TECNICO
LISBOA

Parallel SAT Solver

Ricardo de Sousa Marques

Dissertacao para obtencao do Grau de Mestre em

Engenharia Electrotécnica e de Computadores

Presidente:
Orientador:
Co-orientador:
Vogais:

Prof.
Prof.
Prof.
Prof.
Prof.

Juari
Nuno Cavaco Gomes Horta
Paulo Ferreira Godinho Flores
Luis Miguel Teixeira D’Avila Pinto da Silveira
Vasco Miguel Gomes Nunes Manquinho
Nuno Filipe Valentim Roma

Outubro de 2013

Acknowledgments

First of all, T would like to thank all the ParSat group, specially Professors Luis Silveira and
Paulo Flores for their guidance and support through all my academic course. They have always
guided me with their knowledge whenever I would need some advice. Without the countless
brainstorms and discussions this dissertation would never had succeeded. Their dedication to
research and education will always be an example for me to follow.

I also would like to thank my family for their support, specially to my parents, for always being
so close and being so supportive in all moments. It would be impossible to me to expresse my
gratitude merely in words.

To all my friends and my girlfriend, Sofia, who make me feel that life is much more than work

and have always stood by my side, through the best and worst moments.

Abstract

Many practical problems in multiple fields can be converted to a Boolean Satisfiability (SAT)
problem, or a sequence of SAT problems, such that their solution immediately implies a solution
to the original problem. Despite the enormous progress achieved over the last decade in the
development of SAT solvers, there is strong demand for higher algorithm efficiency to solve harder
and larger problems. However, algorithmic developments has slowed down somewhat, which is at
odds with such a trend. Fortunately, the widespread availability of multi-core, shared memory
parallel environments provides a renewed opportunity for such improvements.

In this dissertation we present our results on improving the effectiveness of standard SAT
solvers on such architectures, through two different parallel approaches. In the first approach,
multiple instances of the same basic solver using different heuristic strategies, compete to find
a solution, each performing a different search-space exploration and problem analysis, but still
sharing information and cooperating towards the solution of a given problem. In the second
approach, we partition the problem in several sub-problems, using clustering techniques. Then,
multiple instances cooperatively solve these smaller subsets of the original problem to find a solution
for the whole problem.

Results from the application of our methodology to known problems from SAT competitions

show improvements over the state of the art and yield the promise of further advances.

Keywords

Boolean Satisfiability (SAT), Parallel Search, Multi-core, Clause Sharing, Portfolio Solver, Clus-

tering Algorithm

iii

Resumo

Muitos problemas de natureza diversa podem ser convertidas num problema de satisfagao
booleana (SAT), ou numa sequéncia de problemas SAT, de tal forma que a solu¢do para destes
dé-nos a solugdao do problema original. Apesar do enorme progresso alcangado na ultima década
no desenvolvimento de SAT solvers, existe a necessidade de aumentar a eficiéncia algoritmica, no
sentido de resolver problemas cada vez maiores e mais dificeis. Contudo, estes desenvolvimentos
abrandaram, contrastando com esta necessidade. Felizmente, o rapido crescimento de ambientes
de computagao paralela, nomeadamente multi-core, providencia-nos uma excelente oportunidade
para esses progressos.

Nesta dissertacdo sdo apresentados os resultados dessa abordagem ao problema de SAT, sendo
apresentados dois solvers que utilizam técnicas distintas para a resolucao do problema: Na primeira
estratégia, multiplas threads executam o mesmo algoritmo, diferenciando entre si nas suas configu-
racoes, explorando desta forma o espago de procura de forma distinta. Adicionalmente, as diferentes
threads partilham informacao entre si, acelerando a resolucdo do problema. Na segunda estraté-
gia é efectuada uma partigao do problema em véarios subproblemas, usando técnicas de clustering.
Seguidamente, diversas insténcias resolvem estes subproblemas e cooperam entre si até alcangarem
uma solugao.

Os resultados da aplicagao dos algoritmos implementados a problemas retirados de competigoes
de SAT demonstram algum progresso sobre os melhores algoritmos sequenciais e justificam uma

investigacao mais profunda sobre este tema.

Palavras Chave

Satisfacao booleana (SAT), Procura Paralela, Multi-core, Partilha de Clausulas, Portfolio, Al-

goritmos de Partigao

Contents

2.1 Basic Concepts of SAT Solving| oo

(2.2 Davis-Putnam (DP) Resolution-Based Algorithm|

[2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm|.

3.1 Parallel approaches to SAT solving|

8.1.1 Cooperative Solvers| L

3.1.2 Competitive Solvers|

3.2 Parallel SAT Challenges| o

3.2.2 Splitting].

8.2.3 Knowledge Sharing|. o oo

4 PMCSAT]
4.1 Description|

[N R VS

© o o O O«

10
12
13
15
16

17
18
18
20
21
21
21
22
22

23
24
24

vii

Contents

[4.1.2 Clause Sharing| e 24

[4.2 Implementation|. L 26
M3 Resulld. o oo 27
[4.3.1 Sequential solver/no sharing comparison| 27

4.3.2 SAT Competition 2013 Results| 28
6__clusterSATI 33
[p.1 Description| L 34
P.1.1 Clustering| e 34

5.1.2 Solvingl e 35

B2 Resultd. o oo 38

6 __Conclusions| 41
6.1 Contributionsl 42
6.2 Future workl 43

viii

List of Figures

2.1 Example of a decision treef. L Lo 8
2.2 Chronological and Non-Chronological Backtracking| 10
[2.3 Head/Tail list scheme and Watched Literals scheme descriptions| 14
[3.1 Search space splitting example. Figure obtained from J25]| 19
[3.2 Dynamic work stealing example. Figure obtained from [2o]] 19
4.1 Clause sharing data structure of PMCSAT| oL 25
4.2 Number of solver instances solved by each solver within a given time| 30
4.3 Hard-Combinatorial: Number of solver instances solved by each solver within a given |
Cfmd - o oo e 31
[5.1 CNF formula conversion to a) METIS, b) HMETIS|. 35
b.2 Partition obtained from the clustering algorithms|. 35
9.3 Master-first solving process description|. oL, 37
p.4 Slaves-first, Centered Clusters solving process description| 38

ix

List of Figures

List of Tables

3.1 Different ManySAT 1.0 strategies| 21
4.1 PMCSA'l’s priority assignment schemes for each thread| 25
4.2 Application of PMCSA'T to a set of instances gathered from a SAT Race| 27
4.3 S5C2013: Parallel Application Track Results| 29

C : -Combinatorial Track Results] 30
5.1 Application of METIS to a set of CNF instances|. 38

[5.2 Application of CLUSTERSAT (Master-first, Centered Clusters) to a set of CNF |

mstances|

xi

List of Tables

xii

List of Algorithms

2.1 Davis-Putnam algorithm|. o0 oo 7
2.2 Davis-Logemann-Loveland algorithm| 9
23 CDCLSAT Solver 15
4.1 PMCSAT master process|o 26
2 pMcSAT threadl 26

xiii

List of Algorithms

xiv

Introduction

Contents
Q.1 Motivationl ¢ v i i v i i it e e e e e e e e e e e e e e e e e 2
1.2 Objectives|. v v v v i e e e e e e e e e e e e e 3
1.3 Main contributions| @ @ 0 i e e e e e e e e e e 4
1.4 Dissertation outlinel« . i e e e e e e e e e e e e e 4

1. Introduction

A motivating problem

There are three balls in a box: a red ball, a green ball and a blue ball. Suppose we have take
some of them from the box with some conditions: (i) At least one of the red ball and green ball
should be selected, (ii) either the green ball won’t be selected or the blue ball will be selected, and
(iii) either the red ball won’t be selected or the blue ball will be selected.

How can we determine which balls we can take from the box? This logic problem can be written
as a propositional formula.

Let’s consider the boolean variables R, G and B, which represent the red, green and blue balls.
If these variables take the value 1 (frue) this means that they will be picked. Otherwise, they will
take the value 0 (false) and will not be selected.

The following clauses encode the constraints mentioned:

e (RV G): At least one of the red ball and green ball should be selected

e (=G V B): Either the green ball won’t be selected or the blue ball will be selected
e (R V B): Either the red ball won’t be selected or the blue ball will be selected.

With this constraints, is it possible to find a set of assignments in such a way that we satisfy
all clauses? The process of finding this assignments is called Boolean Satisfiability (SAT).

What is SAT?

Given a Boolean formula, the problem of determining whether there exists a variable assignment
that makes the formula evaluate to true is called the satisfiability problem. If the formula is limited
to only contain logic operations and, or and not, then the formula is said to be a propositional
Boolean formula. Determining the satisfiability of a propositional Boolean formula is called the
Boolean Satisfiability Problem (SAT).

One possible set assignments that would satisfy the above case would be R = 1, G = 0 and
B = 1. This means that taking the red and the blue ball from the box would satisfy all constraints.

Why is SAT important?

The Boolean Satisfiability Problem (SAT) is one of the most important and extensively studied
problems in computer science. Boolean Satisfiability has been the first problem proven to be
NP-Complete [8], Nowadays, due to the enourmous advances in computational SAT solvers, the
SAT problem is of practical importance in a wide range of disciplines, such as planning Automatic
Test Patten Generation (ATPG) [22], combinational circuit equivalence checking [I3], sequential
property checking [29], microprocessor verification [34], model checking [5], redundancy removal [20]

and timing analysis [30], amongst others.

1.1 Motivation

The widespread use of SAT is the result of SAT solvers being so effective in practice. Many

real-life, industrial problems, with hundreds of thousands of variables and millions of clauses, are

1.2 Objectives

routinely solved within a few minutes by state of the art SAT solvers.

This added capability of state of the art SAT solvers, however, is continuously challenged by
emerging applications which bring to the fold problems and systems of increasing size and com-
plexity. As a consequence, in spite of the remarkable gains we have seen in the area, there are still
many problems that remain very challenging and unsolved by even the best solvers. Perhaps the
main cause for this situation is that the large, steady algorithmic improvements that were made
available in the last decade with the introduction of powerful techniques such as non-chronological
backtracking, restarts, improvements in decision heuristics, etc, seem to have slowed down. Im-
provements to SAT solvers nowadays appear to be more incremental, sometimes problem-related.
Faced with this situation, researchers have started to look elsewhere for ways to continue improv-
ing the efficiency of SAT solvers and the widespread availability of parallel computing platforms
provided renewed opportunities to achieve this goal.

The generalization of multi-core processors, as well as the availability of fairly standard clus-
tering software, provided access for the common user to parallel computing environments and has
opened up new opportunities for improvement in many areas. In this context, many parallel SAT
solvers have been proposed and SAT competitions now routinely include a parallel track. The
main goal of parallel SAT solvers is to be able to solve problems faster. Several metrics can be
used to quantify the resulting improvements, including speedup and efficiency. The basic obstacles
to improved efficiency are generally the same ones as encountered by parallel implementations of
other problems and domains, namely load balancing and robustness, i.e. the ability to sustain sim-
ilar efficiency over a large range of problems. An enticing feature of parallelization in search-based
problems is that super-linear speedups are achievable if one is lucky to search the right region of the
search space. Often, one is satisfied with the ability to demonstrate speedup by solving problems
faster and doing so in a robust manner over a large range of problems. Combining such robustness

with the elusive possibility of large gains is clearly a goal worth pursuing.

1.2 Objectives

The goal in this thesis was to research and develop techniques to speedup the solution of SAT
problems, using distributed SAT algorithms, running on parallel computing environments.
Targeting this goal two parallel multi-core SAT solvers were developed: PMCSAT and CLUS-

TERSAT, which can be readily be described as follows:

e PMCSAT launches multiple instances of the same solver, with different parameter configu-
rations, which cooperate to a certain degree by sharing relevant information when searching

for a solution. This approach is known as a portfolio approach.

e textscclusterSAT uses graph partitioning libraries to split the problem into smaller sub-

problems and launches multiple tasks to solve these subproblems and cooperate to find a

1. Introduction

valid solution.

A more detailed description of these solvers and the respective results is shown in the next

chapters.

1.3 Main contributions

The main contributions of the work developed through this thesis correspond to the developed

parallel solvers:

e PMCSAT, although we do not consider it to be a novel contribution, has shown remarkable
results at the SAT Competition 2013 [2], being awarded with a bronze medal on one of the
Competition’s Parallel Tracks. This solver has also been presented in Florida, USA, at the
FLATRS-26 Conference [24].

e CLUSTERSAT, despite the fact that has not shown remarkable results, has helped to develop

an approach still in its infancy and could be enhancer for future successful parallel SAT solvers

1.4 Dissertation outline

The remainder of this dissertation is organized as follows: Chapter 2 overviews satisfiabil-
ity algorithms. We introduce the Davis-Putnam (DP) resolution-based algorithm, followed by
the Davis-Logemann-Loveland (DLL) backtrack search algorithm. Afterwards, a detailed descrip-
tion the fundamental techniques of SAT solving is given, namely non-chronological backtracking,
decision heuristics, boolean constraint propagation and backtracks.

Chapter 3 reviews and discusses existing parallel approaches, as well the state of the art
parallel SAT solvers. A brief description of the most common challenges found in parallel SAT
solving is also given.

Chapter 4 describes the first solver developed through this thesis, PMCSAT. The implementa-
tion details are given, as well as a description of the techniques used, followed by the experimental
results. These results include a comparison with the sequential implementation and also the SAT
Competition 2013 results.

Chapter 5 describes the second solver developed, CLUSTERSAT. This chapter follows the same
structure as Chapter 4, with the implementation details followed by experimental results.

Finally, in Chapter 6 we conclude the dissertation and suggest future research work.

The work developed on this thesis was partially supported by national funds through FCT,
Fundagao para a Ciéncia e Tecnologia, under the project "ParSat: Parallel Satisfiability Algorithms
and its Applications" (PTDC/EIA-EIA /103532/2008)".

SAT Overview

Contents
2.1 Basic Concepts of SAT Solving| 6
2.2 Davis-Putnam (DP) Resolution-Based Algorithm|. 6
2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm| 8
2.4 Modern CDCL SAT Solvers| 15
2.5 Conclusions| o o oo e e e, 16

2. SAT Overview

This chapter provides an overview of SAT solving algorithms. Section 2.1 introduces the basic
concepts used in SAT solvers. In the following sections the definitions used through this thesis are
provided. Moreover, other features of a competitive SAT Solver are described, namely decision

heuristics, propagation, non-chronological backtrack and restarts.

2.1 Basic Concepts of SAT Solving

e A conjunctive normal form (CNF) of a formula ¢ consists in a conjunction (logic and)

of one or more clauses.
e A clause w is a disjunction (logic or) of one or more literals.

e A literal [is the occurrence of a boolean variable z; in its positive phase (x;) or in its negative

phase (—x;).

An example of a propositional formula in CNF is:

= (r1Vr2Vas)A(-z2V xy) (2.1)

This formula contains two clauses: w; = x1 V 22 V 23 and wy = =29 V 24.

A literal is satisfied if its truth value is 1 and unsatisfied if its truth value is 0. A literal with
no truth value is said to be unassigned. A clause is said to be satisfied if at least one of its literals
is satisfied, and it is said to be unsatisfied if all of its literals are unsatisfied. A literal is also
considered pure if its complement does not occur in the formula. A clause having a variable and
its complement is called a tautology and is always satisfied, regardless the given assignment. A
clause with no literals is an empty clause and is always unsatisfied.

Given a propositional Boolean formula, the Boolean Satisfiability Problem (SAT) counsists in
finding a set of variable assignments in such a way as to make the formula true (the problem is
SATISFIABLE), or to determine whether no such assignments exist (UNSATISFIABLE). For
instance, in the above equation, if we consider the set of assignments p = {x1 = 1,292 = 0} we can
easily verify that the formula is satisfiable.

Currently almost all modern SAT solvers limit the input to be in CNF, due to the easy trans-
lation from real world applications into CNF instances. This form also can provide the user the

option of adding more clauses to the problem, which can be useful to prune the search space.

2.2 Davis-Putnam (DP) Resolution-Based Algorithm

Because of the practical importance of Boolean Satisfiability, significant research effort has
been spent on developing efficient SAT solving procedures for practical purposes. The original

algorithm for SAT solving was proposed by Davis and Putnam [I0] in 1960. This algorithm is

2.2 Davis-Putnam (DP) Resolution-Based Algorithm

Algorithm 2.1 Davis-Putnam algorithm
1: while TRUE do
2 if BCP(¢) == CONFLICT then
3 return UNSATISFIABLE;
4: end if

5: PURE_LITERAL RULE(yp);

6

7

8

9

if AL CLAUSES__SATISFIED(y) then
return SATISFIABLE;
end if
: & = SELECT _ VARIABLE(p);
10: ELIMINATE _ VARIABLE(¢,);
11: end while

resolution-based. Resolution is an inference rule for propositional logic and can be regarded as
a general technique for deriving new clauses.

Given two clauses, w1 = (zV 1V ... VZy,) and wy = (02 V y1 V ... V y,) where z; and y; are
different sets of literals, we can deduce the following disjunction: ws = (1 V...V &y, Vy1 V... Vyn),
where we can remove z and —z. Repeated iterations of this method will reduce the formula to a
set of clauses having only pure literals, in case of the problem being satisfiable, or otherwise will
lead to an empty clause, in the case of being unsatisfiable.

The DP algorithm also uses the following techniques:

e Pure literal rule - Given a formula ¢ that contains pure literals, a set of assignments p
could be made in such a way that those literals are satisfied. This way, all the clauses that
contain these pure literals are satisfied and can be removed from the problem without any

restrictions to the original formula.

e Unit clause rule - Given a clause w in which all its literals are unsatisfied but one, the
remaining literal, called unit literal, has to be satisfied in order to satisfy w. This clause is

also named as unit clause.

e Boolean Constraint Propagation - Process of analysing the formula after performing an

assignment and, if needed, application the unit clause rule.

These techniques are described in the following example:

¢ =(x1 Ve Vas)A(-x3V T4 (2.2)

Given the above formula, if we consider the assignments p = {z1 = 0, 2 = 0}, in order to
satisfy the first clause the assignment 3 = 1 has to made and consequently x4 = 1 in order to
satisfy the second clause.

The pseudo-code for the Davis-Putnam algorithm is given in Algorithm [2.1] Besides applying
BCP and the pure literal rule, the purpose is to iteratively applying the resolution process by

eliminating variables until satisfiability or unsatisfiability can be determined. A formula is declared

2. SAT Overview

to be satisfied when it contains only satisfied clauses or pure literals. A formula is declared to be
unsatisfied whenever a conflict is reached.

This process, however, in each iteration of the algorithm generates a sub-problem with one
fewer variable but probably with more clauses. The algorithm requires exponential space to solve
an instance. Therefore, alternative techniques to solve to this problem were developed and are

described in the following sections.

2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm

The DP algorithm quickly leads to memory overload problems, so in 1962 Davis, Logemann
and Loveland proposed a search-based algorithm, also known as DLL or DPLL [9]. This algorithm
is the most widely studied algorithm for SAT solving. Unlike the DP algorithm, the memory
requirement for this algorithm is not exponential, therefore SAT solvers that use this approach can
solve very large formulas without memory overflow.

The DLL algorithm is a branch and search algorithm. The search space is often presented in

binary trees, such as in figure 2.1}

vi=
{viI= {vi=1}
2=() 2=1
{vI=0, v2=0; JX J{{O\K C/Q%Zl’ v2=1}

AL LNALL LI

Figure 2.1: Example of a decision tree

Each node in the tree represents a variable assignment. A decision level is associated in each
assignment to indicate its depth at the decision tree. For each new decision assignment, the decision
level increments by 1. After each assignment, propagation is executed and each implied assignment
is associated with a reason, i.e., the unit clause that implied the assignment.

Algorithm [22] describes a generic DLL algorithm. Given a formula ¢, variables are assigned
iteratively through the DECIDE NEXT BRANCH function. Following this assignment, implied as-
signments are identified in the DEDUCE function. If this implications lead to a conflict, a DIAGNOSE

is performed, which identifies the decision level that originally generated the conflict. The process

2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm

Algorithm 2.2 Davis-Logemann-Loveland algorithm

1: while TRUE do

2 v = DECIDE_ NEXT _BRANCH(p);
3 if v then

4: return SATISFIABLE;

5: end if

6 if DEDUCE(yp,v) == CONFLICT then
7 B = DIAGNOSE(p);

8 if 3 ==0 then

9: return UNSATISFIABLE,;
10: else

11: BACKTRACK (¢, 8);

12: end if

13: end if

14: end while

of undoing all decisions and corresponding implications to that level is called BACKTRACK. If this
backtrack level is at the top of the decision tree (8 = 0) then the problem is UNSATISFIABLE.
The problem is considered to be SATISFIABLE when all variables are assigned and no conflicts
are detected, i.e., all clauses are satisfied.

Different SAT solvers based on DLL differ mainly on the implementation and techniques used
of the various functions in the top level algorithm. In the next sections, a more detailed description

of these functions is done.

2.3.1 Backtrack

Whenever a SAT solver reaches a conflict, the solver needs to undo the assignments and return
to a consistent state. This process is named backtrack.

Original DLL algorithms use chronological backtracking. This method consists in keeping
a flag for each variable in the search tree that marks if both assignments have been tried. (i.e.,
flipped). When a conflict occurs, the solver undoes the last decision that is not been flipped and
resumes the search.

This method, however, is often not effective in pruning the search space. State-of-the-art SAT
Solvers perform a deeper conflict analysis and build a conflict clause that determines the origin
of the conflict. This clause is learned (i.e., added to the problem) and backtracking is then per-
formed, possibly undoing several decisions, instead of blindly backtracking chronologically without
adding any additional information to the problem. This process is named non-chronological
backtracking.

Figure describes an example of chronological and non-chronological backtracking. As we
can observe, a conflict is detected on the assignment of the variable z4. While chronological
backtracking simply undoes the assignment of x5 = 0 and resumes the search process with z3 = 1,
the conflict analysis from non-chronological backtracking detects that the conflict reason is in the

above level, where x5 = 0 has been assigned and resumes the search process in a region of the search

2. SAT Overview

decision tree

" non-chronological

chronological .-~
’ backtrack

backtrack
acktrac 0

solution: z1 =0
X X X X zg =1
x4 =1

Figure 2.2: Chronological and Non-Chronological Backtracking

space that contains the solution to the problem. On the other hand, chronological backtracking
could waste a significant amount of time exploring a region of the search space where no solution

can be found.

2.3.2 Decision Heuristics

Decision heuristics play a key role in the efficiency of SAT algorithms, since they determine
which areas of the search space get explored first. A well chosen sequence of decisions may instantly
yield a solution, while a poorly chosen one may require the entire search space to be explored before
a solution is reached.

Over the years, many different branching heuristics have been proposed. The first success-
ful heuristics, such as s Bohm’s Heuristic [6], Maximum Occurrences on Minimum sized clauses
(MOM) [12], and Jeroslow-Wang [16] can be considered greedy algorithms that try to generate the
largest number of implications, or to satisfy the most clauses.

Bohm’s Heuristic gives preference to variables that occur more often in smallest clauses.
The purpose is to assign the variables that satisfies most clauses (when assigned true), and to
reduce the size of small clauses, generating more implications (when assigned false). At each
iteration of the algorithm, the Bohm’s heuristic selects the variable that maximizes the vector

< Hy(z), Hy(x), ..., Hy,(x) >, where H;(x) is computed by the following equation:
H;(z) = axmaz(h;(z), h;(—x)) + B * min(h;(z), h;(—x)) (2.3)

where h; is the number of unresolved clauses with ¢ literals containing . o and S are parameters,
originally suggested as a = 1, 8 = 2. The major issue of this heuristic is the fact that it is very

expensive to compute these vectors at every decision level.

10

2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm

The MOM’s heuristic gives preference to variables that occur in the smallest clauses, but
variables are preferred if they simultaneously maximize their number of positive and negative
literals in the smallest clauses. Let f*() be the number of clauses of the smallest length containing

the literal . The variable that maximizes the following formula is chosen:
[f*(2) + f*(m2)] * 2% + f*(2) * f*(-2) (2.4)

Analyzing the formula we can easily verify that preference is given to variables that belong to
a large number of clauses which have the smallest length. Within this set, preference is given to
variables that have a similiar count of both z and —z, assuming that k is a very large parameter.
The Jeroslow-Wang Heuristics compute the weight of a literal [according to the following

formula:

Jhy= > 27 (2.5)

lewAwee
where in each clause w where [appears, a value of 271¥l is added to its score, where —|w] is the
number of literals in w.

The one-sided version of this heuristic (JW-OS) selects the assignment that satisfies the literal
with the highest value of J(I). The two-sided version (JW-TS) identifies the variable z with the
largest sum of (J(z) 4+ J(—x)) and assigns x true in case of J(x) > J(—x), otherwise assigns false.

Literal count heuristics count the number of unresolved clauses in which a given variable z
appears as a positive literal, C'p, and as a negative literal, Cy. From combining these values,

different heuristics were created:

e Dynamic Largest Combined Sum (DLCS) - This heuristic selects the variable with

highest value of Cp + Cp, and assigns it true when Cp > Cl, and false otherwise.

e Dynamic Largest Individual Sum (DLIS) - This heuristic selects the variable with

highest value of Cp or Cy, and assigns it true when C'p > Cj, and false otherwise.

e Random Dynamic Largest Individual Sum (RDLIS) - A variation of DLIS, which
consists in choosing a random value for the selected variable, instead of comparing Cp with
Cn. The random selection of the value to assign is in general a good compromise to prevent

making too many bad decisions for a few specfic instances.

These heuristics, in spite of being dynamic, are state-dependent, i.e., each time the heuristic
function is called, the counts for all the free variables need to be recalculated. This often introduces
a large overhead to the SAT solver. A heuristic that is independent of the search-state was then
proposed by CHAFF [26]: Variable State Independent Decaying Sum (VSIDS).

In VSIDS the variables are ordered based on their activity. Because modern SAT solvers use

learning, additional clauses are added to the clause database as the search progresses. VSIDS

11

2. SAT Overview

increases the score of a literal by a constant whenever an added clause contains the literal. Ad-
ditionally, as the search advances a periodical division of all scores by a number is performed.
Therefore, this heuristic gives preference to variables that occur in more recent conflicts. VSIDS
will choose the free variable that will have highest score.

VSIDS is a state-independent heuristic, i.e., the scoring does not depend from the variable
assignment and, unlike the previous heuristics, takes only a small percentage of the processing
time of a SAT Solver. The purpose of VSIDS, and similar activity based heuristics, is to avoid
scattering the search, by directing it to the most constrained parts of the formula. These techniques

are particularly effective when dealing with large problems.

2.3.3 Boolean Constraint Propagation

As mentioned previously in this chapter, Boolean Constraint Propagation is the process of
analysing the formula after performing an assignment and, if needed, perform assignments to unit
literals in order to satisfy unit clauses.

Since any SAT algorithm relies extensively on accessing and manipulating large amounts of
information, its data structures are of paramount importance for its overall performance. In order
to efficiently implement the BCP procedure, a data structure should allow us to find fast unsatisfied
and unit clauses after each variable assignment. It should also allow us to make as few as possible
operations to maintain the data structures consistent after backtracking.

The GRASP algorithm [3I] uses a counter-based method. In this approach, two counters are
used for each clause, one for the true assignments count and other for the false assignments. It
also stores the total number of literals of the clause. Each variable also records a list of all clauses
where it appears. Whenever a variable is assigned, all clauses that contain that variable update

their counters. Three possible situations could result from an assignment:

e If the number of false assignments equals the total number of literals, then the clause is a

conflict clause and further backtrack needs to be done.

e If the number of false assignments equals one less than the total number of literals in the

clause and the true assignments count is 0, then the clause is a unit clause.

e Otherwise, the clause is neither conflicting nor unit and nothing needs to be done for the

clause.

This approach, however, could be very inefficient. For instance, if a problem has n variables,
m clauses and [literals per clause, then every time a variable is assigned, Im/n counters would be
updated. The same number of counters would have to be updated every time that a backtrack is
performed. Modern SAT solvers use learning as a mechanism and usually learned clauses have a

high number of literals, which would turn this method of applying BCP very slow.

12

2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm

As we could verify, each variable keeps references to a potentially large number of clauses,
that often increases as the search proceeds. This impacts negatively the amount of operations
associated with an assignment. On top of this, most clauses associated with a variable assignment
would not become unsatisfied or unit. The solutions to this issue are lazy data structures and
are described bellow.

The first lazy data structure to apply BCP was proposed by Zhang and Stickel in the SATO
SAT Solver [35], called the Head /Tail data structure. In this mechanism, each clause has two
pointers associated, a head(H) and tail(T). Initially, the head points to the first literal of the clause
and he tail to last literal. Both pointers move towards the center of the clause. Each variable x
also records in which clauses it appears and it is referenced as a head/tail.

Each time a literal pointed to by either the head or tail reference is assigned, a new unassigned
literal is searched for. When an unassigned variable is identified it becomes the new head, and a
new reference is created and associated with the literal’s variable. This guarantees that the H/T
pointers are recovered in case of a backtrack. If a satisfied literal is identified, then the clause
is satisfied and no further work is done. If no unassigned literal can be identified and the other
reference is reached, then the clause is unit if the reference is unassigned, satisfied if the variable
is assigned true, or unsatisfied if the reference is assigned false.

When a backtrack is performed, the current H/T references are discarded and the previous
ones become activated.

Inspired by this data structure, the CHAFF SAT solver [26] proposed a new data structure,
the Watched Literals. This method solves some issues of the H/T approach. It uses a similar
structure, associating two references to each clause. However, unlike in H/T, these references can
move in any direction. This approach has the drawback of only identifying a unit or unsatisfied
clause when after transversing all the literals. On the other hand, the major advantage of this
method is the fact that when backtrack is performed no references need to be updated.

Figure [2.3] illustrates these two methods of applying propagation.

2.3.4 Restarts

SAT algorithms can exhibit a large variability in the time required to solve any particular
problem instance. Indeed, huge performance differences can be observed when using different
decision heuristics. This behavior was studied by [I4], where it was observed that the runtime
distributions for backtrack search SAT algorithms are characterized by heavy tails. Heavy tail
behavior implies that, most often, the search can get stuck in a region of the search space.

The introduction of restarts [I9] was proposed as a method of minimizing the effects of this
problem. The restart strategy consists of defining a threshold value in the number of backtracks,
and aborting a given run and starting a new run whenever that threshold value is reached. Ran-

domization must also be incorporated into the decision heuristics, to avoid the same sequence of

13

2. SAT Overview

Head/Tail List ~ Action 2-Literal Watching Comment
H T
|_Vl |V4 |_V7 |V12 |V15 | |_V1 |V4 |_V7 |V12 |V15 | Initially Head/Tail should
be at the beginning/end of
the clauses, while watched
Vi=l@l can point to any free
H T literal
|_V1 |V4 |_V7 |V12 |V15 | |.V1 |V4 |.V7 |V12 |V15 | Clause will be visited only
if the pointers need to be
f moved.
V=l@2
H T Vis=0@2
|-V1 |V4 |-V7 |V12 |V15 | |-V1 |V4 |-V7 |V12 |V15 | Heéd can or}ly move towa]lfds
tail and vice versa, while
M V=0@3 watched can move freely.
Both generate
H T an implication

assigned value 0, the clause
I will be a unit clause.

Suppose conflict,
we backtrack to

H T Jl decision level 1
v
|-V1 |V4 |—V7 |V12 |V15 | |-V1 |V4 |—V7 |V12 |V15 | When backtracking, Heaq/Tall
needs to be undone, while
need to do nothing for
Vi=l@2 watched.
V=0@2

H T
the clause containing it

will not be visited for both
cases.

V0@l

H T

During searching for a free

literal, if a value 1
literal is encountered,
Head/Tail scheme will do
nothing, while watched will
move the watched pointer.

V., Free Literal

Value 0 Literal

V,
Value 1 Literal
- alue 1 Literal T Tail Literal

V,=1@2 Set V;to be I at decision level 2

T Head Literal

v Watched Literal

Figure 2.3: Head/Tail list scheme and Watched Literals scheme descriptions

decisions to be repeated on every run. In order to preserve the completeness of the algorithm, the
backtrack threshold value must be increased after every restart, thus enabling the entire search
space to be explored, after a certain number of restarts. Restarts and activity-based decision
heuristics are complementary, since the first one moves the search to a new region of the search

space, while the second one enables the search to be focused in that new region.

14

2.4 Modern CDCL SAT Solvers

2.4 Modern CDCL SAT Solvers

Current state-of-the-art sequential SAT solvers are mostly Conflict-Driven Clause Learning

(CDCL). Algorithm shows the standard organization of a CDCL SAT solver first proposed
by Marques-Silva and Sakallah [31].

Algorithm 2.3 CDCL SAT Solver

1: limit = ¢;
2: while TRUE do

3:

© 2 N>k

10:
11:
12:
13:
14:
15:
16:
17:

while #con flicts < limit do
lit = DECIDE();
if /it then
return SATISFIABLE;
end if
if IBCP(lit) then
¢l = CONFLICT _ ANALYSIS();
if !¢l then
return UNSATISFIABLE;
end if
#conflicts + +;
end if
end while
UNDO _ DECISIONS();
INCREASE (limit);

18: end while

This approach is DLL-based and uses the techniques described in the previous subsections.

Some of the fastest SAT solvers that use these methods are briefly described in the following:

e MINISAT [I1] is a minimalistic, open-source SAT solver developed by Niklas Eén and Niklas

Sorensson. MINISAT is small, well-documented and easy to modify, making it an ideal starting
point for adapting SAT based techniques to domain specific problems. It was also the winner
of all the industrial categories of the SAT 2005, 2006 and 2008 competitions. MINISAT 2.2.0

has been the support solver for the parallel solvers developed through this thesis.

GLUCOSE [I] is based on a different scoring scheme for the clause learning mechanism. The
solver’s name is a contraction of the concept of "glue clauses", a particular kind of clauses
that glucose detects and preserves during search. GLUCOSE is heavily based on MINISAT and

was the winner of many categories of the latest SAT competitions.

P1coSAT [3] is a SAT solver, developed by Armin Biere, that uses some of the MINISAT
techniques. It was the SAT 2007 competition winner and it is the base solver for the state-

of-the-art solver LINGELING.

LINGELING [4] is a SAT solver, based on PICOSAT and PRECOSAT. All of these solvers
have been developed by Armin Biere. LINGELING has been one of the most successful in the

latest SAT Competitions, among GLUCOSE and MINISAT.

15

2. SAT Overview

2.5 Conclusions

This chapter gives an overview of the techniques used in sequential SAT solving. Some basic
concepts commonly used in SAT were introduced. Different techniques for SAT solving were
described. In particular, the most widely used SAT solving algorithm, namely the Davis Logemann
Loveland (DLL) algorithm, was discussed in detail.

However, these techniques are applied only to purely sequential SAT solvers. The next chapter
explains why should we move to parallel SAT Solving, the main challenges and the existing

approaches.

16

Parallel SAT

Contents
13.1 Parallel approaches to SAT solving|. 18
13.2 Parallel SAT Challenges| 0000000, 21
13.3 Conclusion] . . . ¢ v v i i e 22

17

3. Parallel SAT

State of the art sequential algorithms have revealed minor improvements over the recent years,
while SAT is applied to larger and more ambitious problems which cannot be solved in reasonable
time. The demand for more computation power led to single-core architecture alternatives, due
to termal issues. These options are parallel architectures, such as multi-core processors, GPU’s
or clusters and grids. In the past years, parallel SAT Solving has been the focus of research
in SAT Solving, since parallel SAT Solvers often provide faster resolution of SAT instances. In
this section, we describe the most successful approaches in parallel SAT solving, as well the most

common challenges.

3.1 Parallel approaches to SAT solving

There are two main approaches in parallel SAT solving. On one hand we have cooperative
solvers, which use a set of constraints, also named guiding paths, to split the original search space.
On the other hand we have competitive solvers, or portfolios, in which different computing

units solve the same SAT instance, using different search mechanisms.

3.1.1 Cooperative Solvers

Search-space splitting

As mentioned above, these algorithms perform a search-space splitting into disjoint subspaces
to be explored in parallel. The most common method to perform this is using guiding paths [36].
These guiding paths are the list of variables assigned until the current state of the search process.
Each variable has a flag associated that records if both assignments, true or false, have been tried.
A variable where both assignments have been tried is closed. On the other hand, a variable that
still has values to be assigned is said to be open. Open variables represent disjoint spaces yet to
be explored. Figure[3.]] illustrates an example of this approach.

However, the hardness of the different subspaces is frequently unbalanced, since some subspaces
are easier to prove (un)satisfiability than others. Since the processing time for these subsets to
be completed can’t be predicted, a dynamic workload balance method has to be used in order to
maintain balance between all units. This way we prevent threads quickly becoming idle, while
others take too much time solving their subspace.

Most parallel search-splitting solvers use a master-slave approach. In this approach, the master
controls a set of slave processes. The master process is responsible for keeping a workload balance
between all slave processes. When a slave becomes idle, it sends a request to the master process
for a new subspace. The master process selects the slave that has the shortest guiding path, splits
its search and then provides to the idle slave a new search space.

However, the shortest guiding path, despite being the largest unexplored space of the search,
may result in subspaces that could be quickly proven to be unsatisfiable. This could lead to a very

inefficient CPU time management, since the master would be often interrupting the work of the

18

3.1 Parallel approaches to SAT solving

Closed

Closed UNSAT

UNSAT Closed
Not Yet
Explored
GP1 GPl GP2
r1 = oQi1 xr1 = o@1 xTr1 = oQi1
zo = 1@Q2 xo = 1@2 o = 1@Q2
z3 = 0Q3 z3 = 0Q3 r3 = 1Q3

Figure 3.1: Search space splitting example. Figure obtained from [25]

slaves requesting for new subspaces. A solution that minimizes the idle time is to use a work pool
that contains unexplored guiding paths. Slaves could periodically fill this queue in such a way that
the master doesn’t need to interrupt their search as often. This way, when a slave is idle, it first
checks this queue if there are any guiding paths, only requesting the master for a new subspace

when there are no remaining unexplored guiding paths in the work pool.

UNSAT Py P Work Pool UNSAT if if Work Pool

Py Work Pool

Figure 3.2: Dynamic work stealing example. Figure obtained from [25]

Parallel Solvers PMINISAT [7], MIRAXT [23] and PAMIRA [28] use this approach. Figure

shows an example of this dynamic work stealing approach.

19

3. Parallel SAT

Problem splitting

Other approach to cooperative solvers is to split the original formula into several subformulas,
instead of search-space splitting through guiding paths. This subformulas could be solved in
parallel, although there is the need to have synchronism due to the shared variables between
subproblems.

An example of a solver that uses this approach is JACK-SAT [32]. This solver divides the
variable set V' in two subsets Vi, V2 of about equal size. Let P = (V,C) be the initial SAT
problem, the decomposition step builds the two subproblems P; = (V1,C4), P = (V3,C3) and a
residual clause-set C3. Each of the subsets ;7 and C5 is composed of variables belonging only to
V1 and Va, respectively. The remaining clause-set (C3) is composed of variables that belong to
both Vi and V5.

This decomposition results in searching independently for all the solutions of both subproblems
P, and P, trying to join them to obtain global solutions of P, thus checking for satisfiability of
the residual clauses Cs.

The major drawbacks of this method to be overcome are two-fold. First, the search for all
the solutions of n/2 variables problems compared to the search for one solution of a n variables
problem. Next, the additional Join-and-Check step that is polynomial in the number of solutions

but may be exponential in terms of n.

3.1.2 Competitive Solvers

Competitive Solvers, or portfolios, approach the SAT problem using different strategies on the
same instance in parallel. The performance of these algorithms is as good as the faster strategy that
solves the problem. Additionally, if these algorithms cooperate between themselves by exchanging
information like learned clauses it is possible to outperform the best strategy for a given problem.
Usually, a parallel portfolio uses different parameters for each SAT algorithm. These can be
different decision heuristic, restart or learning strategies, but they may also be completely different
solvers, running in parallel.

MANYSAT [I5] was the first portfolio solver to use a multicore architecture. Table [3.1]describes
the different strategies used in version 1.0, designed for 4 cores. For each core, the restart, decision
heuristic, polarity and learning strategies are slightly different. Clause sharing is limited to a static
size of 8 literals, i.e., all learned clauses that had 8 literals or less are shared between threads.

Even though parameter tuning could lead to complementary algorithms, it may also lead to
strategies that perform similarly. Therefore, if we increase the number of computing units it may
be difficult to achieve an efficient performance. A big challenge in portfolio solvers is to achieve
scalability. The following versions of MANYSAT are already suited for scalability, since these use
diversification and intensification strategies. A set of master-slave pairs is used in such a way that

the slave intensifies the search of the master by exploring its search space in a different way.

20

3.2 Parallel SAT Challenges

| Strategies [[Core 0 | Core 1 | Core 2 | Core 3
Restart Geometric Dynamic (Fast) Arithmetic Luby 512
z1 = 100 z1 = 100, 22 = 100 z1 = 16000
z; =15 X x;—1 T = f(yi_l,yi),i > 2 z; = x;—1 + 16000
ify—1 <w;
fWi-1,9:) = i
% X |cos(1 — 11/_1)|
else
Flyi-1,9:) =
& X eos(1 — ¥
Yi Yi—1
a = 1200
Heuristic VSIDS (3% rand.) VSIDS (2% rand.) VSIDS (2% rand.) | VSIDS (2% rand.)
Polarity Progress saving false Progress saving
if #occ(l) >#oce(—l)
I =true
else | = false
Learning CDCL (extended [1]) | CDCL CDCL CDCL (extended [1])
Cl. sharing size < 8 size < 8 size < 8 size < 8

Table 3.1: Different ManySAT 1.0 strategies

The results of ManySAT led to a win in the 2008 SAT Race [33] and with its predominance new
portfolio solvers have been developed since then, including PLINGELING [4], SARTAGNAN [2]] and
PPFOLIO [27]. The first two run several algorithms that differ between themselves in the heuristics,

while PPFOLIO is a compilation of different sequential state of the art solvers.

3.2 Parallel SAT Challenges
3.2.1 Resource allocation

As mentioned in this chapter, adding resources in SAT Solvers can increase their performance,
due to searching in different sets of the search space, in case of a portfolio solver, or to a good
split, in case of search-splitting solvers, which brings the solution to the beginning of a subspace.
By contrast, adding less useful threads or a bad search space splitting could also lead to a bigger
overhead, which could decrease the performance of a SAT solver.

The question of deciding which resources should be used in a parallel SAT Solver is a difficult

challenge, given the different complexity of SAT instances.

3.2.2 Splitting

As mentioned previously in this chapter, there are two essential types of splitting algorithms
in SAT solvers: search-space splitting algorithms, which divide the search-space into different
subspaces, and problem splitting, in which the instance itself is decomposed in a way that none of
the computing resources as access to the whole problem. Finding a decomposition in which the size
of the subproblems is balanced can easily be done, but usually the hardness of these subproblems
is heavily unbalanced. On the other hand, finding a decomposition that minimizes the number of
shared variables is also a difficult problem and not necessarily the best approach.

Currently the state of the art for both types of decomposition is unsatisfactory. Further research

is needed to find dynamic decomposition techniques that would lead to consistent results that

21

3. Parallel SAT

outperform currently known methods.

3.2.3 Knowledge Sharing

Most modern SAT solvers generate conflict clauses to prevent future conflicts and to prune
the search-space. Parallel solvers usually share learned clauses to accelerate the search process.
However, the number of generated clauses can be exponential and lead to a large overhead, in
terms of memory (additional space required to clause allocation) and processing (Propagation and
Backtracking has to be performed in a larger number of clauses). Sharing criteria have to be used
to reduce this overhead.

A simple method to reduce the number of shared clauses is to limit the size of clause to a
limit. This way, the number of shared clauses is heavily reduced and the cooperation is focused
in more powerful clauses. Nevertheless, this static criteria could not be the most suitable in many
occasions. For instance, if two threads explore completely different subsets of the search space,
clause sharing would be useless. On the other hand, a deeper cooperation level would be adequate
in two strategies that explore the same subset. Therefore, dynamic techniques should be used in

order to improve the quality of the clause sharing methods.

3.3 Conclusion

In this chapter an overview of the current approaches to parallel SAT, as well as its challenges
was presented.

Parallel SAT solving is a quite recent approach to SAT. Since 2008 there is a parallel track in
the annual SAT competitions performed, and although parallel solvers outperform state-of-the-art
sequential solvers, further research is needed to improve the effectiveness of these algorithms.

Given these methods and challenges, in the next chapters we will present our approaches to

parallel SAT solving and describe the solvers developed in this thesis, PMCSAT and CLUSTERSAT.

22

PMCSAT

Contents
4.1 Description] v i i i e e e e e e e e e e e e e e e 24
4.2 Implementation| 0 0o 0o e oo 26
E3 Resullsl. . - v v oot e e e e 27

23

4. PMCSAT

4.1 Description

Given the algorithms described in the previous sections and the predominance of portfolios over
the other approaches, a portfolio solution with cooperative solving was developed: PMCSAT.

PMCSAT is a portfolio, multicore SAT solver that uses multiple threads to explore the search
space independently. Each thread follows different paths due to the way each thread is configured.
However, PMCSAT is not just a competitive SAT solver. The threads cooperate among themselves
by sharing the learned clauses resulting from conflict analysis.

This portfolio solver was built on top of MINISAT 2.2.0 [I1], a sequential state-of-the-art solver,
developed in C++. The choice on this solver was based on its good performance, as well as in the
fact that it is small, well-documented and easy to modify. The parallel approach to this solver was
implemented using Pthreads. This solver was presented in the FLAIRS-26 conference [24], and
won bronze medal in the Hard-Combinatorial Parallel Track of the SAT Competition of 2013 [2].

In the following sections we describe the adopted strategies in the implementation of PMCSAT.

4.1.1 Decision Heuristics

Decision heuristics are used on SAT solvers for selecting the next variable to be assigned, and
the corresponding value, when no further propagation can be done. Although, some randomness
is incorporated into most heuristics, we would like to keep a tight control over the search space
explored by each thread. Therefore, the notion of variable priority was introduced. Variables with
higher priority are assigned before variables with lower priority. The well proven VSIDS heuristic is
used as the main decision heuristic but the variable selection is constrained by the priority assigned
to each variable.

In order to ensure that each thread follows divergent search paths on the search space, we
defined distinct priority assignment schemes, one for each thread of the PMCSAT solver. Table [4]]
describes the eight priority schemes that were used.

Note that, for most industrial SAT instances we can take advantage of the fact that the variables
appear in the CNF file in a particular order, which is not random, but related to the problem
structure. Therefore, threads 2-7 exploit that advantage by assigning priorities according to some
variable properties.

In [I] the authors show that using a more agressive clause deletion strategy could lead to good
results in a CDCL SAT solver, as a consequence of reducing the overhead on the propagation of
learnt clauses. Therefore, thread #1 uses a more agressive deletion strategy, while all the other

threads follow the original MINISAT deletion scheme.

4.1.2 Clause Sharing

It is well established that clauses learned during the search process, as a result of conflict

analysis, are vital to speed up the search. In a parallel solver, the information learned from a

24

4.1 Description

Thread # \ Priority assignment scheme
0.1 All the variables have the same priority, therefore this
’ thread mimics the original VSIDS heuristic.
9 The first half of the variables read from the file have higher
priority than the second half.
3 The first half of the variables read from the file have lower
priority than the second half.
4 The priority is sequentially decreased as the variables are
read from the file.
5 The priority is increased according to the number of vari-
able occurences in the file.
6 The priority is decreased according to the number of vari-
able occurences in the file.
7 The priority is decreased according to the number of vari-
ables that have the same number of common variables.

Table 4.1: PMCSAT’s priority assignment schemes for each thread

conflict in one particular thread can be very useful to other threads, in order to prevent the same
conflict to take place.

Therefore, clause sharing between threads was implemented in PMCSAT. We limited the size
of the clauses to be shared, to avoid the overhead of copying large clauses, which may contain very
little relevant information. To reduce the communication overhead introduced by clause sharing,
and its overall impact in performance, we designed data structures that eliminate the need for read
and write locks. These structures are stored in shared memory, which is shared among all threads.

We will consider that shared clauses are sent by a source thread and received by a target thread.

4 7

thread #0
source
lastWrite
queue #1 +
Lo]eleefes] . [[] |
thread #1 v
target lastRead
lastWrite
queue #2 *
L feefes] o [[] |
thread #2 v
target lastRead
lastWrite
queue #3 *

Lo [efesfe]es] o [] | |
thread #3 <

target K laszead j

Figure 4.1: Clause sharing data structure of PMCSAT

As illustrated in Figure each source thread owns a set of queues, one for each target thread,
where the clauses to be shared are inserted. While this flexible structure enables sharing different

clauses with different threads, we will restrict ourselves to sharing the same clauses with every

25

4. PMCSAT

thread. Therefore, every thread is a source thread and their target threads are all the others. On
each queue, the lastWrite pointer marks the last clause to be inserted. The lastWrite pointer is
only written by the source thread, but can be read by each target thread. On the other hand, the
lastRead pointer which marks the last clause received by the target thread, is only manipulated
by each target thread. This data structure eliminates the need for a locking mechanism, since
lastRead is only manipulated by one thread and even though lastWrite is read and written by
different threads, the reading thread does not have to read its latest value. Clause sharing occurs

after a conflict analysis.

4.2 Implementation

Algorithm 4.1 PMCSAT master process

PARSE CNF _FILE();

SolvedFlag = FALSE;

LAUNCH 8 PMCSAT THREADS();
solution = WAIT _FOR_FIRST THREAD();
return SOLUTION;

Algorithm 4.2 PMCSAT thread

1: CONFIGURE THREAD(thread ID);
2: while PERFORMING _MINISAT() do

3: PERIODICALLY CHECK _SOLVED _FLAG();
4: if SolvedFlag == TRUE then

5: ExiT_ THREAD();

6: end if

7: if ConrLicT FOUND() then

8: IMPORT _ CONFLICT _CLAUSES();

9: if ConflictClauseSize < 8 then

10: EXPORT _CLAUSE();

11: end if

12: end if

13: if SoLuTiON FOUND() then

14: SolvedFlag = TRUE;

15: REPORT _SOLUTION TO _MASTER();
16: ExiT_ THREAD();

17: end if
18: end while

Pseudocodes and describe the behavior of PMCSAT. The process starts with a master
thread that parses the CNF file and launches 8 threads, already containing the information obtained
from the instance. Each thread is configured according to the description given in the previous
sections.

Followed by this configuration, the underlying solver of PMCSAT, MINISAT, starts. Whenever
a thread bumps into a conflict, if the resulting conflict clause has a size < 8 it is exported to the

other threads. The thread also checks if any clauses have been exported by other threads and

26

4.3 Results

imports them if so.

The first thread that finds a solution writes in a boolean flag that indicates if the problem
has been solved, shared in memory by all threads. Every thread periodically checks that flag to
confirm if any thread has already found a solution. If yes, the thread exits. The master process

then waits for all threads to return and exits the process.

4.3 Results
4.3.1 Sequential solver/no sharing comparison

In this section we present preliminary results from applying PMCSAT to a slew of problems
gathered from a recent SAT race [33]. We pay particular attention to those originated from circuit
examples, given their practical relevance in an industrial setting, which are shown in Table [1.2]
These include problems which are both known to be SAT or UNSAT. We run additional examples
which are accounted for on the averages shown in the last line of Table All experiments were
conducted on a machine with a Dual Intel Xeon Quad Core processor at 2.33GHz, 24GB of RAM

and running Fedora Linux, release 17.

MINISAT [PMcSAT | Winning | Speedup PMCSAT s |
Instance Sol. | ##Vars | #Clauses (sec) (sec) Thread [nosh] MINISAT |
cmu-bmec-barrel6 U 2306 8931 1.32 0.541 0,1,4 1.73 2.44
cmu-bme-longmult13 U 6565 20438 26.27 4.753 7 4.58 5.53
cmu-bmec-longmult15 U 7807 24298 15.6 3.277 5,7 3.99 4.76
ibm-2002-11r1-k45 S 156626 633125 38.19 5.387 0,1,6 7.09 7.09
ibm-2002-18r-k90 S 175216 717086 102.3 18.593 1 5.50 5.50
ibm-2002-20r-k75 S 151202 619733 166.08 80.032 0,2 2.08 2.08
ibm-2002-22r-k60 U | 208590 845248 716.53 210.817 6 3.40 3.40
ibm-2002-22r-k75 S 191166 793646 251.07 10.52 0 16.21 23.87
ibm-2002-22r-k80 S 203961 846921 159.03 44.15 1 1.30 3.60
ibm-2002-23r-k90 S 222291 922916 680.85 193.581 5 3.52 3.52
ibm-2002-24r3-k100 U 148043 545315 202.9 35.448 0 4.23 5.72
ibm-2002-30r-k85 S 181484 888663 850.73 128.671 7 6.61 6.61
ibm-2004-1 11-k80 S 262808 1023506 145.46 71.189 1 1.83 2.04
ibm-2004-23-k100 S 207606 847320 837.61 33.312 3 20.92 25.14
ibm-2004-23-k80 S 165606 672840 232.34 9.909 4 23.46 23.45
ibm-2004-29-k25 U 17494 74526 98.99 23.942 2 4.14 4.13
mizh-md5-47-3 S 65604 234719 265.53 34.715 1 7.65 7.65
mizh-md5-47-4 S 65604 234811 87 19.872 5 2.00 4.38
mizh-md5-47-5 S 65604 235061 563.58 28.42 4 4.56 19.83
mizh-md5-48-5 S 66892 240181 312.49 29.18 4 6.50 10.71
mizh-sha0-35-3 S 48689 173748 29.36 6.72 1,3 0.90 4.37
mizh-sha0-35-4 S 48689 173757 262.22 15.32 1 4.46 17.12
mizh-sha0-36-1 S 50073 179811 353.95 11.21 3,6 7.94 31.57
mizh-sha0-36-4 S 50073 179989 217.09 49.919 7 4.34 4.35
velev-engi-uns-1.0-4nd U 7000 67553 10.83 3.246 0,1 3.15 3.34
velev-fvp-sat-3.0-b18 S 35853 1012240 27.05 2.278 6 11.89 11.87
velev-npe-1.0-9d1x-b71 S 889302 | 14582952 190.91 16.24 4 2.31 11.76
velev-vliw-sat-4.0-b4 S 520721 | 13348116 72.9 10.23 1,7 4.70 7.13
velev-vliw-sat-4.0-b8 S 521179 | 13378616 101.53 13.747 6 2.34 7.39
velev-vliw-uns-2.0-iq1 U 24604 261472 435.23 39.78 2,4 6.45 10.94
velev-vliw-uns-2.0-iq2 U 44095 542252 TO 321.24 2,4 5.12 NA
avg. table set (30 inst.) - 155250 1752574 248.50 47.62 - 5.96 9.38
avg. full set (78 inst.) — 168240 1119370 309.48 104.32 — 4.45 51.34

Table 4.2: Application of PMCSAT to a set of instances gathered from a SAT Race

In order, the columns of the table provide information about the problems chosen, namely the
instance name, its solution and the problem size (number of variables and number of clauses).

Following, the runtimes for MINISAT and PMCSAT using clause sharing are given. Also shown in

27

4. PMCSAT

the table is the information of which thread(s) of PMCSAT first found a solution for each of the
problems. When sharing of learned clauses is turned off, the comparison reduces to determining
which of the strategies, described in Table [I.1] is more appropriate to a given problem or set of
problems. In essence in this case all threads are instances of the basic MINISAT solver with the
parameter configurations described. In this case, it turns out that the standard MINISAT performs

quite well but many other strategies do equally well.

When sharing is turned on, the scenario changes considerably and picking chunks of variables
from the top or bottom of the order seems to do quite well on many occasions, given the fact the

most successful threads are #1 and #2.

Next we show speedup computations to attest the potential gains of our solver. First we com-
pare PMCSAT with clause sharing versus non-clause sharing. When clause sharing is turned off
we are really testing the appropriateness of the strategies in Table When clause sharing is
on, we are measuring the advantages of cooperation between threads. The advantages of clause
sharing seem obvious: using information from other threads, which are exploring problem struc-
ture elsewhere in the search space, provides relevant information and speeds up problem solution.
The speedup average when comparing PMCSAT with sharing vs. no sharing (4.45) confirm our
statement. However the advantage of this approach is also offset by the cost of doing the sharing
(both preparing clauses for sharing, as well as doing propagation in additional clauses). For this

reason in certain problems little a small is obtained.

Analysing the data we can therefore conclude that PMCSAT is faster than the existing state of

the art SAT solvers running on single core CPUs for real instance problems.

4.3.2 SAT Competition 2013 Results

In this section the results of PMCSAT from the 2013 SAT Competition [2] are presented. The

solver was submitted to two different parallel tracks: Application and Hard-Combinatorial.

All experiments were conducted on the bwGRiD cluster of the State of Baden-Wiirttemberg,
Germany. The cluster nodes have the following specification: 2x Quad-Core Intel Xeon E5440
processors, at 2.83 GHz, with 16GB of RAM per node and running Scientific Linux, kernel 2.6.18.
The Computational resources in the parallel Tracks were 8 cores (of a cluster node), 15GB RAM,

5000 seconds wall-clock time, 100 GB /tmp disk space.

In each track the solvers were tested on 300 instances. The following sections describe the
results in detail. The classification criteria is the number of solved instances, and the total wall
clock time used to computed the solutions as a tiebreaker. The first, second and third places are

awarded with a gold, silver and bronze medal, respectively.

28

4.3 Results

. % of | #runs used Average
| Solver version #solved | % of all VBS 7 by VBS | Wall Tirﬁe
- | Virtual Best Solver (VBS) 290 96.7 | 100.00 290 282.10
1 | Plingeling aqw 271 90.3| 93.45 60 1026.79
2 | Treengeling aqw 260 86.7| 89.66 36 1261.10
3 | PeneLoPe 2013 247 82.3| 85.17 26 1628.56
4 | Glucans strict 241 80.3| 83.10 60 1489.27
5 | pcasso port 227 75.7| 78.28 9 1769.86
6 | pcasso 1 227 75.7| 78.28 7 1781.16
7 | SatX10-GLCI bugfix 226 75.3| 77.93 15 1768.70
8 | strangenight satcompll-mt 225 75.0| 77.59 19 1937.02
9| pmcSAT 1.0 213 71.0| 73.45 18 2158.41
10 | GlucoRed r531 210 70.0| 72.41 28 2019.33
11 | GlucoRed-Multi r531 205 68.3| 70.69 10 2159.68
12 | SAT4J Parallel SC2013 111 37.0| 38.28 2 3750.11

Table 4.3: SC2013: Parallel Application Track Results

Application Track

This track refers to problem encodings (both SAT and UNSAT) from real-world applications,
such as hardware and software verification, bio-informatics, planning, scheduling, etc. Table
lists the parallel solvers that entered this track and its results. On the first column is the solver
final ranking. Next, the number of solved instances (out of 300) by each solver are given, followed
by the total % of instances in which the solver could find a solution.

The Virtual Best Solver (VBS) is a theoretical construction which returns the best answer
provided by one of the submitted solver. The next two columns compare the solvers with the VBS,
showing the total % of instances solved by the VBS in which the solver could find a solution, as
well as the number of instances where the solver had the best result, being therefore picked by the
VBS.

From the table, we can observe that PLINGELING AQW and TREENGELING AQW, both from
the same author, Armin Biere, had been awarded with a gold and silver medal, with 271 and
260 instances solved. PENELOPE 2013, with 247 instances solved, has been awarded with a
bronze medal. PMCSAT was ranked 9*" with 213 instances, which is not a particularly remarkable
classification, given the fact that there are 12 competitors.

Analysing the average wall time, as it would be expected, these times follow an inverse ratio
with the number of solved instances. As the number of solved instances increases, the average wall
time is expected to decrease.

Although GLUCANS STRICT was classified 47, it is the solver that has been more often picked
by the VBS, along with PLINGELING, with 60 instances each, while the third solver that has been
more picked, TREENGELING, has been the best solver in 36 instances, a slightly lower value, when
comparing to the first pair. PCASSO solver, both PORT and 1 versions, in spite of being classified 5"

and 6" are among the solvers that were less often picked by the VBS (9 and 7 instances picked).

29

4. PMCSAT

Number of solved instances within a given amount of wall clock time

250

200

150

100

number of solved instances

50 -1 ¢

—e— GlucoRed r531 (G0)
GlucoRed-Multi r531 (GO)
—e— PenelLoPe 2013 (GO)
Gilucans strict (GO)
—e— strangenight satcomp11-mt (GO)
—o— SatX10-GLCI bugfix (GO)

SAT4J Parallel SAT COMPETITION

7 2013 (Go)
—e— pcasso 1 (GO)

—e— Plingeling aqw (G0)

—4&— Treengeling aqw (G0)

pmCcSAT 1.0 (GO)

—&— pcasso port (GO)

Wall Clock Time (s)

T
3000

4000

5000

Figure 4.2: Number of solver instances solved by each solver within a given time

Figure shows the number of instances solved by each solver within a given time. From this

point of view we can easily conclude that all solvers find a solution for most instances in less than

1000 s. From that point on the solvers try to solve harder instances that could take much more

time, therefore, the solving ratio decreases significantly.

Hard-combinatorial Track

This track refers to instances that are often designed to give a hard time to SAT solvers

(including, e.g., instances arising from difficult puzzle games). Table describes the results this

track.
| Solver version ##solved | % of all ;7;];);' #ru];l; {l/_SPe,(Si WzﬁlveTriz:EE
- | Virtual Best Solver (VBS) 276 92.0 | 100.00 276 303.82
1| Treengeling aqw 253 84.3| 91.67 64 1149.49
2 | Plingeling aqw 242 80.7| 87.68 25 1412.73
3 | pcasso (disqualified) port 220 73.3| 79.71 22 1917.39
4 | pmcSAT 1.0 219 73.0| 79.35 48 1895.64
5 | pcasso (disqualified) 1 219 73.0| 79.35 30 1916.03
6 | Glucans strict 206 68.7| 74.64 29 2038.57
7 | GlucoRed r531 204 68.0| 73.91 27 2055.15
8 | GlucoRed-Multi r531 197 65.7| 71.38 6 2173.52
9 | strangenight satcompl1l-mt 189 63.0| 68.48 23 2214.07
10 | SAT4J Parallel SC2013 117 39.0| 42.39 2 3388.39

Table 4.4: SC2013: Parallel Hard-Combinatorial Track Results

30

4.3 Results

The structure of Table [44] is the same as table As we can see, TREENGELING AQW and
PLINGELING AQW again outperform the other parallel SAT Solvers. Although PCASSO PORT solves
one more instance than PMCSAT, it has been disqualified due to producing a wrong answer to an
instance. Therefore, PMCSAT was placed third in this track, winning a bronze medal.

PMCSAT has a similar performance when comparing with the application track (219 instances
solved against 213), while all the other solvers that also compete in the Application Track show a
slight decrease of performance. It also is the best solver for 48 instances, only being overcame by
TREENGELING, the best solver in 64 instances. We can thereby conclude that PMCSAT is suited
for difficult instances.

Figure [£.3] shows the number of instances solved by each solver within a given time. Besides
PLINGELING and TREENGELING, all the other solvers performances have similar performances
until about 1000 s, with the exception of SAT4J, which solves much less instances than any other
solver. With exception to TREENGELING and PLINGELING, PMCSAT reveals a better performance
than the other solvers through almost the all execution time, since about 1000 s. As mentioned
previously, although PCASSO PORT solves one more instance than PMCSAT, it has been disqualified

due to producing a wrong answer to two instances.

Number of solved instances within a given amount of wall clock time

250

200

150 —e— GlucoRed r531 (G0) —e— pcasso (disqualified) 1 (GO)
—o— GlucoRed-Multi r531 (G0) —e— Plingeling aqw (GO)
—o— Glucans strict (GO) —o— Treengeling aqw (GO)

strangenight satcomp11-mt (G0) —e— pmcSAT 1.0 (GO0)
SAT4J Parallel SAT COMPETITION
2013 (GO)

—&— pcasso (disqualified) port (GO)

100 {48

number of solved instances

50

0 T T T T T
0 1000 2000 3000 4000 5000

Wall Clock Time (s)

Figure 4.3: Hard-Combinatorial: Number of solver instances solved by each solver within a given
time

31

4. PMCSAT

32

clusterSAT

Contents
[B-D Description] . . . v v v v v v e 34
5.2 Resultsl. 0 0 0 i e e e e e e e e e e e e e e 38

33

5. clusterSAT

5.1 Description

After developing a portfolio SAT Solver, research was done in the problem splitting approach,
in which the state of the art is unsatisfactory. As mentioned in chapter 3, this approach is based on
splitting the original formula into several subformulas. These could be solved in parallel, although
there is the need to have synchronism due to the shared variables between subformulas.

A SAT solver based on this techniques was developed: CLUSTERSAT. This solver was also built
on top of MINISAT 2.2.0 with Pthreads for parallel implementation. The algorithm is divided in
two distinct fases: first the clustering phase, in which the problem is split, and then the solving

phase, in which the different clusters are solved and synchronised.

5.1.1 Clustering

Finding a decomposition where the size of the subproblems is balanced is easy, but balancing
the hardness of these subproblems, as well as minimising the number of shared variables between
clusters is also a difficult challenge.

This decomposition was done using the METIS [18] and HMETIS [17] libraries.

METIS Decomposition

METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes,
and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS
are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning
schemes.

METIS accepts as input an unidirectional graph. It was considered that each clause is a node
from the graph, in which the edges correspond to common variables between clauses. A weight
can be assigned to each edge, being related to the number of shared variables between clauses.
The program output is an assignment of each node (clause) to a cluster. The number of desired

clusters is defined by the user.

HMETIS Decomposition

HMETIS is a set of programs for partitioning hypergraphs. A hypergraph is a generalization
of a graph in which an edge can connect any number of vertices. Therefore, it was considered an
approach where the nodes of the hypergraph would be the clauses of the problem, and the hyper-
edges would be the variables, containing all the clauses where it appears. The program output is
equal to the output of the METIS approach: an assignment of each clause to a cluster.

Figure [5.] illustrates a simple example of a conversion from a CNF formula to a METIS and
HMETIS input. Edges in graph a) connect clauses that share the same variable, while in graph

b) edges connect all the clauses in which a variable appears. For instance, x; is shared between

34

5.1 Description

w2
w3
Wy
ws
we

w1
w2
w3
wq
ws
we

=21 V 1y

= x3 V 24
—x4 V T5
=29 V x4 V 125
-1 V T

—.7?1\/1772
= x3 V 24
= g V T5
=x9 V x4 V 15
= —x1 V T

Figure 5.2: Partition obtained from the clustering algorithms

clauses 1, 5 and 6. In graph a) all those nodes are connected among themselves, being 3 edges

needed, while in graph b) a single hyper-edge connects the three nodes.

As we can we observe in figure 5.2} clauses 1, 5 and 6 are strongly connected, as well as clauses

2, 3 and 4. Two types of outcoming clusters were considered:

Disjoint clusters - In this kind of partition each cluster would have the clauses assigned by
the clustering program output (e.g., in figure a, nodes 1, 5 and 6 belong to C; and nodes
2, 3 and 4 belong to C3). The only variable shared between these clusters is x5, which would
need special attention during the solving process. All the other variables are considered to

be local, since they only appear in a single cluster.

Centered clusters - Similar to the disjoint clusters partition, but with an additional cluster,
Cs, that is composed by the clauses which contain variables that belong to more than one
cluster. This way, in a partition with N clusters, C1,Co,...,C,, don’t have any type of
connection, only sharing variables with Cs (e.g., in figure b, nodes 1 and 4 are removed
from Cy and Cs, respectively and would compose a new cluster Cy). This type of partition

is similar to the approach in JACK-SAT [32].

After the instance decomposition, the solving process is started. In the following section the

different approaches, which use both types of decomposition, are described in detail.

5.1.2 Solving

To tackle the problem, different master-slave approaches were considered for the two types of

partitions. In all of these, the roles of the master/slaves were the following:

35

5. clusterSAT

e Master - Thread that controls the execution of the whole solving process. Its role is to

assure a consistent state, regarding the assignments of the shared variables.

e Slaves - Each slave is assigned to a cluster. Their role is to solve the cluster and report the

search-state to the master thread.

The different algorithms implemented were the following:

MASTER-FIRST, DISJOINT CLUSTERS

In order to avoid conflicting assignments of the shared variables, the master has access to the
whole problem and performs these assignments a priori. This is done by giving higher priority to
shared variables using the same scheme as in PMCSAT. Once these variables are assigned, the slaves

start to solve their respective clusters. Their work will result in one of the following outcomes:

e The slave finds a solution to its cluster and reports SAT to the master.

e The slave concludes that the problem is UNSAT and reports it to the master.

e The slave finds a conflict within the shared variables’ level and reports UNKNOWN to the

master, and also the respective conflict clause.

After all the slaves finish their work the master resumes its work, performing an analysis of the

work reported. This analysis will result in one of the following:

o If all the slaves return SAT then the problem is SATISFIABLE.

e If one or more slaves return UNSAT then the problem is UNSATISFIABLE.

e Otherwise, the master imports the conflict clauses exported by the slaves, redoes the assign-

ment of the shared variables and the slaves restart with the new set of shared assignments.

MASTER-FIRST, CENTERED CLUSTERS

In this approach, no thread has access to the whole problem. For instance, in a N cluster
partition, each slave will solve its respective cluster, and the master process will be responsible for
the residual cluster, Cj.

This process is very similar to the previous one, with the exception of the master’s solving
scheme. Instead of having access to the whole problem and assigning only the shared variables
between clusters, the master solves its own cluster and exports the assignments to the slaves.

The behavior of the algorithm in the rest of the process is equal to the previously described.

Figure [5.3| resumes the behavior of the algorithm in both types of partitions.

36

5.1 Description

/C,
>

Assignments
completed

Global conflict
detected

Shared
variables

2I<

‘ Backtrack

Local
variables

Figure 5.3: Master-first solving process description

SLAVES-FIRST, DISJOINT CLUSTERS

This approach is slightly different than the ones described previously. Instead of being the
master to start the solving process, the slaves solve their clusters in parallel.

The role of the master in this approach is to analyse the slaves’ guiding paths and undoing
opposite assignments, regarding the shared variables. A set of patterns is used to weight the quality

of each assignment:

e The polarity of the variable assignments. Let Ap be the number of true assignments of the
variable and Ay the number of false assignments. The variable is more likely to be assigned

true if Ap > A, and assigned false otherwise.

e The associated decision level of the variable. The assignment is more likely to be considered
if its corresponding decision level is lower, which means that the variable is in a higher level

of the decision tree.

e The number of implications generated by the variable assignment. The assignment is more

likely to be considered if it generates more implications.

The outcoming set of assignments is then exported to the slaves and the process restarts, until
there are no different assignments among the shared variables. The problem is then considered
SATISFIABLE. The problem is considered UNSATISFIABLE when a slave detects that its
cluster is UNSAT, or when the master process detects conflicting unit assignments on the top of

the decision tree.
SLAVES-FIRST, CENTERED CLUSTERS

Again, this approach is very similar to the previous one with exception to the master role.
Since with this kind of partition the only shared variables are between the residual cluster Cs and
other clusters, the slaves do not share any variables. Therefore, when the master process imports
the slaves’ guiding paths there would be no conflicting assignments.

However, the master has to solve the residual cluster. If a conflict occurs on the slaves’ assign-

ments level, the respective conflict clauses are exported and all the process restarts. If the master

37

5. clusterSAT

process finds a solution for its cluster then the problem is SATISFIABLE. Again, the problem

is reported UNSATISFIABLE when one of the clusters, including the master’s cluster, returns

UNSAT in anytime of the search-process.

Figure [5.4] describes graphically this approach.

Slaves’
Clusters

Sl
21€

Master
Cluster

C, - C, solved

——

Conflict on Cg

Figure 5.4: Slaves-first, Centered Clusters solving process description

5.2 Results

Backtrack

In this section the experimental results from applying CLUSTERSAT to a set of CNF instances

are presented. Given the novelty of the approach and the difficulty of partitioning large problems,

we focused on solving problems of medium difficulty, in which a good partition could be done. The

approach with the best performance was by far the Master First, Centered Clusters, which

is thus the approach considered for the results presented. All experiments were conducted on a

machine with a Dual Intel Xeon Quad Core processor at 2.33GHz, 24GB of RAM and running

Fedora Linux, release 17.

[% Shared Vars [% Clauses w/shared vars [% Shared Vars/Clause |
Instance Sol. | #Vars | #Clauses =551 7 | 8dl. | 2cl. | 4ol | 8ol | 2cL | 4ol | 8ol |
cmu-bme-barrel6.cnf U 2306 8931 [12.14% 25.59% 40.16% | 20.11% 49.08% 70.34% | 13.37% 25.59% 46.97%
cmu-bme-longmult13.cnf U 6565 20438 2.03% 4.71% 9.58% 4.30% 9.15% 24.14% 2.47% 4.91% 13.27%
cmu-bme-longmult15.cnf U 7807 24298 | 1.01% 4.05% 5.97% | 1.82% 8.37% 14.61% | 0.86% 5.056% 7.43%
bmec-ibm-1.cnf S 9685 55180 1.17% 2.89% 7.06% 3.14% 10.63% 21.36% 1.36% 5.49% 11.65%
bmec-ibm-2.cnf S 2810 11185 2.28% 1.53% 5.05% 8.24% 6.76% 27.61% 5.91% 3.11% 16.94%
bmec-ibm-3.cnf S 14930 71533 1.25% 2.10% 6.79% 2.47% 4.24% 15.37% 1.22% 2.04% 7.91%
bmec-ibm-4.cnf S 28161 134213 | 0.69% 1.86% 4.18% 2.74% 7.13% 16.16% 1.21% 3.35% 8.30%
bmec-ibm-5.cnf S 9396 40534 | 0.73% 2.47% 3.82% 3.34% 11.27% 15.82% 1.29% 4.91% 6.79%
bmc-ibm-6.cnf S 51639 359916 | 0.52% 1.39% 2.58% 1.43% 4.26% 8.12% 0.68% 1.94% 3.69%
bmc-ibm-7.cnf S 8710 38542 2.19% 4.95% 7.03% 9.04% 23.90% 32.58% | 4.42% 14.60% 18.73%
bmec-galileo-8.cnf S 58074 291715 0.39% 1.10% 2.73% 0.69% 2.62% 7.59% 0.31% 1.06% 2.90%
bmc-galileo-9.cnf S 63624 323881 0.38% 1.03% 2.29% 1.18% 3.23% 6.56% 0.48% 1.16% 2.47%
bmec-ibm-10.cnf S 59506 314563 | 0.60% 2.20% 3.72% 1.94% 7.47% 11.84% 0.81% 3.88% 5.55%
bmec-ibm-11.cnf S 32109 148281 0.29% 1.67% 2.76% 0.74% 4.70% 8.18% 0.32% 2.62% 3.82%
bmc-ibm-12.cnf S 39598 193434 | 0.32% 0.95% 2.19% 0.86% 2.31% 5.05% 0.36% 0.96% 2.11%
bmec-ibm-13.cnf S 13215 65025 1.45% 2.63% 10.36% 3.36% 6.30% 25.85% 1.59% 3,12% 16.02%
een-tip-sat-nusmv-t5.B.cnf | S 61933 166069 | 0.40% 1.10% 2.83% | 0.68% 3.69% 9.69% | 1.41% 1.73% 4.64%
een-tip-sat-texas-tp-5e.cnf S 17985 47464 | 0.33% 1.24% 2.67% 0.86% 3.19% 7.53% 0.41% 1.61% 3.66%
een-tip-sat-vis-eisen.cnf S 18607 52440 | 0.21% 0.61% 2.76% 0.35% 1.83% 7.54% 0.16% 0.89% 3.96%
avg. table set(19 inst.) - [26666 [124613 [1.49% 3.37% 6.55% [3.54% 8.95% 17.68% [2.03% 4.72% 9.83%]

Table 5.1: Application of METIS to a set of CNF instances

In table the clustering results from applying METIS are given. Due to the high run-times

of HMETIS, only the METIS tool was used to obtain a partition. First, the name of the instance

38

5.2 Results

is presented, as well as its outcome and the respective number of variables and clauses. Next the
decomposition results, for 2, 4 and 8 clusters are described, namely the ratio of shared variables,
clauses with shared variables, and number of shared variables per clause.

As it would be expected, the number of shared variables increases reasonably with the number
of clusters. Consequently, the number of clauses with shared variables raises, as well as the the
shared variables per clause. Comparing these values, we can also conclude that the shared variables
grow in approximately the same ratio as the shared variables per clause, while the ratio of clauses

with shared variables grows faster, since each clause has several literals.

Clustering (sec) | MINISAT Solving (sec Best Speedup
Instance Sol. | #Vars | 7Clauses 517 . (8 c{. (sec) } 2cl. |4 cl.([EZ cl. % Total time | Solving %
cmu-bmec-barrel6.cnf U 2306 8931 | 0.04 0.07 0.20 1.32 2.07 1.11 0.70 1.47 1.90
cmu-bme-longmult13.cnf U 6565 20438 | 0.05 0.05 0.07 26.27 | 42.71 34.34 23.75 1.10 1.11
cmu-bme-longmult15.cnf U 7807 24298 | 0.06 0.06 0.08 15.60 | 63.14 47.21 22.09 0.70 0.71
bmc-ibm-1.cnf S 9685 55180 | 0.11 0.12 0.17 0.05 0.15 0.27 0.22 0.18 0.32
bmec-ibm-2.cnf S 2810 11185 | 0.01 0.01 0.01 0.01| 0.00 0.00 0.00 0.78 2.33
bmec-ibm-3.cnf S 14930 71533 | 0.15 0.17 0.22 0.12| 0.15 0.17 0.14 0.38 0.86
bmc-ibm-4.cnf S 28161 134213 | 0.16 0.16 0.28 0.12 0.28 0.35 0.20 0.28 0.60
bmc-ibm-5.cnf S 9396 40534 | 0.07 0.07 0.10 0.02| 0.04 0.03 0.01 0.24 2.09
bmc-ibm-6.cnf S 51639 359916 | 0.98 1.46 1.16 0.17] 0.19 0.14 0.11 0.14 1.56
bmec-ibm-7.cnf S 8710 38542 | 0.03 0.04 0.06 0.01 | 0.01 0.01 0.00 0.41 3.50
bmec-galileo-8.cnf S 58074 291715 | 2.00 2.31 3.10 0.24| 035 0.28 0.15 0.10 1.57
bmc-galileo-9.cnf S 63624 323881 | 2.32 2.71 2.54 0.17| 0.20 0.16 0.10 0.07 1.71
bmc-ibm-10.cnf S 59506 314563 | 1.01 1.12 1.51 0.57 1.82 1.15 0.75 0.25 0.75
bmc-ibm-11.cnf S 32109 148281 | 0.32 0.27 4.33 0.26 7.90 4.54 1.78 0.05 0.15
bmec-ibm-12.cnf S 39598 193434 | 0.86 0.91 0.73 2.33 | 827 6.40 2.55 0.71 0.91
bmec-ibm-13.cnf S 13215 65025 | 0.18 0.15 0.21 2.48 | 13.85 3.21 0.17 6.53 14.91
een-tip-sat-nusmv-t5.B.cnf | S 61933 166069 | 0.37 0.36 0.55 3.63 | 4.17 3.38 3.02 1.02 1.20
een-tip-sat-texas-tp-5e.cnf S 17985 47464 | 0.07 0.06 0.07 0.18| 0.26 0.18 0.12 0.95 1.56
een-tip-sat-vis-eisen.cnf S 18607 52440 | 0.07 0.08 0.09 0.34| 3.73 1.28 0.32 0.83 1.08
[avg. table set(19 inst.) [-] 26666 124613]0.47 0.53 0.82] 2.84] 7.86 5.48 2.96 | 0.85] 2.04]

Table 5.2: Application of CLUSTERSAT (Master-first, Centered Clusters) to a set of CNF instances

Table [5.2] describes the results from applying CLUSTERSAT to the given set of instances. Again
the description of the instance is given, followed by the time used by METIS to perform a partition
of the problem (in 2, 4 and 8 clusters), followed by the running time of the underlying algorithm,
MINISAT, and the solving time used by CLUSTERSAT to solve the problem, using 2, 4 and 8
clusters. Finally, the speedup obtained comparing CLUSTERSAT to MINISAT, considering all the
execution time (Clustering+Solving), and just the Solving time.

As we raise the number of clusters, the clustering time used by METIS also increases. The
solving time, however, decreases remarkably, which suggests that increasing the number of clusters
would benefit the performance of CLUSTERSAT. Analysing the obtained speedups, considering just
the solving time, the algorithm obtains some speedup in several instances. Here we used the time
for the best clustering, 2, 4 or 8. Usually it is 8. However, if we consider all the processing time,
most of these speedups are lost.

We can therefore conclude that the results of applying CLUSTERSAT don’t show any major
improvements yet. MINISAT, the base solver for this strategies, outperforms any of the different
strategies implemented. The identified problems that resulted in this decrease of performance were

the following:

39

5. clusterSAT

e A big unbalanced workload was verified through the execution of CLUSTERSAT. When
the master thread is performing variable assignments, all the slaves are idle, waiting for a
work order. Also, the master only restarts its work when he receives a response from all the
slaves, which means that slaves that finish solving their clusters earlier will be idle until all

are finished. This was an implementation choice that can be improved at a later time.

e Repeated iterations of the algorithm with a lot of redundant work performed. This

issue happens in all the strategies implemented in the following way.

— Master-first, Disjoint Clusters - The master process assigns all the shared variables
and the slaves identify a single conflict on the assignments. The master has to import

the conflict clause and reassign all the variables.

— Master-first, Centered Clusters - The master solves its cluster and the slaves detect
a conflict on the assignments. The master process has to import the conflict clause and

solve the whole cluster again.

— Slaves-first - The slaves solve their respective clusters and the master detects a conflict
on the shared variables assignment. The slaves may have to reassign all their variables.

This happens in both Disjoint Clusters and Centered Clusters approaches.

In all these approaches, much of the assigns performed after a detection of a conflict are the

same, which is the main reason for the low performance of this solver.

e Forced modification of the decision heuristic. In the Master-First, Disjoint Clusters
approach, higher priority has to be assigned to the shared variables between clusters. The
outcoming of this method is generally worse than the original VSIDS, resulting often in a

decrease of overall performance.

e In the Slaves-first approaches, a very common issue results in the repetition of the same
assignments in successive iteration. This is due to an insufficient conflict analysis from the

master. An example of this issue is detailed below:

Cy = (1 Vo) A (m22 V), p(Cr) ={x; =0}

Cy = (x3Vxy) A (m24 Vas), p(Co) ={x3 =0}
In this case, the p(C7) and p(Cs) lead to conflicting assignments, x5 = 0 and 25 = 1. A
standard analysis from the master process leads to the following conflict clause: (z1 V z3).
This clause, from the point of view of a slave is useless, since it contains variables from

other clusters that would never be assigned. Therefore this clause would never to drive an

implication and avoid a conflict.

From the issues described, we can conclude that this approach is still in its infancy. Further

research is needed to improve the algorithm, both in the clustering and solving sections.

40

Conclusions

Contents
6.1 Contributions|. . . .« ¢ ¢ v v v i i e 42
6.2 Future workl. e 43

41

6. Conclusions

Boolean Satisfiability (SAT) is fundamental procedure in solving a multitude of problems and
has applications in a variety of fields of Computer Science and Engineering. However, in the past
decades several new technological novelties have enabled unprecedented advances in sequential
SAT solving. These include non-chronological backtracking, restarts, improvements in decision
heuristics, etc. However, in recent years this trend of continuous new developments has slowed
down. Unfortunately this is at odds with growing appetite for faster solvers able to solve larger,
harder problems. New approaches are thus required to enable this continued growth in solver
capacity and performance.

The widespread availability of parallel parallel environments, such as multi-core with shared
memory provides an opportunity for boosting the effectiveness of SAT solution. In the last years
the number of cores and processors has been continuously increasing.

The SAT community is becoming more interested in parallel approaches. Since 2008, there
has been a parallel track in the annual competition for parallel SAT solvers, which is designed for
shared memory architectures. Currently, portfolio approaches are dominating this track. Even
though the increase in the performance is not as significant as expected, modern parallel SAT

solvers can now outperform state-of-the-art sequential solvers.

6.1 Contributions

In this dissertation two different parallel multi-core SAT solvers where developed to speed-
up the search for a problem solution. These solvers endorse two different approaches to parallel

solutions of SAT problems.

PMCSAT

PMCSAT is a portfolio SAT solver, which launches multiple instances of the same solver, with
different parameter configurations. These tasks cooperate to a certain degree by sharing relevant
information when searching for a solution. Different decision heuristics are set, combined with a
lockless clause sharing mechanism. Although it is not a novel contribution, this algorithm uses a
priority-based decision heuristic schema, a innovating concept upon portfolio SAT solvers.

Experimental results show that PMCSAT is a high quality parallel SAT solver, since it outper-
forms current state of the art sequential solvers. It has also been awarded with a bronze medal in
one of parallel tracks of SAT competition 2013 [2] and has been presented in Florida, USA, in the
FLAIRS-26 conference [24].

CLUSTERSAT

CLUSTERSAT uses graph partitioning libraries to split the original problem into smaller sub-
problems and launches multiple threads to solve these subproblems, that cooperate to find a valid

solution.

42

6.2 Future work

Experimental results from applying CLUSTERSAT to instances from real-world applications do
not show major improvement over state of the art sequential solvers, which is somewhat upsetting.
However we point out that this is a novel approach still somewhat in its infancy. The clustering and
solving techniques are still inefficient but further research is needed to improve the performance
of this algorithm and with the description of our different approaches, we hope to enhance the

development of new techniques that may possibly outperform current state of the art solvers.

6.2 Future work

Parallel SAT solving is still a recent field of research on propositional satisfiability. Over the
past years, computational resources have evolved in a way that higher computational power comes
from a higher number of processor cores and therefore SAT solving has had a major focus in parallel
techniques.

PMCSAT, in spite of this showing already remarkable results, could still take some modifica-

tions in order to improve its performance:

e As mentioned in this thesis, dynamic clause sharing could improve the performance of a
parallel SAT solver. So, in threads which use similar search approaches, the clause sharing

schema between threads should be deeper, otherwise it should be less deep.
e Additional parameters could be tuned (e.g., restarts, learning schema, etc.)

e Use different sequential solvers as underlying SAT solver (e.g., GLUCOSE [1]).

CLUSTERSAT is still in an infant state, so several modifications would be needed in order to

improve its performance. The most important aspects are described with detail in section 5.2:

e A big unbalanced workload was verified through the execution of CLUSTERSAT.
e Repeated iterations of the algorithm with a lot of redundant work performed.
e Forced modification of the decision heuristics.

e Repeated iterations of the algorithm due to insufficient conflict analysis.

Concluding, parallel SAT solving has shown major improvements over the past years. Current
state of the art parallel solvers outperform any sequential approach. With multicore architectures
becoming predominant, it is important to continue exploring parallel techniques and frameworks

that take advantage of this reality in order for SAT solvers to continue to evolve.

43

6. Conclusions

44

Bibliography

[1] Audemard, G. and Simon, L. (2009). Predicting learnt clauses quality in modern sat solver. In

Twenty-first International Joint Conference on Artificial Intelligence(IJCAT'09), pages 399-404.

[2] Balint, A., Belov, A., Heule, M., Jdrvisalo, M., and et al (2013). SAT Competition 2013.
http://satcompetition.org/2013/.

[3] Biere, A. (2008). Picosat essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT).

[4] Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Technical
Report 10/1, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler

University, Austria.

[5] Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. (1999). Symbolic Model Checking without
BDDs. In Proceedings of Tools and Algorithms for the Analysis and Construction of Systems
(TACAS’99), number 1579 in LNCS.

[6] Buro, M. and Biining, H. K. (1993). Report on a SAT competition. Bulletin of the European

Association for Theoretical Computer Science, 49:143-151.

[7] Chu, G., Stuckey, P. J., and Harwood, A. (2008). Pminisat: A parallelization of minisat 2.0.
Technical report, NICTA Victoria Laboratory.

[8] Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the

Third IEEE Symposium on the Foundations of Computer Science, pages 151-158.

[9] Davis, M., Logemann, G., and Loveland, D. (1962). A Machine Program for Theorem-Proving.
Communications of the ACM, 5(7):394-397.

[10] Davis, M. and Putnam, H. (1960). A computing procedure for quantification theory. J. ACM,
7(3):201-215.

[11] Een, N. and Sorensson, N. (2004). An Extensible = SAT-solver.
Theory and Applications of Satisfiability Testing, 2919:502-518.

45

Bibliography

[12] Freeman, J. W. (1995). Improvements to Propositional Satisfiability Search Algorithms. PhD

thesis, Departement of computer and Information science, University of Pennsylvania, Philadel-

phia.

[13] Goldberg, E. I., Prasad, M. R., and Brayton, R. K. (2001). Using sat for combinational
equivalence checking. In DATE, pages 114-121.

[14] Gomes, C. P., Selman, B., and Kautz, H. (1998). Boosting Combinatorial Search Through
Randomization. In Proceedings of AAAI, pages 431-437, Madison, Wisconsin, USA.

[15] Hamadi, Y., Jabbour, S., and Sais, L. (2009). ManySAT: A Parallel SAT Solver. JSAT, 6.

[16] Jeroslow, R. G. and Wang, J. (1990). Solving propositional satisfiability problems. Annals of
Mathematics and Artificial Intelligence, 1:167-187.

[17] Karypis, G. and Kumar, V. (2011a). hMETIS, A Hypergraph Partitioning Package Version
1.5.3. http://glaros.dtc.umn.edu/gkhome,/metis/hmetis/download.

[18] Karypis, G. and Kumar, V. (2011b). METIS, A software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
Version 5.0. http://glaros.dtc.umn.edu/gkhome/metis/metis/download.

[19] Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., and Selman, B. (2002). Dynamic Restart
Policies. In Proceedings of AAAI, pages 674—681, Edmonton, Alberta, Canada.

[20] Kim, J., Silva, J. P. M., Savoj, H., and Sakallah, K. A. (1997). Rid-grasp: Redundancy
identification and removal using grasp. In In IEEE/ACM International Workshop on Logic

Synthesis.

[21] Kottler, S. and Kaufmann, M. (2011). SArTagnan - A parallel portfolio SAT solver with
lockless physical clause sharing. In Pragmatics of SAT.

[22] Larrabee, T. (1992). Test pattern generation using boolean satisfiability. IEEE Transactions

on Computer-Aided Design, 11:4-15.

[23] Lewis, M., Schubert, T., and Becker, B. (2007). Multithreaded sat solving. In Proceedings of
the 2007 Asia and South Pacific Design Automation Conference, ASP-DAC 07, pages 926-931,
Washington, DC, USA. IEEE Computer Society.

[24] Marques, R. S., e Silva, L. G., Flores, P., and Silveira, L. M. (2012). Improving sat solver
efficiency using a cooperative multicore approach. International FLAIRS Conference, May 22 -

24, 2013.

[25] Martins, R., Manquinho, V., and Lynce, I. (2012). An overview of parallel sat solving.
Constraints, 17(3):304-347.

46

Bibliography

[26] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001). Chaff:
Engineering an Efficient SAT Solver. In Proceedings of DAC, pages 530-535, Las Vegas, Nevada,
USA.

[27] Roussel, O. (2011). Description of ppfolio.

[28] Schubert, T., Lewis, M. D. T., and Becker, B. (2005). Pamira - a parallel sat solver with
knowledge sharing. In Abadir, M. S. and Wang, L.-C., editors, MTV, pages 29-36. IEEE

Computer Society.

[29] Sheeran, M., Singh, S., and Stalmarck, G. (2000). Checking safety properties using induction
and a sat-solver. In Proceedings of the Third International Conference on Formal Methods in

Computer-Aided Design, FMCAD ’00, pages 108-125, London, UK, UK. Springer-Verlag.

[30] Silva, J. P. M. and Sakallah, K. A. (1994). Efficient and robust test generation-based timing
analysis. In ISCAS, pages 303-306.

[31] Silva, J. P. M. and Sakallah, K. A. (1996). GRASP: A New Search Algorithm for Satisfiability.
In Proceedings of ICCAD, pages 220-227, San Jose, California, United States.

[32] Singer, D. and Monnet, A. (2008). JaCk-SAT: a new parallel scheme to solve the satisfiability

problem (SAT) based on join-and-check. In Proceedings of the 7th international conference

on Parallel processing and applied mathematics, PPAM’07, pages 249-258, Berlin, Heidelberg.

Springer-Verlag.

[33] Sinz, C. and et al (2008). SAT Race 2008. http://baldur.iti.uka.de/sat-race-2008 /index.html.
Accessed on May 2012.

[34] Velev, M. and Bryant, R. (2001). Effective use of boolean satisfiability procedures in the
formal verification of superscalar and vliw microprocessors. In Proceedings of the 38th Design

Automation Conference (DAC ’01), pages 226-231.

[35] Zhang, H. (1997). SATO: an efficient propositional prover. In Proceedings of the International
Conference on Automated Deduction (CADE’97), volume 1249 of LNAI, pages 272-275.

[36] Zhang, H., Bonacina, M. P., Paola, M., Bonacina, and Hsiang, J. (1996). Psato: a dis-
tributed propositional prover and its application to quasigroup problems. Journal of Symbolic

Computation, 21:543-560.

47

Bibliography

48

Bibliography

49

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main contributions
	1.4 Dissertation outline

	2 SAT Overview
	2.1 Basic Concepts of SAT Solving
	2.2 Davis-Putnam (DP) Resolution-Based Algorithm
	2.3 Davis-Logemann-Loveland (DLL) Search-Based Algorithm
	2.3.1 Backtrack
	2.3.2 Decision Heuristics
	2.3.3 Boolean Constraint Propagation
	2.3.4 Restarts

	2.4 Modern CDCL SAT Solvers
	2.5 Conclusions

	3 Parallel SAT
	3.1 Parallel approaches to SAT solving
	3.1.1 Cooperative Solvers
	3.1.2 Competitive Solvers

	3.2 Parallel SAT Challenges
	3.2.1 Resource allocation
	3.2.2 Splitting
	3.2.3 Knowledge Sharing

	3.3 Conclusion

	4 pmcSAT
	4.1 Description
	4.1.1 Decision Heuristics
	4.1.2 Clause Sharing

	4.2 Implementation
	4.3 Results
	4.3.1 Sequential solver/no sharing comparison
	4.3.2 SAT Competition 2013 Results

	5 clusterSAT
	5.1 Description
	5.1.1 Clustering
	5.1.2 Solving

	5.2 Results

	6 Conclusions
	6.1 Contributions
	6.2 Future work

	Bibliography

