
Improving SAT Solver Efficiency Using a Multi-Core Approach

Ricardo Marques, Luis Guerra e Silva, Paulo Flores, L. Miguel Silveira
INESC-ID / IST - TU Lisbon

Rua Alves Redol 9, 1000-029 Lisbon, Portugal
{rsm,lgs,pff,lms}@algos.inesc-id.pt

Abstract

Many practical problems in multiple fields can be converted
to a SAT problem, or a sequence of SAT problems, such that
their solution immediately implies a solution to the original
problem. Despite the enormous progress achieved over the
last decade in the development of SAT solvers, there is strong
demand for higher algorithm efficiency to solve harder and
larger problems. The widespread availability of multi-core,
shared memory parallel environments provides an opportu-
nity for such improvements. In this paper we present our re-
sults on improving the effectiveness of standard SAT solvers
on such architectures, through a portfolio approach. Multiple
instances of the same basic solver using different heuristic
strategies, for search-space exploration and problem analy-
sis, share information and cooperate towards the solution of a
given problem. Results from the application of our methodol-
ogy to known problems from SAT competitions show relevant
improvements over the state of the art and yield the promise
of further advances.

1 Introduction
Over the last decade interest on Propositional Satisfiability
(SAT) and SAT solvers has increased manifold. The SAT
problem has long been one of the most studied problems in
computer science since it was the first problem proven to be
NP-complete. Nowadays, due to the enormous advances in
computational SAT solvers, the practical importance of the
SAT problem has extended to a wide range of disciplines.
Many problems in many fields of science are now actively
seeking a reformulation that will allow them to be amenable
to analysis by state of the art SAT solvers.

One of the main reasons for this increased interest in SAT
is the considerable efficiency improvement that SAT solvers
have undergone in the past decade. Many real-life, industrial
problems, with hundreds of thousands of variables and mil-
lions of clauses, are routinely solved within a few minutes
by off the shelf, state of the art, SAT solvers. This impressive
progress can be traced back to a substantial research invest-
ment in the topic, which has led to remarkable algorithmic
improvements as well as significant progress in the ability of
SAT solvers to exploit the hidden structure of many practi-
cal problems. However, this added capability is continuously

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

challenged by emerging applications which bring to the fold
problems and systems of increasing size and complexity. As
a consequence, in spite of the remarkable gains we have seen
in the area, there are still many problems that remain very
challenging and unsolved by even the best solvers. Perhaps
the main cause for this situation is that the large, steady al-
gorithmic improvements that were made available in the last
decade with the introduction of powerful techniques such
as non-chronological backtracking, restarts, improvements
in decision heuristics, etc, seem to have slowed down. Im-
provements to SAT solvers nowadays appear to be more in-
cremental, sometimes problem-related. Faced with this sit-
uation, researchers have started to look elsewhere for ways
to continue improving the efficiency of SAT solvers and the
widespread availability of parallel computing platforms pro-
vided renewed opportunities to achieve this goal.

The generalization of multi-core processors, as well as
the availability of fairly standard clustering software, pro-
vided access for the common user to parallel computing en-
vironments and has opened up new opportunities for im-
provement in many areas. In this context, many parallel SAT
solvers have been proposed and SAT competitions now rou-
tinely include a parallel track. The main goal of parallel SAT
solvers is to be able to solve problems faster. Several metrics
can be used to quantify the resulting improvements, includ-
ing speedup and efficiency. The basic obstacles to improved
efficiency are generally the same ones as encountered by
other parallel implementations, namely load balancing and
robustness, i.e. the ability to sustain similar efficiency over a
large range of problems. An enticing feature of paralleliza-
tion in search-based problems is that super-linear speedups
are achievable if one is lucky to search the right region of
the search space. Often, one is satisfied with the ability to
demonstrate speedup by solving problems faster and doing
so in a robust manner over a large range of problems. Com-
bining such robustness with the elusive possibility of large
gains is clearly a goal worth pursuing.

In this paper we present PMCSAT, a portfolio-based
multi-threaded, multi-core SAT solver which exploits a dif-
ferent approach to resource utilization. The general strategy
pursued in PMCSAT is not entirely novel and has in fact
been previously proposed in other SAT solvers (Hamadi,
Jabbour, and Sais 2009). The idea is to launch multiple in-
stances of the same (or different) solvers, sometimes called

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

94



a portfolio, with different parameter configurations, which
cooperate to a certain degree by sharing relevant informa-
tion when searching for a solution. This approach has the
advantage of minimizing the dependence of current SAT
solvers on specific parameter configurations chosen to regu-
late their heuristic behavior, namely the decision process on
the choice of variables, on when and how to restart, on how
to backtrack, etc. Instead of attempting to guess the optimal
parameter configuration that better leads to the problem so-
lution, we exploit multiple configurations in parallel, enforce
some level of cooperation between them, and hope that one
of them, with the help of the shared information, might find
a solution faster. The set of parameter configurations chosen
should be such that they represent complementary strategies.
Each solver instance will attempt to find a solution to the
problem or prove that no solution exists. To do so, it will use
the information it gathers plus the information gathered and
shared by others, which are concurrently attempting to find
the same solution.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews core SAT solver techniques and summarizes
several representative parallelization strategies previously
presented. Section 3 details the proposed multi-core SAT
approach. Section 4 presents experimental results, including
comparisons with serial and other parallel implementations.
Finally, Section 5 presents a few concluding remarks.

2 Background
The SAT problem consists in determining if there exists an
assignment to the variables of a propositional logic formula
such that the formula becomes satisfied. A problem to be
handled by a SAT solver is usually specified in a conjunctive
normal form (CNF) formula of propositional logic. A CNF
formula is represented using Boolean variables, which can
take the values 0 (false) or 1 (true). A clause is a disjunction
(OR) of literals, which are either a variable or its comple-
ment. A CNF formula is a conjunction (AND) of clauses.

Basic SAT solvers are based on the Davis-Putnam-
Loveland-Logemann (DPLL) algorithm (Davis, Logemann,
and Loveland 1962), which improves over the simple assign,
test and backtrack algorithm by using two simple rules at
each search step: unit propagation and pure literal elimina-
tion. The unit propagation occurs when a clause contains
only a single unassigned literal (unit clause). In order to sat-
isfy the unit clause, no choice is necessary, since the value to
be assigned to the variable is the value necessary to make the
literal true. The pure literal elimination consists in determin-
ing if a propositional variable occurs with only one polar-
ity in the formula. Such literals can always be assigned in a
way that makes all clauses containing them true. Thus, these
clauses no longer constrain the search and can be deleted.

During the search process a conflict can arise when both
Boolean values have been tested on a given variable and,
in both cases, the formula is not satisfied. In this situation
the algorithm backtracks to a prior decision level, where
some variable has yet to toggle its value. The idea of di-
agnosing the reason of the conflict and learning from it
led to the conflict-driven clause learning (CDCL) algo-
rithm (Silva and Sakallah 1996). Resolving the conflict im-

plies the generation of new clauses that are learned. These
learned clauses are added to the original propositional for-
mula. This enables non-chronological backtracking, avoid-
ing large parts of the search space if no solution is deemed
to exist there. For this reason the CDCL algorithm is very
effective and is the basis of most modern SAT solvers.

2.1 SAT Solver Techniques
In the following we provide a brief overview on the core
techniques employed in modern SAT solvers.

Decision Heuristics Decision heuristics play a key role
in the efficiency of SAT algorithms, since they determine
which areas of the search space get explored first. A well
chosen sequence of decisions may instantly yield a solution,
while a poorly chosen one may require the entire search
space to be explored before a solution is reached. Older
SAT solvers would employ static decision heuristics, where
variable selection was only based on the problem structure.
Modern SAT solvers use dynamic decision heuristics, where
variable selection is not only based on the problem struc-
ture, but also on the current search state. The most relevant
of such decision heuristics is Variable State Independent De-
caying Sum (VSIDS), introduced by CHAFF (Moskewicz et
al. 2001), whereby decision variables are ordered based on
their activity. Each variable has an associated activity, which
is increased whenever that variable occurs in a recorded con-
flict clause. VSIDS, and similar activity-based heuristics,
avoid scattering the search, by directing it to the most con-
strained parts of the formula. These techniques are particu-
larly effective when dealing with large problems.

Non-Chronological Backtracking and Clause Recording
When a conflict is identified, backtracking needs to be per-
formed. Chronological backtracking simply undoes the pre-
vious decision, and associated implications, resuming the
search afterwards. On the other hand, non-chronological
backtracking, introduced by GRASP (Silva and Sakallah
1996), can undo several decisions, if they are deemed to
be involved in the conflict. When a conflict is identified,
a diagnosis procedure is executed, which builds a conflict
clause encoding the origin of the conflict. That clause is
recorded (learned), i.e. added to the problem. Backtracking
is then performed, possibly undoing several decisions, until
the newly-added conflict clause becomes unit (with only one
free literal). While the immediate purpose of learned clauses
is to drive non-chronological backtracking, they also enable
future conflicts to show up earlier, thus significantly improv-
ing performance. However, clause recording slows down
propagation, since more clauses must be analyzed and must
therefore be carefully monitored. Therefore, modern SAT
solvers periodically remove a number of learned clauses,
deemed irrelevant by some heuristic.

Watched Literals Since any SAT algorithm relies ex-
tensively on accessing and manipulating large amounts of
information, its data structures are of paramount impor-
tance for its overall performance. The single most effec-
tive improvement on the data structures of SAT algorithms
was the introduction of watched literals, as proposed by

95



CHAFF (Moskewicz et al. 2001). During propagation, only
unit clauses (with only one free literal) can be used to imply
new variable assignments. For each clause, two free liter-
als are selected to be watched. When a watched literal be-
comes false, the corresponding clause is analyzed to check
whether it has become unit or if a new free literal should be
watched instead of the previous one. When no other literal
can be chosen to be watched this means that the clause is
unit and that the remaining free literal is the other watched
literal. This technique provides an efficient method to assess
whether a clause has become unit or not, and to determine
its free literal. One interesting advantage of this technique is
that it does not require the watched literals associated with
each clause to be changed when backtrack is performed.

Restarts SAT algorithms can exhibit a large variability in
the time required to solve any particular problem instance.
Indeed, huge performance differences can be observed when
using different decision heuristics. This behavior was stud-
ied by (Gomes, Selman, and Kautz 1998) where it was noted
that the runtime distributions for backtrack search SAT algo-
rithms are characterized by heavy tails. Heavy tail behavior
implies that, most often, the search can get stuck in a region
of the search space. The introduction of restarts (Kautz et al.
2002) was proposed as a method of minimizing the effects
of this problem. The restart strategy consists of defining a
threshold value in the number of backtracks, and aborting
a given run and starting a new run whenever that threshold
value is reached. Randomization must also be incorporated
into the decision heuristics, to avoid the same sequence of
decisions to be repeated on every run. In order to preserve
the completeness of the algorithm, the backtrack threshold
value must be increased after every restart, thus enabling the
entire search space to be explored, after a certain number of
restarts. Restarts and activity-based decision heuristics are
complementary, since the first one moves the search to a new
region of the search space, while the second one enables the
search to be focused in that new region.

2.2 Parallel Approaches
The usage of parallel computing environments, is a promis-
ing approach to speed-up the search for a solution, when
compared to sequential SAT solvers. Moreover, parallel
solvers should also be able to solve larger and more chal-
lenging problems (industrial problems) for which sequen-
tial SAT solvers are not able to find a solution in a reason-
able time. Parallel implementations of SAT solvers can be
divided in two main categories: cooperative and competi-
tive SAT solvers. In the former, the search space is divided
and each computational unit (either a core, a processor or
a computer) searches for a solution in their subset of the
search space. Often the workload balance between the dif-
ferent units is difficult to ensure. In the latter, each compu-
tational unit tries to solve the same SAT instance, but using
alternative search paths. This is achieved by assigning differ-
ent algorithms to each unit and/or using the same algorithm
but with a different set of configuration parameters (port-
folios). For this reason, this latter category is often called
portfolio SAT-solution. In both categories the computational

units can work collaboratively by sharing information about
learned clauses to speed-up the search process. This requires
communication between the processing units that may intro-
duce some overhead. Deciding which clauses to share and
when to share them, may have a significant impact on the
time that a parallel SAT solver takes to find a solution.

Among all the parallel SAT solvers that have been devel-
oped over the past decade we present here some of the most
noticeable approaches. A more complete overview of paral-
lel SAT solvers can be found in (Martins, Manquinho, and
Lynce 2010) or (Holldolber et al. 2011).

The PMSAT (Gil, Flores, and Silveira 2008) solver is
based on MINISAT (En and Srensson 2004), which is a se-
quential SAT solver that implements most of the techniques
used on advanced solvers. The PMSAT solver run on a clus-
ter of computers (grid) using the Message Passing Interface
(MPI) for communication and it is based on the master-slave
approach with a fixed number of slaves. The search space
is divided by the master using several partition heuristics.
Each slave searches for a solution in a subset of the space
and shares the selected learned clauses when reporting the
solution to the master. Load balancing is implicility imple-
mented by providing enough tasks to the slaves.

The C-SAT (Ohmura and Ueda 2009) SAT solver is also
a master-slave parallelization approach of MINISAT based
on MPI. The master is responsible for clause sharing and
dynamic partitioning of the search space. The slaves work
on subsets of the search space using different heuristics and
random number seeds. Therefore, this solver, which runs on
a network of computers, combines the search space splitting
with a portfolio of algorithms for each subspace.

The PAMIRAXT (T. Schubert 2009) solver is another par-
allel SAT solver that follows the master-slave model and can
run on any cluster of computers. Each slave is based on the
MIRAXT (Schubert, Lewis, and Becker 2005) solver, which
is a thread-based solver. The MIRAXT uses a divide-and-
conquer approach where all threads share a unique clause
database that includes learned clauses.

The YSAT (Feldmana, Dershowitz, and Hanna 2005)
SAT solver is a shared memory solver that synchronizes
the list of available tasks to minimize the number of idle
threads. In this solver the formula and the tasks queue are
globally accessible but the learned clauses are local to each
thread. Due to the synchronization involved, the overall per-
formance of the entire solver degrades as the number of
cores increases.

MANYSAT (Hamadi, Jabbour, and Sais 2009) is a
portfolio-based multithreaded solver that won the parallel
track of the SAT Race 2008 (Sinz and et al 2008). Since
then portfolio solvers became popular. In MANYSAT, built
on top of MINISAT, there are four parallel instances with
different restart, decision and learning heuristics. Addition-
ally, sequential instance share clauses, with a given threshold
size, to improve the overall system performance.

The SAT4J// (Martins, Manquinho, and Lynce 2010)
solver is a hybrid solver that mixes competitive and coop-
erative search, but without clause sharing. The solver, im-
plemented in Java, starts with a portfolio approach (weak
portfolio) where a VSIDS-based heuristic determines the

96



variables with the highest activity. The solver then splits the
search space based on such variables and, after a given num-
ber of iterations, it switches back to a portfolio approach
(full portfolio).

Cooperative SAT solvers, through search space splitting,
are one of the most used techniques to implement parallel
SAT solvers. Although, recently there has been an increasing
interest on the portfolio approaches, which have been shown
to achieve very good performance (Hamadi, Jabbour, and
Sais 2009), (Ohmura and Ueda 2009).

3 Multi-core SAT Solver: PMCSAT
PMCSAT is a MultiCore SAT solver based on portfolios. The
solver uses multiple threads (eight currently) that explore
the search space independently, following different paths,
due to the way each thread is configured. However, this is
not just a purely competitive solver because the threads co-
operate by sharing the learned clauses resulting from con-
flict analysis. The underlying solver running on each thread
is based on the MINISAT (En and Srensson 2004) sequen-
tial SAT solver, v2.2.0. The solver was however modified to
support clause sharing and the ability to implement differ-
ent heuristic schemes. In the following we briefly describe
a few strategies that were adopted in the implementation of
PMCSAT.

3.1 Decision Heuristics
Heuristics are used on SAT solvers for selecting the next
variable to be assigned, and the corresponding value, when
no further propagation can be done. Although some random-
ness is incorporated into most heuristics, we would like to
keep a tight control over the search space explored by each
thread. Therefore, we introduce the notion of variable prior-
ity. Initially variables are partitioned into sets, and each set
is assigned a given priority. Variables in sets with higher pri-
ority are selected and assigned first. Within a given set, the
well proven VSIDS heuristic is used to select variables.

In order to ensure that each thread follows diver-
gent search paths, we defined distinct priority assignment
schemes, one for each thread of the PMCSAT solver. Table 1
describes the eight priority schemes that were used. Note
that, for most industrial SAT instances we can take advan-
tage of the fact that the variables appear in the CNF file in
a particular order, which is not random, but related to the
problem structure.

3.2 Lockless Clause Sharing
It is well established that clauses learned as a result of con-
flict analyses are vital to speed up the search process. In a
parallel solver, the information learned from a conflict in
one particular thread can be very useful to other threads, in
order to prevent the same conflict to take place. Therefore,
clause sharing between threads was implemented in PMC-
SAT. We limit the size of the clauses to be shared, to avoid
the overhead of copying large clauses, which may contain
very little relevant information. In (Hamadi, Jabbour, and
Sais 2009), the authors show that the best overall perfor-
mance is achieved with a maximum size of 8 literals per

Table 1: Priority assignment schemes for each thread.
Thread # Variable Priority Assignment Scheme

0
All the variables have the same priority,
therefore this thread mimics the original
VSIDS heuristic.

1
The first half of the variables read from the
file have higher priority than the second
half.

2
The second half of the variables read from
the file have higher priority than the first
half.

3 The priority is sequentially decreased as
the variables are read from the file.

4 The priority is sequentially increased as the
variables are read from the file.

5 The priority is assigned randomly for each
variable read from the file.

6

The priority is sequentially increased as the
variables are read from the file, but it has a
random component which can yield a pri-
ority increase of up-to 5x.

7

The priority is sequentially increased as the
variables are read from the file, but it has a
random component which can yield a pri-
ority increase of up-to 10x.

clause. Our experiments seems to corroborate these results
and therefore we used the same limit. To reduce the com-
munication overhead introduced by clause sharing, and its
overall impact in performance, we designed data structures
that eliminate the need for read and write locks. These struc-
tures are stored in shared memory, which is shared among all
threads. We will consider that shared clauses are sent by a
source thread and received by a target thread. As illustrated
in Figure 1, each source thread owns a set of queues, one
for each target thread, where the clauses to be shared are in-
serted. While this flexible structure enables sharing different
clauses with different threads, we will restrict ourselves to
sharing the same clauses with every thread. Therefore, every
thread is a source thread and their target threads are all the
others. On each queue, the lastWrite pointer marks the last
clause to be inserted. The lastWrite pointer is only (atomi-
cally) written by the source thread, but can be read by each
target thread. On the other hand, the lastRead pointer which
marks the last clause received by the target thread, is only
manipulated by each target thread. This data structure elim-
inates the need for a locking mechanism, since lastRead is
only manipulated by one thread and even though lastWrite
is read and written by different threads, the reading thread
does not have to read its latest value. Clause sharing can oc-
cur after a conflict analysis.

4 Evaluation Results
In this section we present preliminary results from apply-
ing PMCSAT to a slew of problems gathered from a recent
SAT race (Sinz and et al 2008). We pay particular attention

97



Table 2: Evaluation Results

Instance Sol. #Vars #Clauses
MINISAT PMCSAT Winning Speedup PMCSAT vs MANYSAT PLINGELING Speedup PMCSAT vs

(sec) (sec) Thread no sh MINISAT (sec) (sec) MANYSAT PLINGELING

cmu-bmc-barrel6 U 2306 8931 1.32 0.46 0,3,5,6 2.04 2.87 0.47 0.22 1.02 0.47
cmu-bmc-longmult13 U 6565 20438 26.27 7.12 0,1,4 3.06 3.69 7.38 12.78 1.04 1.79
cmu-bmc-longmult15 U 7807 24298 15.60 6.30 0,1 2.08 2.48 5.23 10.84 0.83 1.72
ibm-2002-11r1-k45 S 156626 633125 38.19 4.39 0,1,6 8.70 8.70 21.14 22.47 4.82 5.12
ibm-2002-18r-k90 S 175216 717086 102.30 56.71 1,6 1.80 1.80 82.33 71.51 1.45 1.26
ibm-2002-20r-k75 S 151202 619733 166.08 128.10 0 1.30 1.30 107.25 52.55 0.84 0.41
ibm-2002-22r-k60 U 208590 845248 716.53 554.06 0,2 1.29 1.29 187.18 118.68 0.34 0.21
ibm-2002-22r-k75 S 191166 793646 251.07 8.37 1,6 20.38 30.00 112.03 87.37 13.38 10.44
ibm-2002-22r-k80 S 203961 846921 159.03 19.74 1 2.90 8.06 133.66 119.83 6.77 6.07
ibm-2002-23r-k90 S 222291 922916 680.85 234.78 0 2.90 2.90 158.94 212.08 0.68 0.90
ibm-2002-24r3-k100 U 148043 545315 202.90 104.05 0 1.44 1.95 95.15 74.52 0.91 0.72
ibm-2002-30r-k85 S 181484 888663 850.73 823.43 0 1.03 1.03 248.12 224.22 0.30 0.27
ibm-2004-1 11-k80 S 262808 1023506 145.46 90.96 0,1 1.43 1.60 126.74 51.12 1.39 0.56
ibm-2004-23-k100 S 207606 847320 837.61 62.91 3 11.08 13.31 177.85 89.17 2.83 1.42
ibm-2004-23-k80 S 165606 672840 232.34 16.31 3 14.25 14.25 87.87 147.61 5.39 9.05
ibm-2004-29-k25 U 17494 74526 98.99 34.64 0 2.86 2.86 24.05 27.43 0.69 0.79
mizh-md5-47-3 S 65604 234719 265.53 21.20 0,1 12.53 12.53 68.23 55.71 3.22 2.63
mizh-md5-47-4 S 65604 234811 87.00 17.85 0,1 2.23 4.87 334.92 61.24 18.76 3.43
mizh-md5-47-5 S 65604 235061 563.58 53.09 1 2.44 10.62 56.83 34.39 1.07 0.65
mizh-md5-48-5 S 66892 240181 312.49 30.16 0 6.29 10.36 367.53 42.29 12.19 1.40
mizh-sha0-35-3 S 48689 173748 29.36 5.52 1,3 1.09 5.32 36.72 14.50 6.65 2.63
mizh-sha0-35-4 S 48689 173757 262.22 17.55 1 3.89 14.94 47.27 21.75 2.69 1.24
mizh-sha0-36-1 S 50073 179811 353.95 10.46 1,3 8.51 33.84 339.40 42.22 32.45 4.04
mizh-sha0-36-4 S 50073 179989 217.09 131.42 3 1.65 1.65 733.75 22.26 5.58 0.17
velev-engi-uns-1.0-4nd U 7000 67553 10.83 4.89 0,1 2.09 2.21 7.25 14.86 1.48 3.04
velev-fvp-sat-3.0-b18 S 35853 1012240 27.05 3.03 0,1 8.94 8.94 2.86 4.59 0.95 1.52
velev-npe-1.0-9dlx-b71 S 889302 14582952 190.91 15.49 1 2.42 12.32 268.84 37.84 17.36 2.44
velev-vliw-sat-4.0-b4 S 520721 13348116 72.90 9.03 0,1,6,7 5.32 8.07 30.98 72.51 3.43 8.03
velev-vliw-sat-4.0-b8 S 521179 13378616 101.53 21.55 0,1 1.49 4.71 42.41 60.81 1.97 2.82
velev-vliw-uns-2.0-iq1 U 24604 261472 435.23 41.77 2,4 6.14 10.42 789.34 17.52 18.90 0.42
velev-vliw-uns-2.0-iq2 U 44095 542252 TO 416.14 2,4 2.31 NA TO 303.33 NA 0.73

avg. table set (30 inst.) – 155385 1790335 251.34 211.23 – 4.82 8.19 158.43 69.19 5.81 2.53
avg. full set (78 inst.) – 168240 1119370 309.48 128.87 – 3.24 37.45 182.56 102.04 9.47 2.48

thread #0

...c2c1 c3

queue #1

c5c4

...c2c1 c3

queue #2

c5c4

...c2c1 c3

queue #3

c5c4

thread #2

thread #1

thread #3

lastRead

lastRead

lastRead

lastWrite

lastWrite

lastWrite

source

target

target

target

Figure 1: Data structures to share learned clauses.

to those originated from circuit examples, given their prac-
tical relevance in an industrial setting, which are shown in
Table 2. These include problems which are both known to
be SAT or UNSAT. We run additional examples which, for
lack of space, are omitted but are accounted for on the av-
erages shown in the last line of Table 2. All experiments
were conducted on a machine with a Dual Intel Xeon Quad
Core processor at 2.33GHz, 24GB of RAM and running Fe-
dora Linux, release 17. In order, the columns of the table
provide information about the problems chosen followed by
runtimes for MINISAT (En and Srensson 2004) and PMC-
SAT using clause sharing. Also shown in the table is the
information of which thread(s) of PMCSAT first found a so-
lution for each of the problems. When sharing of learned
clauses is turned off, the comparison reduces to determining
which of the strategies, described in Table 1, is more ap-
propriate to a given problem or set of problems. In essence
in this case all threads are instances of the basic MiniSAT
solver with the parameter configurations described. In this
case, it turns out that the standard MiniSAT performs quite
well but many other strategies do equally well, including
random picking of variables. When sharing is turned on, the

98



scenario changes considerably and picking chunks of vari-
ables from the top or bottom of the order seems to do quite
well on many occasions.

Next we show speedup computations to attest the poten-
tial gains of our solver. First we compare PMCSAT with
clause sharing versus non-clause sharing. When clause shar-
ing is turned off we are really testing the appropriateness of
the strategies in Table 1. When clause sharing is on, we are
measuring the advantages of cooperation between threads.
The advantages of clause sharing seem obvious: using in-
formation from other threads, which are exploring problem
structure elsewhere in the search space, provides relevant in-
formation and speeds up problem solution. However the ad-
vantage of this approach is also offset by the cost of doing
the sharing (both preparing clauses for sharing, as well as
using clauses originally from other threads). For this reason
in certain problems little speedup is obtained. Next we com-
pare PMCSAT with clause sharing versus the serial MIN-
ISAT. In general the speedups are interesting, with the av-
erage speedup larger than 8 (excellent efficiency) for the in-
stances shown and an even larger speedup (over 37) for all
instances. This really shows how sensitive problem solution
is to variable ordering and to which portion of the space is
searched. Next we show runtimes for MANYSAT (Hamadi,
Jabbour, and Sais 2009) and PLINGELING (Biere 2010),
solvers using approaches similar to PMCSAT, followed by
the speedup comparisons. Again the results are quite inter-
esting with good average speedups reported. These speedups
clearly indicate that, as expected, there is substantial struc-
ture to be found on circuit descriptions and variable order-
ing. If this structural information can be obtained or guessed
from the circuit itself, then a better ordering of variables dur-
ing SAT solution can lead to relevant gains in problem so-
lution. Overall, the results, seem very promising and justify
further investment in adding new approaches to obtain fur-
ther speedups.

5 Conclusion
The widespread availability of multi-core, shared memory
parallel environments provides an opportunity for boosting
the effectiveness of SAT solution. In this paper we presented
a portfolio-based multi-core SAT solver to improve solution
efficiency and capacity. Multiple instances of the same basic
solver, using different heuristic strategies for search-space
exploration and problem analysis, share conflict information
towards the solution of a given problem. Results from the ap-
plication of our methodology to known problems from SAT
competitions, with practical importance, show relevant im-
provements over the state of the art and yield the promise of
further advances.

Acknowledgment
This work was partially supported by national funds through
FCT, Fundação para a Ciência e a Tecnologia, under project
”ParSat: Parallel Satisfiability Algorithms and its Appli-
cations” (PTDC/EIA-EIA/103532/2008) and project PEst-
OE/EEI/LA0021/2011.

References
Biere, A. 2010. Lingeling, Plingeling, PicoSAT and Pre-
coSAT at SAT Race 2010. Technical Report 10/1, FMV Re-
ports Series, Institute for Formal Models and Verification,
Johannes Kepler University, Austria.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A Ma-
chine Program for Theorem-Proving. Communications of
the ACM 5(7):394–397.
En, N., and Srensson, N. 2004. An Extensible SAT-solver.
Theory and Applications of Satisfiability Testing 2919:502–
518.
Feldmana, Y.; Dershowitz, N.; and Hanna, Z. 2005. Parallel
multithreaded satisfiability solver: Design and implementa-
tion. In Proceedings of International Workshop on Parallel
and Distributed Methods in Verification (PDMC), volume
128 of Electronic Notes in Theoretical Computer Science
(ENTCS), 75–90.
Gil, L.; Flores, P.; and Silveira, L. M. 2008. PMSat: a par-
allel version of MiniSAT. JSAT 6:71–98.
Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting
Combinatorial Search Through Randomization. In Proceed-
ings of AAAI, 431–437.
Hamadi, Y.; Jabbour, S.; and Sais, L. 2009. ManySAT: A
Parallel SAT Solver. JSAT 6.
Holldolber, S.; Manthey, N.; Nguyen, V. H.; Stecklina, J.;
and Steinke, P. 2011. A short overview on modern parallel
sat-solvers. In International Conference on Advanced Com-
puter Science and Information System (ICACSIS), 201–206.
Kautz, H.; Horvitz, E.; Ruan, Y.; Gomes, C.; and Selman, B.
2002. Dynamic Restart Policies. In Proceedings of AAAI,
674–681.
Martins, R.; Manquinho, V.; and Lynce, I. 2010. Improving
search space splitting for parallel sat solving. In Proceedings
of ICTAI, 336–343.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of DAC, 530–535.
Ohmura, K., and Ueda, K. 2009. c-sat: A Parallel SAT
Solver for Clusters. In Kullmann, O., ed., Theory and Ap-
plications of Satisfiability Testing, volume 5584 of LNCS.
Springer Berlin / Heidelberg. 524–537.
Schubert, T.; Lewis, M.; and Becker, B. 2005. Pamira - a
parallel sat solver with knowledge sharing. In Proceedings
of International Workshop on Microprocessor Test and Ver-
ification, 29–36. IEEE Computer Society.
Silva, J. P. M., and Sakallah, K. A. 1996. GRASP: A New
Search Algorithm for Satisfiability. In Proceedings of IC-
CAD, 220–227.
Sinz, C., and et al. 2008. SAT Race 2008.
http://baldur.iti.uka.de/sat-race-2008/index.html. Accessed
on May 2012.
T. Schubert, M. Lewis, B. B. 2009. Pamiraxt: Parallel sat
solving with threads and message passing. Journal on Sat-
isfiability, Boolean Modeling and Computation 6:203–222.

99




