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Abstract. The predominance of multicore processors has increased the interest in developing parallel Boolean Satisfiability
(SAT) solvers. As a result, more parallel SAT solvers are emerging. Even though parallel approaches are known to boost per-
formance, parallel approaches developed for Boolean optimization are scarce. This paper proposes parallel search algorithms
for Maximum Satisfiability (MaxSAT) and introduces PWBO, a new parallel solver for partial MaxSAT. Using two threads, an
unsatisfiability-based algorithm is used to search on the lower bound of the optimal solution, while at the same time a linear
search is performed on the upper bound of the optimal solution. Moreover, learned clauses are shared between threads during
the search. For a larger number of threads two different strategies are proposed. The first strategy performs a portfolio approach
by searching on the lower and upper bound values of the optimal solution using different encodings of cardinality constraints
for each thread. The second strategy splits the search space considering different upper bound values of the optimal solution for
each thread. Experimental results show that the techniques proposed in the paper enable PWBO to improve when increasing the
number of threads.
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1. Introduction

As a result of multicore processors having become
the dominant platform, an increasing number of paral-
lel Boolean Satisfiability (SAT) solvers have come to
light in the recent past [9,21,24]. Portfolio approaches
are the most common approach for parallel SAT solv-
ing, as they explore the sensitivity to parameter tuning
of SAT solvers. As a result, each thread has a different
combination of parameters that increases the diversifi-
cation of the search [20,21].

The use of SAT is widespread with many prac-
tical applications and it is clear that the optimiza-
tion version of SAT, i.e. Boolean optimization, can be
applied to solve many real-world optimization prob-
lems. The competitive performance and robustness of
Boolean optimization solvers is certainly required to
achieve this goal. When compared with SAT instances,
Boolean optimization instances tend to be more intri-
cate as it is not sufficient to find an assignment that
satisfies all the constraints, but rather an optimiza-
tion function has to be taken into account. Hence, it
comes as a natural step to develop parallel algorithms
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to Boolean optimization, following the recent success
in the SAT field.

Although this reasoning comes as natural, there
are only a few parallel implementations for solv-
ing Boolean Optimization. SAT4J PB RES//CP1 imple-
ments a resolution based algorithm that competes with
a cutting plane based algorithm to find a new upper
bound or to prove optimality. When one of the al-
gorithms finds a new upper bound, it terminates the
search of the other algorithm and both algorithms
restart their search within the new upper bound value.
If one of the algorithms proves optimality, then the
problem is solved and the search is stopped. Clause
sharing is not allowed between these two algorithms.

Parallel algorithms have the advantage of allowing
to implement orthogonal approaches that complement
each other. That is the case in SAT4J PB RES//CP where
cutting planes are run against resolution. Another alter-
native, which will be explored in this paper by our new
parallel Maximum Satisfiability (MaxSAT) solver, is
to run an algorithm that searches to increase the lower
bound value against an algorithm that searches to de-
crease the upper bound value. For a larger number of
threads, two different strategies are explored. The first
strategy performs a portfolio approach by searching in

1http://www.satcompetition.org/PoS/presentations-
pos/leberre.pdf.
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the lower and upper bound values of the optimal solu-
tion, and using different encodings of cardinality con-
straints into clauses for each thread. The goal of us-
ing different encodings of cardinality constraints is to
increase the diversification of the search. The second
strategy splits the search space considering different
upper bound values of the optimal solution. The par-
allel search on different upper bound values leads to
constant updates on the lower and upper bound values,
which result in reducing the search space. Moreover,
learned clauses can be shared during search, which fur-
ther boosts the performance of the parallel MaxSAT
solver.

Preliminary versions of this work were published at
the RCRA 2011 workshop [35] and at the ICTAI 2011
conference [34] proceedings. The first paper [35] ad-
dresses parallel search with two threads and for a larger
number of threads the search space is split considering
different upper bound values. The second paper [34]
describes a portfolio approach using different encod-
ings of cardinality constraints for each thread. This pa-
per extends previous work in the following directions:
(1) a dynamic heuristic is presented for selecting en-
codings of at-most-k cardinality constraints, (2) the
split approach uses the dynamic heuristic to search in
the different upper bound values of the optimal solu-
tion and (3) experimental results have been extended:
(i) a detailed evaluation of our solver with two threads
is now presented, (ii) the portfolio approach is com-
pared with the split approach, and both approaches are
run with 4 and 8 threads and (iii) the impact of clause
sharing is further evaluated.

The paper is organized as follows. The next section
introduces some background notions of MaxSAT and
cardinality constraints. Additionally, algorithmic solu-
tions for sequential MaxSAT solving are described.
Section 3 briefly describes several encodings of car-
dinality constraints that will be used in this paper.
Moreover, a dynamic heuristic for selecting encod-
ings of at-most-k cardinality constraints is presented.
Next, Section 4 describes the different versions of
our parallel MaxSAT solver: (1) a parallel two-thread
search algorithm, (2) a multithread algorithm based
on a portfolio approach and (3) a multithread algo-
rithm based on splitting the search space. Section 5 de-
scribes the clause sharing mechanism and the use of
shared learned clauses during the search. Next, Sec-
tion 6 presents experimental results that evaluate the
dynamic heuristic, as well as the different encodings of
cardinality constraints. Additionally, the different ver-
sions of our parallel solver are analyzed. Finally, Sec-
tion 7 concludes the paper and suggests future work.

2. Maximum satisfiability

In this section the MaxSAT problem and its variants
are presented and the main algorithmic solutions for
solving MaxSAT are briefly described.

In a propositional formula, a literal li denotes either
a variable xi or its complement x̄i. If a literal li = xi

and xi is assigned value 1 or li = x̄i and xi is assigned
value 0, then the literal is said to be true. Otherwise, the
literal is said to be false. A propositional clause can be
defined as a disjunction of literals and a CNF formula
is a conjunction of propositional clauses. A clause is
said to be unsatisfied if all of its literals are assigned
value 0, and it is said to be satisfied if at least one of its
literals is assigned value 1.

Given a CNF formula ϕ, the MaxSAT problem can
be defined as finding an assignment to variables in ϕ
such that it minimizes (maximizes) the number of un-
satisfied (satisfied) clauses. MaxSAT has several vari-
ants such as partial MaxSAT, weighted MaxSAT and
weighted partial MaxSAT. In the partial MaxSAT prob-
lem, some clauses in ϕ are declared as hard, while
the rest are declared as soft. The objective in partial
MaxSAT is to find an assignment to problem variables
such that all hard clauses are satisfied, while minimiz-
ing the number of unsatisfied soft clauses. Finally, in
the weighted versions of MaxSAT, soft clauses can
have weights greater than 1 and the objective is to sat-
isfy all hard clauses while minimizing the total weight
of unsatisfied soft clauses.

A generalization of clauses are cardinality con-
straints. These constraints define that at least k lit-
erals must be assigned value 1. More formally, car-
dinality constrains define that a sum of n literals
must be greater than or equal to a given value k, i.e.∑n

i=1 li � k. However, in practice cardinality con-
straints are usually expressed as at-most-k constraints.
Note that the previous at-least-k expression can be
rewritten as

∑n
i=1 l̄i � n − k. In the remainder of the

paper, cardinality constraints are defined as being at-
most-k constraints. Although cardinality constraints do
not occur in MaxSAT formulations, several algorithms
for MaxSAT solving rely on these constraints. Next,
MaxSAT algorithms that use cardinality constraints are
briefly surveyed.

2.1. Algorithmic solutions

For solving the several MaxSAT variants, the most
common approach is to use a classical branch and
bound algorithm [4,14,26,27], where specific MaxSAT
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lower bound procedures are incorporated to prune the
search space. Moreover, MaxSAT inference rules can
also be applied during the search [10].

Another approach used in unweighted MaxSAT al-
gorithms is to make a linear search on the number of
unsatisfiable soft clauses [1,25]. In this case, for each
soft clause ωi, a new relaxation variable ri is added
to ωi and all clauses are labeled as hard. Whenever a
new solution is found, the value of the solution is deter-
mined by the number of relaxation variables assigned
value 1. This corresponds to the number of unsatisfied
soft clauses in the original formulation. If a solution
of value k is found, a new cardinality constraint of the
form

∑
ri � k − 1 is added to the formula, in order to

exclude solutions with a value greater than or equal to
the best one found so far. The algorithm ends when the
resulting formula becomes unsatisfiable.

In this algorithm, new cardinality constraints are it-
eratively added to the original formula. Hence, in or-
der to continue using a SAT solver in the subsequent
iterations, it is necessary to encode the cardinality con-
straints into clauses. Another option is to use a pseudo-
Boolean (PB) satisfiability solver that is able to deal
natively with cardinality constraints.

Notice that both the linear search algorithm and
the branch and bound algorithm search on the upper
bound of the optimal solution, i.e., at each moment of
the search process they maintain a candidate solution
that is iteratively improved until optimality is proved.
These candidate solutions always have a value that is
greater than or equal to the optimum.

Recently, a new generation of MaxSAT solvers have
been developed based on the iterated use of a SAT
solver to identify unsatisfiable sub-formulas [2,18,28].
Algorithm 1 presents the pseudo-code for the original
Fu and Malik’s proposal [18]. Consider that ϕ is the
propositional working formula, where constraints are
marked as either soft or hard. At each iteration, a SAT
solver is used and its output is a pair (st, ϕC) where
st denotes the resulting status of the solver (satisfiable
or unsatisfiable) and ϕC contains the unsatisfiable sub-
formula provided by the SAT solver (if ϕ is unsatisfi-
able). The sub-formula ϕC is a subset of the original
clauses ϕ that is unsatisfiable. Therefore, ϕC explains
the reason for the unsatisfiability of ϕ. A detailed ex-
planation of how these sub-formulas are obtained can
be found elsewhere [5,39]. When the solver returns un-
satisfiable, a new relaxation variable is added to each
soft constraint in ϕC. Moreover, ϕ is changed to en-
code that at most one of the new relaxation variables
can be assigned value 1 (line 12) and the algorithm

Algorithm 1 . Unsatisfiability-based algorithm for
MaxSAT and partial MaxSAT

FUMALIKALG(ϕ)

1 while true do
2 (st, ϕC) ← SAT(ϕ)
3 if st = UNSAT
4 then VR ← ∅
5 for each ω ∈ ϕC ∧ soft(ω) do
6 r is a new relaxation variable
7 ωR ← ω ∪ {r}
8 ϕ ← ϕ\{ω} ∪ {ωR}
9 VR ← VR ∪ {r}

10 if VR = ∅
11 then return UNSAT
12 else ϕ ← ϕ ∪ CNF(

∑
r∈VR

r � 1)

13 else return Satisfiable assignment to ϕ

continues to the next iteration. Otherwise, if ϕ is sat-
isfiable, then the SAT solver was able to find an as-
signment which is an optimal solution to the original
MaxSAT or partial MaxSAT problem [18].

Different algorithms have been proposed for
MaxSAT and partial MaxSAT based on this approach.
Additionally, different encodings for cardinality con-
straints have been proposed with better results [31,32].
Moreover, different strategies have been used regard-
ing the total number of relaxation variables needed [2,
31]. The unsatisfiability-based approach has also been
extended for weighted variants of MaxSAT [2,28].

Finally, notice that Algorithm 1 performs a lower
bound search, i.e. at each step of the algorithm, the
number of identified unsatisfiable sub-formulas pro-
vides a lower bound on the value of the optimal so-
lution. This algorithm is complementary to the previ-
ously described upper bound approaches.

3. Encodings for cardinality constraints

In the previous section we have seen that cardinality
constraints can arise when solving a MaxSAT formula.
If the solver is not able to natively handle cardinality
constraints, then it is necessary to translate cardinality
constraints into clauses. Several encodings that trans-
late cardinality constraints into clauses have been pro-
posed. In this section, a brief description of several en-
codings that will be used in the remainder of the paper
is provided. Moreover, a dynamic heuristic for select-
ing the encoding for cardinality constraints is also pre-
sented. Given a portfolio of encodings and a cardinal-
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ity constraint, the dynamic heuristic tries to select the
most adequate encoding for that constraint.

Our focus is on encodings for cardinality constraints
(in the sequel referred as cardinality encodings) that al-
low unit propagation to maintain arc consistency in the
resulting CNF encoding. Consider the following cardi-
nality constraint x1 + · · · + xn � k. If k variables are
assigned value true, then unit propagation will enforce
the value false on the remaining n − k variables. How-
ever, if k + 1 variables are assigned value true, then a
conflict arises since at most k variables can be assigned
value true. An encoding that maintains arc consistency
enables the SAT solver to infer the same information
with the use of unit propagation on the resulting CNF
encoding.

A special case of cardinality constraints are the at-
most-one constraints. These constraints express that at
most one out of n Boolean variables can be assigned
value true. A large number of encodings have been
proposed to handle at-most-one constraints. Therefore,
a distinction is made between encodings that are used
only for at-most-one constraints and encodings used
for the general case of at-most-k constraints.

Table 1 shows the size of the evaluated encodings.
Next, the encodings are briefly described. For further
details on each encoding, the reader is pointed to the
literature.

• Pairwise (also called naive): the most widely
known encoding for the at-most-one constraint.
For each pair of variables (xi, xj), add a binary
clause x̄i ∨ x̄j that guarantees that only one of
the two variables can be assigned value true. Even
though this encoding adds a quadratic number of
clauses, it does not require auxiliary variables.

• Ladder [3,19]: it uses n − 1 auxiliary variables to
form a structure named ladder. Consider the chain
of auxiliary variables y1, . . . , yn+1. If yi is false
then all variables yj with j > i are also false.

Table 1

Cardinality constraint encodings

Encoding #Clauses #Variables Type

Pairwise O(n2) 0 at-most-one

Ladder O(n) O(n) at-most-one

Bitwise O(n log2 n) O(log2 n) at-most-one

Commander O(n) O(n) at-most-one

Product O(n) O(n) at-most-one

Sequential O(nk) O(nk) at-most-k

Totalizer O(nk) O(n log2 n) at-most-k

Sorters O(n log2
2 n) O(n log2

2 n) at-most-k

Each valid state in the ladder is associated with a
variable of the cardinality constraint. Since each
xi is equivalent to a valid state in the ladder, this
encoding guarantees that at most one variable xi

will be assigned value true.
• Bitwise [17,36]: this encoding introduces auxil-

iary variables y1, . . . , ylog2 n that represent a bit
string. It then associates a unique bit string with
each variable xi. The encoding guarantees that
only one string may occur and therefore at most
one variable xi can be assigned value true. When
n is not a power of 2, we can perform a small
optimization by reducing the number of clauses
from the encoding [17]. Note that if n is not a
power of 2, then there are more strings than vari-
ables xi. Hence, we can associate two strings to
some of the variables xi until the number of re-
maining strings is equal to the number of remain-
ing variables xi.

• Commander [23]: it starts by partitioning the set
of variables xi into groups of size 3. Next, for
the variables of each group, an at-most-one con-
straint is encoded with the pairwise encoding. Fi-
nally, it associates a commander variable with
each group and recursively encodes the at-most-
one constraint over the commander variables with
the method just described.

• Product [12]: this encoding decomposes cardinal-
ity constraint x1 + · · · + xn � 1 into two con-
straints, y1 + · · · +yp1 � 1 and z1 + · · · +zp2 � 1,
where p1 × p2 � n. The idea is to associate each
variable xi with a coordinate (ya, zb). This pro-
cedure is applied recursively until the size of the
constraint is smaller than 7. At that point, the pair-
wise encoding is used.

• Sequential [37]: it encodes a circuit that sequen-
tially counts the number of variables xi that are
assigned value true. Each xi is associated with k
variables si,j that are used as a counter. Assigning
the value false to si,j implies that at most j of the
variables x1, . . . , xi−1 can be assigned value true.

• Totalizer [8]: it consists of a totalizer and a com-
parator. The totalizer can be seen as a binary tree,
where the leaves are the xi variables. Each in-
termediate node is labeled with a number s and
uses s auxiliary variables to represent the sum of
the leaves of the corresponding subtree. The orig-
inal encoding uses O(n2) clauses. However, since
we are using this encoding to encode at-most-one
constraints, the optimization proposed by Büttner
and Rintanen [11] that reduces the number of



R. Martins et al. / Parallel search for maximum satisfiability 79

clauses to O(nk) is used. Instead of counting up
to n, it is enough to count up to k + 1, which can
be used to reduce the number of variables used for
each node.

• Sorters [15]: it is based on a sorting network, i.e. a
circuit that receives n Boolean inputs x1, . . . , xn

and permutes them to obtain the sorted outputs
y1, . . . , yn. Consider the cardinality constraint
x1 + · · · + xn � k. If after building the sort-
ing network we assign false to the output yk+1,
then this guarantees that at most k variables xi can
have value true. Some improvements were intro-
duced over the original sorting network encoding,
namely, the use of half sorting networks [6] and
adding redundant clauses over the outputs that
amplify propagation [13]. Even though the size of
the sorters encodings grows with n, unit propaga-
tion on the outputs yk+1, . . . , yn will significantly
reduce the size of the encoding. Therefore, if k
is small, then the sorter encoding will be much
smaller after unit propagation. Moreover, for the
at-most-one constraints, the simplification of the
sorting network through partial evaluation [13] is
used and the size of the encoding is reduced to
O(n) clauses and variables.

3.1. Dynamic heuristic

Different cardinality encodings lead to different per-
formances. For the at-most-k cardinality constraint it
has been empirically observed that several features
may be used to build a dynamic heuristic for selecting
the more adequate encoding for each cardinality con-
straint [34]. Consider the following portfolio of encod-
ings: Totalizer, Sorters and the native representation of
cardinality constraints, i.e. without encoding them into
CNF. For a given MaxSAT formula with v variables
and an at-most-k cardinality constraint with size n, the
dynamic encoding heuristic behaves as follows:

(1) If (i) 0.25 � k/n � 0.75, (ii) n > 1024 and (iii)
v/n < 0.75:

• then do not encode the cardinality constraint
into clauses. In this case the native represen-
tation is used and we rely on the underlined
pseudo-Boolean solver to handle it.

(2) Else if n × k < n × log2
2 n:

• then encode the cardinality constraint into
clauses using the totalizer encoding.

(3) Otherwise:

• the cardinality constraint is translated into
clauses using the sorters encoding.

The native representation is used when the ratio be-
tween the number of variables and the value of k is
close to n/2. This is the worst case when using a
CNF representation. However, this is only used when
the number of variables in the cardinality constraint
is larger than 1024. When n is small, encoding into
clauses is still more effective than using a native repre-
sentation, even when k is close to n/2. Note that when
k > n/2 the at-most-k constraint can be rewritten as
an at-least-(n − k) constraint. Let x1 + · · · +xn � k be
an at-most-k constraint. This constraint can be rewrit-
ten as x̄1 + · · · + x̄n � n − k. The totalizer and sorters
encodings allow the encoding of at-least-(n − k) con-
straints. Therefore, if k > n/2, the at-most-k con-
straint is rewritten as an at-least-(n − k) constraint and
then encoded into clauses. Hence, the worst case when
using a CNF representation is when k is close to n/2
since rewriting the constraint does not reduce the size
of the encoding.

It was also observed that when the cardinality
constraint contains the majority of the variables of
the problem, encoding the cardinality constraint into
clauses may lead to better results. In this case, the na-
tive representation has a low propagation since it con-
sists of a constraint that has almost all the variables
of the problem. The choice between the totalizer and
sorters encodings is based on the size of the encoding.
The encoding with smaller size is always chosen.

Note that the sequential and totalizer encodings have
similar size complexities. However, it has been ob-
served that for solving MaxSAT the totalizer encoding
is, in general, more efficient than the sequential encod-
ing [34]. Therefore, the sequential encoding is not con-
sidered in our portfolio of cardinality encodings.

4. Parallel search

Nowadays, extra computing power is not coming
anymore from higher processor frequencies but rather
from a growing number of cores and processors. Ex-
ploiting this new architecture is expected to allow
MaxSAT solvers to become more effective, being able
to solve more problem instances. Next, we describe
how to take advantage of this new architecture by per-
forming parallel search on the upper and lower bound
values of the optimal solution.
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Fig. 1. Solver architecture for two threads.

4.1. Searching on the lower and upper bound values

Our parallel search is based on two orthogonal
algorithms: (1) unsatisfiability-based algorithms that
search on the lower bound of the optimal solution, i.e.
that perform lower bound search and (2) linear search
algorithms that search on the upper bound of the op-
timal solution, i.e. that perform upper bound search.
Therefore, we propose to perform a parallel search on
both the upper bound and the lower bound of the opti-
mal solution.

For computer architectures with two cores, this ap-
proach consists in using one thread to perform lower
bound search and another thread to perform upper
bound search. Figure 1 shows the architecture for two
threads. A parallel search with these two orthogonal
strategies results in a performance as good as the best
strategy for each problem instance. However, if both
threads cooperate through clause sharing, it is possi-
ble to perform better than the best strategy. Addition-
ally, both strategies can also cooperate in finding the
optimum value. If during the search the lower bound
value provided by the unsatisfiability-based algorithm
and the upper bound value provided by the other thread
become the same, it means that an optimal solution has
been found. As a result, it is not necessary for any of
the threads to continue the search to prove optimality
since their combined information already proves it.

4.2. Using a portfolio approach

The previous section presented a parallel search
solver for MaxSAT based on two orthogonal strategies.
In the proposed approach, one thread is used for each
strategy. For computer architectures with more than
two cores, we can extend the previous idea by using
several threads in the upper and lower bound search.
However, if the algorithms that perform lower bound
search are the same and the algorithms that perform up-
per bound search are also the same, then the gain from
increasing the number of threads will be very small

Fig. 2. Parallel unsatisfiability-based algorithms.

since all threads will be searching in a similar way.
Therefore, it is important to increase the diversifica-
tion of the search such that the search space is explored
differently by each algorithm performing lower bound
search and by each algorithm performing upper bound
search. One solution is to exploit the variety of cardi-
nality encodings by using a portfolio of algorithms us-
ing different encodings. Next, we present the parallel
algorithms that are used for the lower and upper bound
search.

Figure 2 illustrates parallel unsatisfiability-based al-
gorithms. These algorithms work by iteratively iden-
tifying unsatisfiable sub-formulas of the original for-
mula. While solving the formula, the algorithm checks
if another thread has found a better lower bound value,
i.e. if it has found an unsatisfiable sub-formula. If
this is the case, then it imports the unsatisfiable sub-
formula and relaxes the unsatisfiable core by adding
relaxations variables to the soft clauses as described in
Algorithm 1 in Section 2. For each soft clause in the
identified unsatisfiable sub-formula, a new relaxation
variable is added such that when this variable is as-
signed value 1, the soft clause becomes satisfiable [18].
Moreover, a cardinality constraint is also added to the
relaxed formula such that only one of the newly cre-
ated relaxation variables can be assigned value 1. Next,
the solver checks if the formula remains unsatisfiable.

If the algorithm is not informed that a better lower
bound value was found, then it continues the search
process until it finds an unsatisfiable sub-formula or
a solution to the formula. If it finds an unsatisfiable
sub-formula, it shares this formula with the remain-



R. Martins et al. / Parallel search for maximum satisfiability 81

ing lower bound threads by exporting the unsatisfiable
core to the other threads. Next, it relaxes the unsatisfied
sub-formula as previously described and continues the
search on the new formula. The procedure ends when
the working formula becomes satisfiable and the solver
returns a solution (i.e., the optimum value was found),
or when the unsatisfiable sub-formula only contains
hard clauses (i.e., the original problem instance is un-
satisfiable) [18].

To increase the diversification of the search, unsatis-
fiability-based algorithms use different cardinality en-
codings in the relaxation step. These cardinality con-
straints are at-most-one constraints and any of the at-
most-one encodings presented in the previous section
can be used.

Note that there are a few details not shown in Fig. 2.
In particular, only one thread exports an unsatisfied
core for each lower bound value. Before exporting an
unsatisfiable core, a thread checks if its lower bound
value is the highest lower bound value among all
threads. If this is the case, then it is safe to export the
unsatisfiable core to the remaining threads. Otherwise,
it discards its own unsatisfiable core and imports the
unsatisfiable core that corresponds to the current lower
bound value. This is done to guarantee that all threads
use the same unsatisfiable cores. Moreover, when a
thread relaxes an unsatisfiable core, it updates its lower
bound value.

Figure 3 illustrates parallel linear search algorithms.
Notice that the original MaxSAT formula ϕMS is mod-
ified by adding a new relaxation variable r to each soft
clause ω from ϕMS, resulting in an equivalent formula

Fig. 3. Parallel linear search algorithms.

ϕUB where one wants to minimize the number of re-
laxation variables assigned value 1. In this approach,
whenever a new solution is found for ϕUB, the up-
per bound value is updated and a new cardinality con-
straint on the relaxation variables is added such that all
solutions with a greater or equal value are excluded.
During search, each algorithm checks if there is a bet-
ter upper bound value. If this is the case, it adds a car-
dinality constraint considering the new upper bound
value. Afterwards, it restarts the search on the con-
strained formula.

To increase the diversification of the search, the lin-
ear search algorithms to be used should differ between
themselves on the cardinality encoding that is used
when a new cardinality constraint is added to the work-
ing formula. Consider that the current upper bound
value is k. As a result of finding a new solution of value
k′, the cardinality constraint x1+· · ·+xn � k becomes
increasingly stronger by decreasing k to k′. For the at-
most-k encodings presented in the previous section, it
is only needed to encode the cardinality constraint into
clauses when the first upper bound value is found. In
the next iterations, one can set some specific literals
in the encoding to false such that it restricts the cardi-
nality constraint to the new upper bound value. This is
denoted by incremental strengthening [6]. All learned
clauses from previous iterations remain valid and can
therefore be kept.

4.3. Splitting the search space

Another approach that can be done for computer ar-
chitectures with more than two cores is to split the
search space by searching on different local upper
bound values. In this parallel search, if n cores are
available, then one thread is used to search on the lower
bound, another thread is used to search on the upper
bound, and the remaining n − 2 threads will search
on different local upper bound values. The local up-
per bound values restrict the search space by enforc-
ing a fixed upper bound value of the optimal solution.
Since this fixed upper bound value is restricted to each
thread, it is named as local upper bound value. The
search performed by these threads is named as local
upper bound search. The iterative search on different
local upper bound values leads to constant updates on
the lower and upper bound values that will reduce the
search space. Next, an example of this approach is de-
scribed. Afterwards, a more detailed description of the
local upper bound search is presented.
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Example 1. Consider a partial MaxSAT formula ϕMS
as input. For the input formula, one can easily find ini-
tial lower and upper bounds. Suppose the initial lower
and upper bound values are 0 and 11, respectively.
Moreover, consider also that the optimal solution is 3
and our goal is to find it using four threads: t0, t1, t2
and t3. Thread t0 applies an unsatisfiability-based al-
gorithm (i.e., searches on the lower bound of the opti-
mum solution). This thread starts with a lower bound
of 0 and will iteratively increase the lower bound until
the optimum value is found.

Thread t1 searches on the upper bound of the opti-
mum solution. Hence, thread t1 starts its search with
upper bound value of 11. Threads t2 and t3 search
on different local upper bound values. For example,
threads t2 and t3 can start their search with local upper
bound values of 3 and 7, respectively.

Suppose that thread t2 finishes its computation and
finds that the formula is unsatisfiable for an upper
bound of 3. This means that there is no solution with
values 0, 1 and 2. Therefore, the lower bound value
can be updated to 3. Thread t2 is now free to search on
a greater local upper bound value, for example, 5. In
the meantime, thread t3 finds a solution with value 6.
Hence, the upper bound value can be updated to 6.
Thread t1 updates its upper bound value to 6 and thread
t3 is now free to search on a different local upper
bound value, for example, 4. Afterwards, consider that
thread t1 finds a solution with value 3. Again, the up-
per bound value can be updated to 3. Since the lower
bound value is the same as the upper bound value, the
optimum has been found and the search terminates.

This parallel search incorporates three types of al-
gorithms: unsatisfiability-based, linear search and lo-
cal linear search. The unsatisfiability-based and linear
search algorithms used by the threads that are search-
ing in the lower and upper bound values of the optimal
solution are the same as the ones presented in Figs 2
and 3 in the previous section. In what follows we will
describe the algorithm for parallel local linear search
algorithms that is used by the remaining threads to per-
form local upper bound search.

Figure 4 illustrates parallel local linear search algo-
rithms. Similarly to the linear search algorithms, the
original MaxSAT formula ϕMS is modified by adding
a new relaxation variable ri to each soft clause ωi from
ϕMS, resulting in an equivalent formulation ϕUB where
the goal is to minimize the number of relaxation vari-
ables assigned value 1.

Fig. 4. Parallel local linear search algorithms.

These algorithms start by defining their local upper
bound. Initially, we set the lower bound value to 0 and
the upper bound value to the number of soft clauses, s,
in ϕMS plus 1. Therefore, considering k local threads,
t1, . . . , tk, a thread tj will have an initial local upper
bound value bj of j × �(s + 1)/(k + 1)�.

Next, thread tj adds a cardinality constraint of the
form

∑
ri � bj − 1 to exclude solutions with a value

greater than or equal to bj . Let this cardinality con-
straint be labeled the thread bound constraint. If a car-
dinality encoding is used, then all clauses that were
created to encode the cardinality constraint will be la-
beled as thread bound constraints.

After adding a thread bound constraint, the algo-
rithm starts the search. During the search, the algo-
rithm checks if another thread has found a lower bound
that is greater than the thread current local upper bound
or an upper bound that is smaller than the thread cur-
rent local upper bound. If one of these cases occurs,
then the algorithm will terminate its search and a new
local upper bound is defined. Next, the search restarts
using the new upper local value.

If the algorithm is not informed that a better lower
or upper bound value has been found, then it continues
the search process until it finds a solution or proves
that no solution exists for the current local upper bound
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value. If a solution is found, then the algorithm updates
the upper bound value. Otherwise, if it proves that no
solution exits, then the lower bound value is updated.
In both cases, a new local upper bound value is set and
the search restarts.

At the moment, parallel local linear search algo-
rithms are not computing an unsatisfiable sub-formula
when a new lower bound value is found. Therefore, no
unsatisfiable cores are exported to the unsatisfiability-
based algorithm that is searching on the lower bound
value. Moreover, the thread searching on the lower
bound does not update its lower bound value to the new
lower bound value found by the parallel local linear
search algorithms. As future work, we plan to compute
the unsatisfiable sub-formulas from the parallel local
linear algorithms and use them to speedup the search
of the unsatisfiability-based algorithm.

There are a few details not shown in Fig. 4. Up-
dates to the lower and upper bounds only take place
when the new values improve the current ones. Ad-
ditionally, when a thread is assigned a new local up-
per bound value after finding a solution or proving that
a solution does not exist, this new local upper bound
value covers the broadest range of yet untested bounds.
More formally, the new local upper bounds are chosen
as follows. Let B = 〈b0, b1, . . . , bk−1, bk 〉 be a sorted
list where b0 corresponds to the lower bound and bk

corresponds to the upper bound, while the remaining
bj are the non-aborted thread local upper bounds. Let
[bm−1, bm], where 1 � m � k, define an interval such
that for all 1 � j � k we have bm −bm−1 � bj −bj−1.
In this case, the new upper bound of the aborted thread
is �(bm + bm−1)/2�. The sorted list B is updated with
the new value and this process is repeated for each
aborted thread.

Example 2. Consider the following scenario. A par-
tial MaxSAT formula ϕMS is currently being solved by
4 threads. Thread t0 is searching on the lower bound
value of the optimal solution, and thread t1 is search-
ing on the upper bound value of the optimal solution.
The current lower and upper bound values are 5 and
10, respectively. Thread t2 is searching on a local up-
per bound with value 8 and thread t3 is computing a
new local upper bound. The sorted list B corresponds
to B = 〈5, 8, 10〉. Thread t3 will now determine the
largest interval between two consecutive values in B,
i.e. [5, 8]. Therefore, the new upper local upper bound
value of t3 will be given by �(8 + 5)/2� = 6.

5. Sharing learned clauses

Conflict-driven clause learning [33,38] is crucial for
the efficiency of modern SAT solvers. After detecting
a conflict, i.e. a sequence of assignments that make a
clause unsatisfiable, a new clause is learned to prevent
the same conflict from occurring again in the subse-
quent search. The new clause results from the analysis
of the implication graph which represents the depen-
dencies between assignments. A more detailed expla-
nation can be found in the literature [33,38].

Clause learning is also essential to the efficiency of
many modern MaxSAT solvers. In the context of par-
allel solving, it is expected that sharing learned clauses
can help to further prune the search space and boost
the performance of a parallel solver. Similarly to par-
allel SAT solving, only learned clauses that have less
than a given number of literals are shared among all
threads. In our parallel solver, we start by sharing
learned clauses that have 8 or fewer literals. This cut-
off is dynamically changed using the throughput and
quality heuristic proposed by Hamadi et al. [22]. Ad-
ditionally, all clauses with literal block distance 2 are
also shared [7].

However, in our parallel solver not all learned
clauses can be shared among all threads. This is due
to the fact that the working formulas are different. As
previously explained, unsatisfiability-based algorithms
work directly with the input formula ϕMS, while algo-
rithms that perform a linear search on the upper bound
value use relaxation variables on the soft clauses, re-
sulting in formula ϕUB. In order to define the condi-
tions for safe clause sharing, we start by defining soft
and hard learned clauses.

Definition 1 (Soft and hard learned clauses). If in the
conflict analysis procedure used in the unsatisfiability-
based algorithm, there is at least one soft clause used
in the implication graph, then the generated learned
clause is labeled as soft. On the other hand, if only hard
clauses are used, then the generated learned clause is
labeled as hard.

Since ϕMS contains both soft and hard clauses, it
will have soft and hard learned clauses. On the other
hand, ϕUB only has hard clauses, and as a result will
only have hard learned clauses. Nevertheless, as men-
tioned previously, ϕUB contains additional relaxation
variables that are not present in ϕMS. When using car-
dinality encodings, we also have to take into account
the auxiliary variables used by those encodings. There-
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fore, each thread may contain variables not present
in the other threads. Moreover, threads that perform
local upper bound search contain thread bound con-
straints. These constraints cannot be shared among all
threads, since they are only valid if the optimum value
is smaller than the upper bound value of the thread.
The same sharing rules must apply to conflict-driven
learned clauses that depend on the thread bound con-
straint. Therefore, it is necessary to define what is a lo-
cal constraint and in which conditions it can be shared
with other threads.

Definition 2 (Local constraint). The thread bound
constraint is labeled as a local constraint. Let ω be a
conflict-driven learned clause and let ϕω be the set of
constraints used in the implication graph to learn ω.
The new clause ω is defined as a local constraint if at
least one constraint in ϕω is a local constraint.

The safe sharing procedure between the different al-
gorithms is as follows:

• Hard learned clauses from unsatisfiability-based
algorithms that do not have auxiliary variables
can be safely shared with the other threads.

• Soft learned clauses from unsatisfiability-based
algorithms are not shared with the other threads.
These clauses may not be valid for formulas ϕUB
and cannot be shared with the algorithms that per-
form linear search on the upper bound.
Notice that these clauses could eventually be
shared with other threads that are using unsatis-
fiability-based algorithms. However, it would be
necessary to establish an equivalence between
the relaxation variables of the learned soft clause
and the relaxation variables of the importing
thread. Since variables are created for produc-
ing the encoding of cardinality constraints, the
identification of the relaxation variables may dif-
fer between threads. Even though it would be
possible to share soft learned clauses between
unsatisfiability-based algorithms, it is currently
not implemented in our parallel solver.

• Hard learned clauses generated when solving ϕUB
can be shared with the other threads if the learned
clause is not a local constraint and if it does not
contain relaxation or auxiliary variables.

• Hard learned clauses that are local constraints
generated when solving ϕUB cannot be safely
shared with the lower bound threads. However, lo-
cal constraints that do not contain auxiliary vari-

ables can be shared between upper bound threads.
Sharing local constraints depends on the upper
bound value of the thread. If an importing thread
has an upper bound smaller than or equal to the
upper bound of the exporting thread, then the im-
port is safe. Otherwise, the import may be unsafe
and the sharing is not done.

Finally, between iterations of the unsatisfiability-
based algorithms, the working formulas ϕMS are also
extended with additional relaxation variables. How-
ever, since these variables are added to soft clauses,
if a conflict-based learned clause contains any relax-
ation variable, then it will necessarily be considered a
soft clause. This is due to the fact that at least one soft
clause would have been used in the learning procedure.

5.1. Integration of learned clauses

Whenever a learned clause is generated, if its size is
smaller than the current cutoff and if it meets the safe
sharing conditions, it is exported as a learned clause
to the other threads. Later on, when a thread checks
if there is a better lower or upper bound value, it also
imports the learned clauses that were shared by other
threads. Since importing clauses is done during the
search, the learned clauses have to be integrated in the
context of the current search space. Hence, for the in-
tegration of a shared clause ω we have to take into con-
sideration the following cases:

• ω is a unit clause. A restart is forced and the cor-
responding literal is assigned.

• ω is unit in the current context. The SAT algo-
rithm backtracks to the largest decision level of
the assigned variables in ω. A decision level of a
variable denotes the depth of the decision tree at
which the variable is assigned a value. After back-
tracking, the unassigned literal is assigned and
propagated.

• ω is unsatisfied in the current context. The SAT al-
gorithm backtracks to the largest decision level of
the variables in ω. Conflict analysis is performed
to allow further backtracking. Moreover, during
the conflict analysis procedure a new clause is
learned.

• ω is satisfied in the current context. If exactly one
literal in ω is satisfied and the remaining literals
are falsified, and if the decision level of the satis-
fied literal is higher than the decision levels of all
falsified literals, then the algorithm backtracks to
the largest decision level among the falsified liter-
als.
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In the remaining cases the learned clause is sim-
ply added to the importing thread and no backtrack-
ing is needed. The integration procedure must be
done in order to ensure the correctness of the solver.
A similar procedure is done in the parallel SAT solver
MANYSAT [21].

6. Experimental results

This section evaluates the different cardinality en-
codings in MaxSAT solving and their application to se-
quential and parallel MaxSAT algorithms. Moreover,
several versions of PWBO based on the proposed al-
gorithms are presented and evaluated. All experiments
were run on the partial MaxSAT instances from the
industrial category of the MaxSAT Evaluation 2011,2

which correspond to a set of 497 instances. Note that
this set of instances corresponds to the same 497 in-
stances that enter the MaxSAT Evaluation 2010.3 The
evaluation was performed on a computer with two
AMD Opteron 6172 processors (2.1 GHz with 64 GB
of RAM) running Fedora Core 13 with a timeout of
1800 s (wall clock time).

For the parallel solvers, results were obtained by
running each solver three times on each instance. Sim-
ilarly to what is done when analyzing randomized
solvers, the median time was taken into account. This
means that an instance must be solved by at least two
of the three runs to be considered solved.

6.1. Evaluation of the encodings of cardinality
constraints

The different cardinality encodings were imple-
mented in WBO [28,29]. In WBO [29] the search is ini-
tially done by a pseudo-Boolean solver that performs
a search on the upper bound of the optimal solution.
However, the use of the pseudo-Boolean solver is lim-
ited to 10% of the time limit given to solve the instance.
If the pseudo-Boolean solver proves optimality within
this time limit, the optimal solution has been found
without having to search on the lower bound side. On
the other hand, if the pseudo-Boolean solver was not
able to prove optimality within the given time limit,
an unsatisfiability-based algorithm is used to search on
the lower bound side.

In the previous sections, we have seen that the car-
dinality constraint at-most-one is used in the lower
bound search, whereas the cardinality constraint at-

2http://www.maxsat.udl.cat/11/.
3http://www.maxsat.udl.cat/10/.

most-k is used in the upper bound search. To evaluate
these two types of cardinality constraints, we have run
WBO using only the lower bound search or the upper
bound search.

6.1.1. Lower bound search
Table 2 shows the number of instances solved by the

lower bound algorithm when using different cardinal-
ity encodings. Additionally, we also consider the na-
tive representation of cardinality constraints given by
the pseudo-Boolean representation. The first column of
Table 2 shows the set of benchmarks. The second col-
umn shows the number of instances per benchmark set.
Columns 3–11 show the number of instances solved
when using the different at-most-one encodings.

For the at-most-one cardinality encodings, the lad-
der encoding performed best overall. However, there is
no clear winner for all the benchmarks. This shows that
cardinality encodings can diversify the search, since
each encoding enables solving different instances.
When the number of variables in the at-most-one con-
straint is small (less than a few hundred), then it is bet-
ter to use the pairwise encoding or a pseudo-Boolean
representation. This occurs, for example, in the pbo-
mqc benchmark set. For these benchmark instances,
the optimum value is usually low (around 10) and the
average size of each unsatisfiable sub-formula is small
(a few hundred clauses). Recall that every time an un-
satisfiable sub-formula is found, a new at-most-one
constraint is added to the formula. In partial MaxSAT,
the number of unsatisfiable sub-formulas (cores) will
be the same as the optimum value. Hence, if the opti-
mum value is small, then the number of iterations will
also be small. Moreover, the number of variables in the
at-most-one constraint is the same as the size of the
unsatisfiable core. As a result, for small unsatisfiable
cores, the number of variables in the at-most-one con-
straints will also be small. With the exception of the
ladder encoding, encodings that use auxiliary variables
do not perform well on the pbo-mqc benchmarks. It
has been observed that changing the branching heuris-
tic not to branch on auxiliary variables may lead to bet-
ter results [30]. Hence, as future work we propose to
study the impact of branching on auxiliary variables.
On the other hand, if the number of variables in the at-
most-one constraint is large (several thousands), then it
is better to encode the constraint into CNF. This can be
observed in the bcp-fir benchmark instances where
the unsatisfiable sub-formulas found by our algorithm
are usually larger. Therefore, it is necessary to encode
larger cardinality constraints (with thousands of vari-
ables).
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Table 2

Number of instances solved by lower bound search with different cardinality encodings

Benchmark #I at-most-one – Lower bound search

Pairwise Ladder Bitwise Commander Product Sequential Totalizer Sorters PB

bcp-fir 59 44 50 46 52 47 49 50 49 44

bcp-hipp-yRa1 55 21 22 21 21 22 21 23 20 20

bcp-msp 64 3 3 3 4 4 4 5 5 4

bcp-mtg 40 17 19 16 18 17 17 18 17 17

bcp-syn 74 34 35 35 35 35 34 34 34 34

CircuitTrace 4 0 1 1 1 1 1 1 1 0

Haplotype 6 5 5 5 5 5 5 5 5 5

pbo-mqc 168 46 44 35 37 36 38 39 36 47

pbo-routing 15 15 15 15 15 15 15 15 15 15

PROTEIN_INS 12 1 1 1 1 1 1 1 1 1

Total 497 186 195 178 189 183 185 191 183 187

Table 3

Number of instances solved by upper bound search with different cardinality encodings

Benchmark #I at-most-k – Upper bound search

Sequential Totalizer Sorters PB Dyn.

bcp-fir 59 51 53 51 10 53

bcp-hipp-yRa1 55 38 40 42 18 42

bcp-msp 64 26 26 26 12 26

bcp-mtg 40 40 40 40 26 40

bcp-syn 74 32 32 32 21 32

CircuitTrace 4 4 4 4 4 4

Haplotype 6 0 5 5 0 5

pbo-mqc 168 152 151 155 168 168

pbo-routing 15 15 15 15 13 15

PROTEIN_INS 12 2 2 2 1 2

Total 497 360 368 372 273 387

6.1.2. Upper bound search

Table 3 shows the number of instances solved by
upper bound search with the different cardinality en-
codings and the dynamic encoding heuristic. Addi-
tionally to the cardinality encodings we also consider
the pseudo-Boolean representation of cardinality con-
straints, i.e. without encoding them into CNF. For the
at-most-k cardinality encodings, the sorter network
performed better overall. Even though the diversity of
cardinality encodings for at-most-k is smaller than for
at-most-one, it suffices to show that different encod-
ings may solve different instances.

Remember that the cardinality constraint is encoded
only once, when the first solution is found. Hence, the
size of the cardinality constraint depends on the num-
ber of variables and on the upper bound value. Encod-
ing cardinality constraints into CNF is therefore more

effective when the number of variables is high (thou-
sands) and the upper bound value is small when com-
pared with the number of variables. This occurs, for
example, in the bcp-fir benchmark. On the other
hand, when given a cardinality constraint of size n
with upper bound value close to n/2, using a pseudo-
Boolean representation can be more effective than en-
coding the cardinality constraint into CNF. This is the
case of the pbo-mqc benchmark set.

When considering the dynamic encoding heuristic,
we can see that this heuristic outperforms all other car-
dinality encodings. This shows the importance of se-
lecting the most adequate encoding for each problem
instance.

Table 4 shows the number of times that each en-
coding was selected by the dynamic encoding heuristic
when it was able to solve an instance. As expected, the
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Table 4

Number of times each encoding was used in the dynamic heuristic

#I Dynamic heuristic

Totalizer Sorter PB

387 100 247 40

pseudo-Boolean representation was the least used. In-
deed, it was only used in the pbo-mqc benchmark set.
The totalizer encoding was the second most used, and
its application was mostly in the bcp-fir and bcp-
syn benchmark sets. Overall, the sorters encoding was
the most used by our dynamic encoding heuristic, since
it usually has a smaller size than the totalizer encoding.

Figure 5 shows a cactus plot with running times of
solvers that search on the upper bound value of the op-
timal solution. The cactus plot shows the sorted run
times for each solver. Each point in the plot corre-
sponds to a problem instance, where the y-axis corre-
sponds to the wall clock time required by the solver
and the x-axis corresponds to the accumulative num-
ber of instances solved until that time. The solvers con-
sidered were the solvers with the different cardinality
encodings presented in Table 3 and QMAXSAT 0.4 [1].
QMAXSAT 0.4 was the winner of the partial MaxSAT
industrial category in the MaxSAT evaluation 2011.
The pseudo-Boolean representation is much less effec-
tive than encoding the cardinality constraint into CNF.
However, even between the different encodings we can
see different running times. The sequential encoding
is much less efficient than the totalizer and sorter en-
codings. Even though the sorter encoding is faster than
the totalizer encoding, the performance of both encod-
ings are comparable. Nevertheless, the dynamic en-
coding heuristic clearly outperforms all other encod-
ings. Moreover, the dynamic encoding heuristic is able
to outperform QMAXSAT 0.4, since it solves 387 in-
stances whereas QMAXSAT 0.4 can only solve 378 in-
stances. Therefore, the dynamic encoding heuristic is
able to improve the current state of the art. In the re-
mainder of the paper we will denote the solver based
on the dynamic encoding heuristic as PWBO-T1, since
it is our best performing solver with one thread.

6.2. Evaluation of the parallel solvers

This section evaluates the different versions of
PWBO, a parallel solver implemented on top of WBO

[28,29]. Using two threads, PWBO-T2 searches on the
lower and upper bound values of the optimal solu-
tion. For more than two threads, PWBO-P(ortfolio) and

PWBO-S(plit) are evaluated. The additional threads in
PWBO-P search on the lower and upper bound values
of the optimal solution with different cardinality en-
codings for each thread. On the other hand, in PWBO-
S the additional threads perform a parallel search on
different upper bound values of the optimal solution.

6.2.1. Two threads
PWBO-T2 uses two threads according to what is de-

scribed in Section 4, thus having one thread searching
on the lower bound value and another thread searching
on the upper bound value. The following versions of
PWBO-T2 have been evaluated:

• PWBO-T2-V1: uses the pseudo-Boolean repre-
sentation for the lower and upper bound search.
This version corresponds to the original PWBO

with 2 threads [35].
• PWBO-T2-V2: uses the ladder encoding for the

lower bound search and the sorters encoding for
the upper bound search. These encodings were the
ones that performed best for the lower and upper
bound search, respectively.

• PWBO-T2-V3: uses the dynamic encoding heuris-
tic that was proposed in this paper for the upper
bound search. Similarly to the previous version,
for the lower bound search it uses the ladder en-
coding.

Figure 6 shows a cactus plot with running times
for the different versions of PWBO-T2. Additionally,
it also shows the running times of PWBO-T1 to be
compared with the two-threaded versions. PWBO-T2-
V2 and PWBO-T2-V3 clearly improve PWBO-T2-V1.
This is due to the cardinality encodings that are used in
PWBO-T2-V2 and PWBO-T2-V3. Indeed, even PWBO-
T1 clearly outperforms PWBO-T2-V1 which shows the
importance of selecting the most adequate encoding.
Moreover, our best version with two threads is PWBO-
T2-V3 which uses the dynamic encoding heuristic in
the upper bound search. This version clearly outper-
forms all other versions. By improving the efficiency
of the upper bound algorithm we were able to improve
the performance of our solver with two threads. For
simplicity’s sake, in the remainder of the paper we will
denote PWBO-T2-V3 as PWBO-T2.

Since we are using two threads, the solution can
be found by: the lower bound search, the upper
bound search or the cooperation between the lower
bound search and the upper bound search. If the
lower bound value is the same as the upper bound
value, then the optimal solution has been found by the
information of both searches. Table 5 shows the num-
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Fig. 5. Cactus plot with running times of upper bound solvers.

Fig. 6. Cactus plot with running times of solvers PWBO-T1 and the different versions of PWBO-T2.

ber of instances that were solved in each case. As ex-
pected, the upper bound search solves the most in-
stances of the two-threaded version by solving 299 out
of the 398 solved instances. However, the lower bound
search contributes for the performance of PWBO-T2
by solving 65 instances. Moreover, 34 instances are
solved by the combined information of the lower
bound search and the upper bound search. For these in-
stances the cooperation speeds up the solving process.
Since the lower bound value was found to be the same
as the upper bound value, it is not necessary for any

of the threads to continue the search to prove optimal-
ity since their combined information already proves it.
Additionally, Table 5 provides a strong stimulus to fur-
ther improve our lower bound search, since a more effi-
cient lower bound search may improve the overall per-
formance of our parallel solver.

6.2.2. Multithread based on portfolio
PWBO-P(ortfolio) is based on a portfolio approach

where each thread uses a different cardinality encod-
ing [34]. To maintain a balance between lower and up-
per bound search, PWBO-P always uses the same num-
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Table 5

Number of solved instances from PWBO-T2 divided by lower bound
search, upper bound search and cooperation between searches

Benchmark #I PWBO-T2

Lower Upper Coop.

bcp-fir 56 25 19 12

bcp-hipp-yRa1 42 7 30 5

bcp-msp 26 0 23 3

bcp-mtg 40 0 40 0

bcp-syn 40 14 15 11

CircuitTrace 4 0 4 0

Haplotype 5 5 0 0

pbo-mqc 168 3 164 1

pbo-routing 15 11 2 2

PROTEIN_INS 2 0 2 0

Total 398 65 299 34

ber of threads for the upper bound and lower bound
search. To build a portfolio of encodings for 4 and 8
threads we analyze Tables 2 and 3 and for each bench-
mark we try to maximize the number of solved in-
stances by our portfolio of encodings for the at-most-
one and at-most-k constraints Note that it may occur
the situation where a cardinality encoding has an over-
all poor performance, but is the only one to be able to
solve a given set of instances. In this case, it is inter-
esting to incorporate such an encoding into a portfolio
approach.

With 4 threads, PWBO-P-T4 uses the Commander
and Totalizer encodings for the lower bound search
and Sorters and pseudo-Boolean representation for
the upper bound search. Although the ladder encod-
ing performed better for the at-most-one constraint, it
was mainly on solving the bcp-mtg and pbo-mqc
benchmark sets. However, the performance of the up-
per bound search procedure on those instances is much
better than the performance of the lower bound search.
Therefore, the main gains of the ladder encoding are
already covered by the at-most-k encodings for the up-
per bound search. A similar reasoning is applied to
the pseudo-Boolean representation for the upper bound
search. Even though this representation is less effective
in general, it is the best performing encoding for solv-
ing the pbo-mqc benchmark set. Hence, this portfolio
of cardinality encodings allows for a diversification of
the search in all benchmarks.

With 8 threads, PWBO-P-T8 can use more encodings
and therefore can further increase the diversification of
the search. For the upper bound search, all four avail-
able encodings are used. For the lower bound search,

Fig. 7. Running times of PWBO-T2 and PWBO-P-T4.

we have selected the following encodings: Comman-
der, Totalizer, Ladder and Product. The ladder encod-
ing was now selected due to its overall robustness.
On the other hand, even though the product encod-
ing is less effective than other encodings, we have no-
ticed that when it solves a given instance, it can be
faster than when using other encodings. This has al-
ready been observed before [16]. Hence, for speedup
reasons, we have decided to include the product en-
coding on our portfolio of cardinality encodings with 8
threads.

Figure 7 shows a scatter plot with running times
of PWBO-T2 and PWBO-P-T4. The portfolio approach
with 4 threads outperforms PWBO-T2 on most in-
stances. However, there are some instances where
PWBO-T2 performs better. PWBO-T4 does not use
the Totalizer encoding whereas the PWBO-T2 uses a
dynamic encoding heuristic that chooses that encod-
ing for some instances. PWBO-T4 may be further im-
proved if we consider a variation of the presented dy-
namic encoding heuristic. For the upper bound search,
one thread could always use the Sorters encoding
whereas the other thread could use a dynamic encod-
ing heuristic that would select between the Totalizer
encoding and the pseudo-Boolean representation.

Figure 8 compares PWBO-P-T4 with PWBO-P-T8.
Notice that PWBO-P-T8 is able to solve more instances
and with better running times than PWBO-P-T4 on
most of the instances. This shows that even with 8
threads we are still able to increase the diversification
of the search by adding different cardinality encodings.

6.2.3. Multithread based on splitting
PWBO-S(plit) is based on splitting the search space

according to what was described in Section 4. One
thread searches on the lower bound value of the op-
timal solution, another thread searches on the upper
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Fig. 8. Running times of PWBO-P-T4 and PWBO-P-T8.

Fig. 9. Running times of PWBO-T2 and PWBO-S-T4.

bound value of the optimal solution, and the remaining
threads search on different upper bound values. The
first version, PWBO-S-V1 used the pseudo-Boolean
representation for all threads [35]. This version under
performed since it did not use cardinality encodings
and therefore could only solve 345 instances with 4
threads and 347 instances with 8 threads.

PWBO-S-V2 uses the dynamic encoding heuristic
proposed in Section 3 in all threads that are searching
on the upper bound value of the optimal solution. As
for the lower bound search, it uses the ladder encod-
ing. Due to the cardinality encodings, PWBO-S-V2 in-
creases its performance and is now able to solve 399
instances with 4 and 8 threads. Since PWBO-S-V2 is
much more efficient than PWBO-S-V1, we will focus
on PWBO-S-V2. For simplicity, in the remainder of the
paper PWBO-S-V2 will be named as PWBO-S. For 4
and 8 threads we denote PWBO-S as PWBO-S-T4 and
PWBO-S-T8, respectively.

Figure 9 shows a scatter plot comparing running
times of PWBO-T2 and PWBO-S-T4. Each point in the
plot corresponds to a problem instance, where the x-
axis corresponds to the run time required by PWBO-T2

Fig. 10. Running times of PWBO-S-T4 and PWBO-S-T8.

and the y-axis corresponds to the run time required by
PWBO-S-T4. Instances that are trivially solved by both
approaches (in less than 10 s) are not shown in the plot.
The plot clearly shows that PWBO-S-T4 outperforms
PWBO-T2, thus showing that the performance of the
solver clearly improves with the increase of the num-
ber of threads from 2 to 4.

Figure 10 shows a scatter plot comparing running
times of PWBO-S-T4 and PWBO-S-T8. Even though
there is a slight improvement in time with the increase
of the number of threads from 4 to 8, it is not as clear
as before. With the split strategy, using more threads
increases the number of threads that are searching on
local upper bound values of the optimal solution. If the
interval between the lower and upper bound values is
small, then the threads that are searching on local up-
per bound values may be searching on similar values,
thus performing redundant search. This may explain
why the performance with 8 threads is not significantly
better than the performance with 4 threads.

6.2.4. Impact of clause sharing
In Section 5 we have described the sharing mech-

anism of PWBO. It is expected that sharing learned
clauses can help to further prune the search space and
boost the performance of the parallel solver.

To evaluate the impact of sharing learned clauses we
run the different versions of PWBO with and without
clause sharing. Table 6 shows the speedup gain of shar-
ing learned clauses. The speedup is determined by the
ratio between the total solving time of the solver with
and without clause sharing. Only instances that were
solved by the solver with and without clause sharing
are considered for the total solving time. Therefore,
the speedup shows how many times the solver with
clause sharing was faster than the solver without clause
sharing. For example, PWBO-T2 shows a speedup of



R. Martins et al. / Parallel search for maximum satisfiability 91

Table 6

Speedup gain of sharing learned clauses

Solver Speedup

PWBO-T2 1.36

PWBO-P-T4 1.39

PWBO-P-T8 1.48

PWBO-S-T4 1.40

PWBO-S-T8 1.42

1.36, i.e. it was 1.36× faster when learned clauses were
shared.

Sharing learned clauses has a clear speedup on
the solving times of the solvers. Moreover, increas-
ing the number of threads increases the gains of shar-
ing learned clauses. PWBO-P shows a clear improve-
ment in speedup when using 8 threads compared to
4 threads. This may be explained by the diversifica-
tion of the search provided by the cardinality encod-
ings since learned clauses from different search spaces
are exchanged. On the other hand, PWBO-S only shows
a small improvement in speedup when using 8 threads
compared to 4 threads. Since PWBO-S-T8 uses more
threads for local bound search, if the interval between
the lower bound value and the upper bound value
is small, they will be searching on similar local up-
per bound values. Therefore, the diversification of the
search will be small. This may explain why the gains
of clause sharing from 4 to 8 threads are small when
using the splitting approach.

The main improvement from clause sharing is in
the speedup of the solver, since the number of solved
instances does not increase significantly with clause
sharing. For example, PWBO-S-T8 solves the same
number of instances with and without clause sharing.
The largest improvement can be seen in PWBO-P-T8
since it can solve more 4 instances with clause sharing.

A more detailed view of the impact of clause sharing
can be seen in Figs 11 and 12. They provide scatter
plots with the run times of PWBO-P-T8 and PWBO-S-
T8 with and without sharing. It is clear that sharing
learned clauses speedup the parallel solvers.

6.2.5. Overview
We have just presented the different versions of our

parallel MaxSAT solver PWBO. Figure 13 shows a
cactus plot with running times of the different PWBO

versions. Since PWBO-T1 outperforms the best se-
quential solver (QMAXSAT 0.4) we did not compare
PWBO versions against other sequential solvers. Fur-
thermore, SAT4J MAXSAT [25] and SAT4J MAXSAT

RES//CP were not evaluated since their performance is

Fig. 11. Running times of PWBO-P-T8 with and without clause shar-
ing.

Fig. 12. Running times of PWBO-P-T8 with and without clause shar-
ing.

not comparable to the remaining state-of-the-art partial
MaxSAT solvers. For the 497 instances tested, SAT4J

MAXSAT 2.2.3 and SAT4J MAXSAT RES//CP can only
solve 277 and 290 instances, respectively.

The results are clear: all parallel solvers outper-
form the sequential solver. Moreover, we can see a
clear improvement between PWBO-T2 and the par-
allel solvers with 4 and 8 threads. When evaluating
a parallel solver, the wall clock time is always con-
sidered since it measures the real time that a solver
used to solve the instances. From a user point of view,
real time is clearly more important than CPU time.
On the other hand, if we analyze the CPU resources,
then parallel solvers with n threads are allowed to use
n times more CPU time than sequential solvers. Fig-
ure 13 shows that when considering CPU time the most
efficient solver is PWBO-T2, since it can solve 397 in-
stances within 900 wall clock seconds, i.e. with a time
limit of 1800 CPU seconds. Remember that with the
same CPU resources PWBO-T1 is only able to solve
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Fig. 13. Cactus plot with running times of the different PWBO versions.

Fig. 14. Running times of PWBO-S-T4 and PWBO-P-T4.

387 instances. Moreover, even when considering par-
allel solvers with 4 threads, they can still outperform
PWBO-T1 within 1800 CPU seconds. With 450 wall
clock seconds, PWBO-S-T4 can solve 396 instances,
whereas PWBO-P-T4 can solve 389 instances. On the
other hand, when considering CPU time, our solvers
with 8 threads are less efficient than PWBO-T1.

Figure 14 compares PWBO-P-T4 and PWBO-S-T4.
PWBO-S-T4 solves one less instance than PWBO-P-
T4. However, PWBO-S-T4 outperforms PWBO-P-T4
on the running time for most instances. Figure 15
compares PWBO-P-T8 and PWBO-S-T8. PWBO-P-T8
solves more 4 instances than PWBO-S-T4, even though
Fig. 15 does not show a clear winner.

Table 7 shows an overview of the speedup on in-
stances that were solved by all versions of PWBO. We
choose to compare the speedup regarding PWBO-T1

Fig. 15. Running times of PWBO-S-T8 and PWBO-P-T8.

Table 7

Speedup on the instances solved by all PWBO solvers

Solver Time (s) Speedup

PWBO-T1 40,415.57 1.00

PWBO-T2 29,038.06 1.39

PWBO-P-T4 23,389.74 1.73

PWBO-S-T4 17,996.43 2.25

PWBO-P-T8 16,886.84 2.39

PWBO-S-T8 16,613.28 2.43

and not the original version of WBO since PWBO-T1 is
much more efficient than WBO. In fact, PWBO-T1
solves 387 instances whereas WBO solves only 317 in-
stances. Moreover, PWBO-T1 outperforms the best se-
quential solver (QMAXSAT 0.4).

The speedup increases with the number of threads
being 1.4× faster with 2 threads, 2.3× faster with
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4 threads and 2.4× faster with 8 threads. PWBO-S-T4
solves one less instance than PWBO-P-T4 but has a
larger speedup on the instances that were solved by
both. However, when using 8 threads both PWBO-S-
T8 and PWBO-P-T8 have similar speedups. This sup-
ports our previous findings that PWBO-P scales better
than PWBO-S with an increasing number of threads. In-
deed, PWBO-S-T8 is only 1.1× faster than PWBO-S-
T4, whereas PWBO-P-T8 is 1.4× faster than PWBO-P-
T4.

7. Conclusions and future work

This paper introduces PWBO, a new parallel solver
for MaxSAT. This work was in part motivated by the
recent success of parallel SAT solvers and also taking
into account that parallel algorithms for Boolean opti-
mization are scarce. Three versions of PWBO were pro-
posed. The first version, PWBO-T2, uses two threads,
one thread searching on the lower bound value of the
optimal solution, and another thread searching on the
upper bound value of the optimal solution. The sec-
ond version, PWBO-P, is based on a portfolio approach
using several threads to simultaneously search on the
lower and upper bound values of the optimal solu-
tion. These threads differ between themselves in the
encoding used for cardinality constraints, thus increas-
ing the diversification of the search. The third version,
PWBO-S, is based on a splitting approach searching on
different values of the upper bound. The parallel search
on the local upper bound values leads to updates on
the lower and upper bound values that will reduce the
search space.

This paper also examines a large number of cardinal-
ity encodings and evaluated their performance for solv-
ing the MaxSAT problem. Overall, the ladder encod-
ing showed the best performance for the at-most-one
cardinality constraints. As expected, when the number
of variables is small it is better to use the pairwise en-
coding or pseudo-Boolean representation. On the other
hand, when the number of variables in the cardinality
constraint is large, it is better to encode the at-most-
one cardinality constraint into CNF. For the at-most-k
cardinality constraint, the sorter encoding showed the
best performance. In general, it is better to translate the
at-most-k cardinality constraint into CNF. However, in
some cases, using the native pseudo-Boolean represen-
tation can be more effective. Therefore, a dynamic en-
coding heuristic that selects the most adequate encod-
ing for each cardinality constraint is proposed in the

paper. PWBO-T1 is the sequential version of our par-
allel solver and it performs upper bound search with
the dynamic encoding heuristic. Experimental results
show that the dynamic encoding heuristic outperforms
all other encodings and that PWBO-T1 outperforms
the best sequential solver (QMAXSAT 0.4) from the
MaxSAT Evaluation 2011.

For two threads, experimental results show that most
instances are solved by the upper bound search. Even
though the lower bound search cooperates in solving
the instances, it does not perform as well as the upper
bound search. However, there are other unsatisfiability-
based algorithms [2] that perform better than our im-
plementation of the unsatisfiability-based algorithm
for partial MaxSAT problems. As future work, we pro-
pose to improve our lower bound search algorithm,
since a more efficient lower bound search may improve
the overall performance of PWBO.

Experimental results also show that PWBO improves
in performance with the increasing number of threads.
PWBO-S-T4 outperforms PWBO-P-T4 on most in-
stances. However, PWBO-S does not scale very well
and its performance with 8 threads is only slightly bet-
ter than with 4 threads. On the other hand, PWBO-P per-
formance improves significantly when increasing the
number of threads from 4 to 8. This shows that even
with 8 threads, using different cardinality encodings
still increases the diversity of the search.

Wall clock time is usually considered when evalu-
ating a parallel solver. However, even if we consider
CPU time, PWBO-T2, PWBO-S-T4 and PWBO-P-T4
still outperform the best sequential solver, PWBO-T1.

Experimental results with clause sharing show that
sharing clauses does not have a strong impact on the
number of solved instances. Nevertheless, the running
times of PWBO are greatly improved when sharing
learned clauses between threads.

As future work, we plan to build a hybrid version
between splitting and portfolio. We could start with a
splitting strategy and when the interval between the
lower and upper bound values becomes small we can
change to a portfolio approach. This may improve
the efficiency of our parallel solver, namely when us-
ing 8 threads. Other future directions include the im-
plementation of other at-most-k encodings, namely,
cardinality networks [6] and pairwise cardinality net-
works [13]. These encodings are also based on sorters
and are expected to further improve our portfolio of
cardinality encodings.
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