE I
Pfolio: DIFFERENT STRATEGIES.

Strategies Core 0 Core 1 Core 2 Core 3
Restart PicoSAT restarts MiniSAT restarts Luby restarts MiniSAT restarts
Polarity Progress saving Phase in latest learnt clause Progress saving Negative phase
Learning Simplification Expensive simplification Expensive simplification Simple simplification Simple simplification

in the work queue into the portfolio guiding path (line 5).
The merge operation builds the portfolioGP with the literals
that are common to all the guiding paths in the work queue.
Afterwards, it changes the heuristics of the SAT algorithm (line
6). changeToPortfolio changes the restart heuristics,
the polarity of variables and the simplification heuristic of
learnt clauses. Finally, it notifies all threads (line 7) that were
waiting (line 9) to continue their execution and to change their
heuristics (line 10).

V. IMPLEMENTATION

SAT4J// is a parallelization of SAT4J 2.1. Each thread
maintains its own local clause database, containing all clauses
of the original CNF formula as well as conflict clauses
deduced by the thread. At the moment, the current version
of SAT4J// does not share clauses between the different
threads. Although clause sharing can dramatically increase the
performance of a solver, without clause sharing we can have
a better understanding of the impact of our techniques.
SAT4J// features standard parallelization techniques like

dynamic work stealing using guiding paths. To reduce the idle
time, a central queue of work is kept which is topped up by the
longer running thread (similar to [8]). Motivated by the fact
that a short guiding path (GP) (with respect to the number of
literals) correlates to a large fraction of the search tree, while a
long GP indicates a smaller part (that might be also easier and
faster to solve), the longer running thread (measured by the
number of conflicts) will have the shortest guiding path and
therefore should be used to divide the current search tree. This
dynamic work stealing is based on stealing from the longest
running thread, and from as high in that search tree as possible.
With a central work queue, the idle threads can steal from it
without having to wait for other threads to respond, except
when the work queue becomes empty. If the work queue size
is less than a given value, the longest running thread generates
work by splitting its own guiding path into two. One guiding
path is put on the work queue, while the other is used to
continue the search of the current thread.

Four versions of SAT4J// were implemented to test the
different techniques proposed in this paper: no-Info, Info,
Pfolio and Hybrid.

In the no-Info version the partition variables are chosen
using the VSIDS heuristic applied to the sequential SAT algo-
rithm. However, the VSIDS heuristic in SAT4J is initialized
with activity 0 for all variables. Therefore, using the sequential
VSIDS, at the start of the SAT algorithm, is equivalent to
randomly choosing the partition variables. In fact, the variables
that are chosen are the ones that were last read from the input
file.

The Info version uses the PartitionVariables algo-
rithm presented in the previous section. This method allows
the solver to choose the partition variables taking into conside-
ration the VSIDS information of all threads, rather than just
using a random initialization like in no-Info.

Pfolio version uses a portfolio of SAT algorithms designed
to be run with 4 threads. Similarly to ManySAT [16], in Pfolio
each thread has it own restart policy, polarity heuristic and
simplification heuristic of learnt clauses. SAT4J allows the
configuration of solvers through the use of different heuristics
and learning schemes which makes it easier to build a portfolio
approach. Pfolio was built using the configuration of solvers of
SAT4J and it was inspired in the portfolio of ManySAT. For
example, Pfolio uses a combination of rapid restart strategies
with progress saving, similarly to ManySAT.

Table I summarizes the choices made for the different
solvers of Pfolio. It uses different restart strategies: Mini-
SAT restarts [12] uses a classical geometric policy; Luby
restarts [19] and PicoSAT restarts [2] are different rapid restart
strategies. The polarity heuristic uses progress saving [24]
that records the polarity of the assigned variables between the
conflict and the back-jumping level, preferring this polarity if
one of these variables is chosen again. It also uses the phase
appearing in the latest learnt clause or the standard policy of
choosing the negative phase first. Expensive or simple reason
simplification of learnt clauses is also implemented in the
different solvers.

The Hybrid version is based on the Info and Pfolio versions.
It starts with the search space splitting strategy present in Info
with the additional HybridHeuristic algorithm described
in the previous section. When this method switches to a
portfolio mode, the solver switches to the Pfolio version. Each
SAT algorithm on each core changes its restart policy, polarity
heuristic and simplification heuristic of learnt clauses as des-
cribed above. Additionally, when transiting to the portfolio
mode, the guiding paths are merged and the learnt clauses are
kept.

VI. EXPERIMENTAL RESULTS

This section evaluates the techniques for improving search
space splitting that were proposed. For the experiments re-
ported, we used 82 instances from the applications category
of the SAT competition 2009 (available from http://www.
satcompetition.org/2009/). These instances were se-
lected from the initial set of 292 instances and correspond to
the instances that SAT4J 2.1 was able to solve in more
than 180 seconds or that SAT4J 2.1 was unable to solve
but MiniSAT 2.1 was able to solve within the first phase
competition timeout (within 1200 seconds). SAT4J is a Java
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implementation of MiniSAT, but while MiniSAT 2.1 was
ranked 2nd in the first phase of the SAT competition of 2009,
SAT4J 2.1 was ranked 29th. The selected set of instances
is therefore challenging for SAT4J and interesting for parallel
testing.

The results were obtained on an Intel Core i7 CPU 930 (2.80
GHz with 6GB of RAM) running Ubuntu 10.04 LTS with a
timeout of 3,600 seconds (wall clock time). All versions of
SAT4J// were run with 4 threads. As runtimes are highly
deviating for parallel SAT solvers, each version of SAT4J//
was run three times on each instance. The runtimes shown
in this section are the median of the successful runs for each
instance. An instance was considered solved if it could be
solved in at least one of the three runs of a solver. Note that this
procedure corresponds to the one used in the SAT race of 2008
where ManySAT, PMiniSAT and MiraXT were evaluated.

TABLE II
NUMBER OF INSTANCES SOLVED BY EACH APPROACH.

# Inst Seq no-Info Info Pfolio Hybrid
SAT 25 16 17 19 19 20
UNSAT 57 43 42 42 45 45
Total 82 59 59 61 64 65

Table II shows the number of solutions found by each
approach. We should note that SAT4J// suffers from high
memory contention and a corresponding increase of cache
misses, which may explain why the results are not better. To
study this effect, we have run 4 SAT4J solvers simultaneously
and analyzed the average solving time. This is equivalent to
run SAT4J// with 4 threads without splitting the search
tree. If this was done in 4 different machines, the solving
time should be always the same as running SAT4J in a
single machine. However, since they are all running in the
same machine, memory is shared along the 4 solvers, thus
increasing the memory access and the cache misses. Indeed,
using 4 threads is on average 25% slower than a single
thread. The same experience with MiniSAT 2.0 reveals an
average slowdown of 15%. This also shows that SAT4J, that is
implemented in Java, has more issues with memory contention
than MiniSAT, that is implemented in C++.

Such a slowdown represents a major problem of SAT4J//
since memory contention deteriorates the solver performance.
Cache deterioration in parallel solvers has already been re-
ported in the past by the authors of ySAT [13]. Recently, Chu
et al. [9] proposed cache conscious data structures that reduce
cache misses. This new data structures are implemented in
PMiniSAT, and according to the authors increase the parallel
performance of their solver by 140% with 8 threads.

Table II shows that all versions of SAT4J// can solve
either the same number (no-Info) or more instances (Info,
Pfolio and Hybrid) than the sequential solver (Seq). However,
our goal is to compare the different version of SAT4J//
and to show that our techniques can improve the overall
performance of search space splitting for parallel SAT solving.

Figure 1 provides a scatter plot with the runtimes for

Fig. 1. Runtimes for no-Info and Info.

no-Info and Info. Each point in the plot corresponds to a
problem instance, where the x-axis corresponds to the runtime
required by no-Info and the y-axis corresponds to the runtime
required by Info. Clearly, Info outperforms no-Info since for
most instances it was able to prove (un)satisfiability faster than
no-Info. Additionally, table II shows that Info was able to solve
2 more instances than no-Info. In our experiments, 4 initial
partition variables were chosen to build the initial guiding
paths. With 4 partition variables, we construct 16 guiding paths
that were used to start the search and fill the work queue.
Even though we are only choosing 4 initial partition variables,
these results clearly show that the way they are chosen can
dramatically affect the performance of the parallel solver.

Fig. 2. Runtimes for Pfolio and Hybrid.

Despite the fact that Info improves no-Info, it still solves
less 3 instances than the Pfolio version. However, our Hybrid
version is able to solve more instances than the Pfolio version
and at the same time to outperform on most instances. Figure 2
provides a scatter plot with the runtimes for Pfolio and Hybrid.
From the 65 instances that were solved by Hybrid, 54 of them
switched from search space splitting to a portfolio approach.
This also shows that some instances are solved using only
search space splitting. For those instances, Hybrid has the
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same performance as Info. Even though our portfolio version
might not be as tuned as the one presented in ManySAT,
there is a clear improvement in the number of solutions
found by Hybrid in comparison to Info. Therefore, even if
the set of solvers that compose our portfolio approach could
be improved, consequently improving the results of Pfolio,
it should also improve the results obtained by Hybrid. This
shows that by using both our techniques we can improve the
performance of split space search for parallel SAT solving and
outperform a pure portfolio approach.

VII. CONCLUSIONS AND FUTURE WORK

Parallel approaches will likely be the future in the field
of SAT solving as many chip manufactures are turning from
single core to multicore processors. Utilizing the extra power
of these CPUs, regardless a single workstation or a cluster of
workstations is used, will therefore be a fundamental issue.

This paper proposes to extend a method based on the VSIDS
heuristic to find the initial set of partition variables. This
technique allows to choose better initial partition variables.
Additionally, this paper also introduces a hybrid approach
between search space splitting and portfolio. A hybrid ap-
proach allows to reduce load balancing issues of search space
splitting as well as to change to a portfolio approach when a
cutoff is reached. Experimental results show that the proposed
method to find the initial set of partition variables can improve
the performance of the solver. The results also show that a
hybrid approach can lead to better results than search space
splitting or portfolio. This provides a strong stimulus for
further exploration of hybrid solutions since they can improve
the current state-of-the-art parallel SAT solvers.
SAT4J// is the first parallel SAT solver for a multicore

architecture implemented in Java. Due to the popularity of
SAT4J and to multicore machines being widespread, it is
useful to have a parallel version of SAT4J since it can improve
SAT4J performance.

As future work, we propose to extend the use of the VSIDS
heuristic of all threads to guide the search during runtime.
Additionally, the hybrid heuristic should be further developed.
In order to reduce the cache misses of SAT4J//, we will
implement the cache conscious data structures proposed by
Chu et al. [9]. Finally, clause sharing between threads will
be implemented. Clause sharing should further boost the
performance of our hybrid approach.
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