
Improving SAT Solver Efficiency using a
Cooperative Multicore Approach

Ricardo Marques Lúıs G. Silva Paulo Flores L. Miguel Silveira
ALGOS Group at INESC-ID Lisbon

Instituio Superior T́ecnico - Technical University of Lisbon
email:{rsm,lgs,pff,lms}@inesc-id.pt

INESC-ID Technical Report RT 28/2012
October 2012

Abstract—Many problems in Computer-Aided Design of Elec-
tronic Systems are addressed by converting them to a sequence of
SAT problems solved with a state of the art SAT solver. Typical
applications include problems in testing, timing, verification,
routing, etc. Despite the enourmous progress achieved over
the last decade in the development of SAT solvers, there is
strong demand for higher algorithm efficiency to solve harder
and larger problems. The widespread availability of multi-core,
shared memory parallel environments provides an opportunity
for such improvements. In this paper we present our results
on improving the effectiveness of standard SAT solvers on such
architectures, through a portfolio approach. Multiple instances
of the same basic solver using different heuristic strategies for
search-space exploration and problem analysis share information
and cooperate towards the solution of a given problem. Results
from application of our methodology to known problems from
SAT competitions and EDA problems show relevant improve-
ments over the state of the art and yield the promise of further
advances in CAD of electronic systems.

I. I NTRODUCTION

Propositional Satisfiability (SAT) is the workhorse for many
tasks in Computer-Aided Design of Electronic Systems. Typi-
cal applications include problems in hardware verification[1],
timing analysis [2], optimal circuit design, FPGA routing [3],
combinational equivalence checking [4] and automatic test
pattern generation [5]. Each problem instance of a particular
domain is converted into a SAT instance, or sequence of SAT
instances, and solved using a state-of-the-art SAT solver.One
of the main reasons for the increased interest in SAT is the
considerable efficiency improvements that SAT solvers have
undergone in the past decade [6], [7]. This progress can be
traced back to remarkable algorithmic improvements as well
as significant progress in the ability of SAT solvers to exploit
the hidden structure of many practical problems. However,
this added capability is continuously challenged by emerging
applications which bring to the fold problems and systems
of increasing size and complexity. As a consequence, many
problems remain very challenging and unsolved by even the
best solvers.

The generalization of multicore processors as well as the
availability of fairly standard clustering software provided ac-
cess for the common user to parallel computing environments
and has opened up new opportunities for improvement in many
areas. The main goal of parallel SAT solvers is to be able to

This work was supported by the Portuguese Foundation for Science and
Technology (FCT) research project Parsat - Parallel Satisfiability Algorithms
and its Applications (PTDC/EIA-EIA/103532/2008) and by FCT through the
PIDDAC Program funds.

solve problems faster. Several metrics can be used to quantify
the resulting improvements, including speedup and efficiency.
An enticing feature of parallelization in search-based problems
is that super-linear speedups are achievable if one is lucky
to search the right region of the search space. Often, one is
satisfied with the ability to demonstrate speedup by solving
problems faster and doing so in a robust manner over a large
range of problems. Combining such robustness with the elusive
possibility of large gains is clearly a goal worth pursuing.

In this paper we presentCMCSAT, a portfolio-based multi-
threaded, MultiCore SAT solver which exploits a different
approach to resource utilization. The general strategy pursued
in CMCSAT is not entirely novel and has in fact been pre-
viously proposed in other SAT solvers [8]. The idea is to
launch multiple instances of the same (or different) solvers,
sometimes called a portfolio, with different parameter con-
figurations, which cooperate to a certain degree by sharing
relevant information when searching for a solution. For in-
stance for a routing problem, different options can be made
by the various instances and relevant information regarding for
instance obstructions, can be shared. This approach minimizes
the dependence of current SAT solvers on specific parame-
ter configuration chosen to regulate their heuristic behavior,
namely the decision process on the choice of variables, on
when and how to restart, on how to backtrack, etc. Instead
of attempting to guess the optimal parameter configuration
we exploit multiple configurations in parallel and hope that
one of them, with the help of the shared information, might
find a solution faster. Each solver instance will attempt to
find a solution to the problem or prove that no solution
exists. To do so, it will use the information it gathers plus
the information gathered and shared by others which are
concurrently attempting to find the same solution.

The remainder of this paper is organized as follows. Sec-
tion II reviews core SAT solver techniques and parallelization
strategies. Section III details the proposed multicore SAT
approach. Section IV presents experimental results, including
comparisons with serial and other parallel implementations.
Finally, Section V presents a few concluding remarks.

II. BACKGROUND

The SAT problem consists in determining if there exists an
assignment to the variables of a propositional logic formula
such that the formula becomes satisfied. A problem to be
handled by a SAT solver is usually specified in a conjunctive
normal form (CNF) formula of propositional logic. A CNF



formula is represented using Boolean variables that can take
the values 0 (false) or 1 (true). Clauses are disjunction of
literals, which are either a variable or its complement, anda
CNF formula is a conjunction of clauses.

Basic SAT solvers are based on theDavis-Putnam-
Loveland-Logemann(DPLL) algorithm [9], which improves
over the simple assign, test and backtrack algorithm by the
using two simple rules at each search step: unit propagation
and pure literal elimination. The unit propagation occurs when
a clause contains only a single unassigned literal (unit clause).
In order to satisfy the unit clause, no choice is necessary,
since the value to assign the variable is the value necessaryto
make the literaltrue. The pure literal elimination consists in
determining if a propositional variable occurs with only one
polarity in the formula. Such literals can always be assigned
in a way that makes all clauses containing themtrue. Thus,
these clauses no longer constrain the search and can be deleted

During the search process a conflict can arise when both
Boolean values have been tried on a variable and the formula
is not satisfied. In this situation the algorithm backtracksto
the previous decision level, where some variable has yet to
toggle its value. The idea to analyse the reason of the conflict
led to theconflict driven clause learning(CDCL) algorithm
[10]. Resolving the conflict implies the generation of new
clauses that are learned. These learned clauses are added to
the original propositional formula and can lead to a non-
chronologic backtrack, where large parts of the search space
are avoided since no solution can exist there. For this reason
the CDCL algorithm is very effective and is the basis of most
modern SAT solvers.

A. Using SAT for CAD of Electronic Systems

SAT formulations of EDA-related problems usually consist
of two sets of constraints involving the logic values of circuit
nodes. On one hand the circuit constraints encode its structure
and enforce for every gate, relations between the logic values
of input/output nodes and the gate function. The problem
constraints on the other hand encode the property or set of
properties to be verified.

B. SAT Solver Techniques

In the following we provide a brief overview on the core
techniques employed in modern SAT solvers.

1) Decision Heuristics:Decision heuristics play a key role
in the efficiency of SAT algorithms, since they determine
which areas of the search space get explored first. A well
chosen sequence of decisions may instantly yield a solution,
while a poorly chosen one may require the entire search
space to be explored before a solution is reached. Modern
SAT solvers usedynamicdecision heuristics, where variable
selection is not only based on the problem structure, but
also on the current search state. The most relevant of such
decision heuristics is VSIDS [6], whereby decision variables
are ordered based on theiractivity. Each variable has an
associated activity, which is increased every time that variable
occurs in a recorded conflict clause.

2) Non-Chronological Backtracking and Clause Record-
ing: When a conflict is identified, backtracking needs to
be performed.Chronologicalbacktracking simply undoes the
previous decision, and associated implications, resumingthe
search afterwards. On the other hand,non-chronologicalback-
tracking [10], can undo several decisions, if they are deemed

to be involved in the conflict. When a conflict is identified,
a diagnosis procedure is executed, which builds aconflict
clause encoding the origin of the conflict. That clause is
recorded (learnt), i.e. added to the problem. While the imme-
diate purpose of learnt clauses is to drive non-chronological
backtracking, they also enable future conflicts to show up
earlier, thus significantly improving performance. However,
clause recording slows down propagation, since more clauses
must be analyzed and must therefore be carefully monitored.

3) Restarts:SAT algorithms can exhibit a large variability
in the time required to solve any particular problem instance.
Often, the search can get stuck in a region of the search
space. The introduction ofrestarts [11] was proposed as a
method of minimizing the effects of this problem. The restart
strategy consists of defining a threshold value in the number
of backtracks, and aborting a given run and starting a new run
whenever that threshold value is reached. Randomizatin must
also be incorporated into the decision heuristics, to avoidthe
same sequence of decisions to be taken on every run.

C. Parallel Approaches

Usage of parallel computing environments, is a promising
approach to speed-up the search for a solution when compared
to sequential SAT solvers. Moreover, parallel solvers should
also be able to solve larger and more challenging problems
(industrial problems) for which sequential SAT solvers arenot
able to find a solution in a reasonable time. Parallel imple-
mentations of SAT solvers can be divided in two categories:
cooperative or competitive SAT-solvers. In the former, the
search space is divided and each computational unit (eithera
core, a processor or computer) searches for a solution in their
sub-set of search space. Often the workload balance between
the different units is difficult to ensure. In the latter, each
computational unit tries to solve the same SAT instance, but
using alternative search paths. This is achieved by assigning
different algorithms to each unit and/or using the same al-
gorithm but with a different set of configuration parameters
(portfolios). For this reason, this latter category is often called
portfolio SAT-solution. In both categories the computational
units can work collaboratively by sharing information about
learnt clauses to speed-up the search process. This implies
some sort of communication between the processing units
that may introduce overhead. Deciding which clauses to share
and when to share them, may have a significant impact on
the time a parallel SAT solver takes to find a solution. A
long and detailed list of parallel SAT solvers can be obtained
from the parallel tracks of recent SAT competitions [12].
A significant example is MANY SAT [8], a portfolio-based
multithread solver that won the parallel track of the SAT Race
2008 [12]. Since then the portfolio solvers became popular.In
this solver, that was built on top of MINI SAT, there are four
parallel instances with different restart, decision and learning
heuristics. Additionally, each sequential instance shareclauses,
with a given threshold size, to improve the overall system
performance. Cooperative SAT solvers, through search space
splitting, are one of the most used techniques to implement
parallel SAT solvers. Although, recently there has been an
increasing interest on the portfolio approaches, which have
been shown to have very good performance [8], [13].

III. M ULTICORE SAT SOLVER - CMCSAT

CMCSAT is a MultiCore SAT solver based on portfolios.
The solver uses multiple threads (eight currently) that explore



TABLE I
PRIORITY ASSIGNMENT SCHEMES FOR EACH THREAD.

Thread # Variable Priority Assignment Scheme

0 All the variables have the same priority, therefore
this thread mimics the original VSIDS heuristic.

1 The first half of the variables read from the file have
higher priority than the second half.

2 The second half of the variables read from the file
have higher priority than the first half.

3 The priority is sequentially decreased as the variables
are read from the file.

4 The priority is sequentially increased as the variables
are read from the file.

5 The priority is assigned randomly for each variable
read from the file.

6
The priority is sequentially increased as the variables
are read from the file, but it has a random component
which can yield a priority increase of up-to 5x.

7
The priority is sequentially increased as the variables
are read from the file, but it has a random component
which can yield a priority increase of up-to 10x.

the search space independently, following different paths, due
to the way each thread is configured. However, this is not
just a purely competitive solver because the threads cooperate
by sharing the learnt clauses resulting from conflict analysis.
The underlying solver running on each thread is based on
the MINI SAT sequential SAT solver (version 2.2.0) [7]. The
solver was however modified to support clause sharing and
the ability to implement different heuristic schemes. In the
following we briefly describe a few strategies that were
adopted in the implementation ofCMCSAT.

A. Decision Heuristics

Heuristics are used on SAT solvers for selecting the next
variable to be assigned, and the corresponding value, when no
further propagation can be done. Although some randomness
is incorporated into most heuristics, we would like to keep a
tight control over the search space explored by each thread.
Therefore, we introduce the notion of variable priority. Vari-
ables with higher priority are assigned before variables with
lower priority. The well proven VSIDS heuristic is used as the
main decision heuristic but the variable selection is constrained
by the priority assigned to each variable.

In order to ensure that each thread follows divergent search
paths, we defined distinct priority assignment schemes, one
for each thread of theCMCSAT solver. Table I describes the
eight priority schemes that were used. Note that, for most
industrial SAT instances we can take advantage of the fact
that the variables appear in the CNF file in a particular order,
which is not random, but related to the problem structure.

B. Lockless Clause Sharing

It is known that clauses learnt during the search process as
a result of conflict analyses, are vital to speed-up the search
process. In our approach it turns out that the information
learnt from a conflict in one particular thread can be very
useful to other threads, in order to prevent the same conflict
to take place. Therefore, clause sharing between threads was
implemented inCMCSAT. We limit the size of the clauses
to be shared, to avoid the overhead of copying large clauses,
which may contain very little relevant information. In [8],the
authors show that the best overall performance is achieved
with a maximum size of 8 literals per clause. To reduce the
communication overhead introduced by clause sharing, and its
overall impact in performance, we designed data structuresthat

thread #0

...c2c1 c3

queue #1

c5c4

...c2c1 c3

queue #2

c5c4

...c2c1 c3

queue #3

c5c4

thread #2

thread #1

thread #3

lastRead

lastRead

lastRead

lastWrite

lastWrite

lastWrite

source

target

target

target

Fig. 1. Data structures to share learnt clauses.

eliminate the need for read and write locks. These structures
are stored in shared memory, which is shared among all
threads. We will consider that shared clauses are sent by a
sourcethread and received by atarget thread. As illustrated
in Figure 1, each source thread owns a set of queues, one for
each target thread, where the clauses to be shared are inserted.
While this flexible structure enables sharing different clauses
with different threads, we will restrict ourselves to sharing
the same clauses with every thread. Therefore, every thread
is a source thread and their target threads are all the others.
On each queue, thelastWrite pointer marks the last clause
to be inserted. ThelastWrite pointer is only written by the
source thread, but can be read by each target thread. On the
other hand, thelastReadpointer which marks the last clause
received by the target thread, is only manipulated by each
target thread. This data structure eliminates the need for a
locking mechanism, sincelastReadis only manipulated by
one thread and even thoughlastWrite is read and written by
different threads, the reading thread does not have to read its
latest value. Clause sharing can occur after a conflict analysis.

IV. EVALUATION RESULTS

In this section we present preliminary results from applying
CMCSAT to a slew of problems gathered from a recent SAT
race [12]. We pay particular attention to those originated from
circuit examples, which are shown in Table II. These include
problems which are both known to be SAT or UNSAT. We
run additional examples which for lack of space are ommitted
but are accounted for on the averages shown in the last line
of Table II. In order, the columns of the table provide infor-
mation about the problems chosen followed by runtimes for
M INI SAT [7] andCMCSAT using clause sharing. Also shown
in the table are an indication of which thread(s) ofCMCSAT
first found a solution for each of the problems. Next we
show speedup computations to attest the potential gains of our
solver. First we compareCMCSAT with clause sharing versus
non-clause sharing. When clause sharing is turned off we are
really testing the appropriateness of the strategies in Table I.
When clause sharing is on, we are measuring the advantages of
cooperation between threads. The advantages of clause sharing
seem obvious: using information from other threads which
are exploring problem structure elsewhere in the search space,
provides relevant information and speeds up problem solution.
However the advantage of this approach is also offset by the
cost of doing the sharing (both preparing clauses for sharing,
as well as using clauses originally from other threads). For
this reason in certain problems little speedup is obtained.Next
we compareCMCSAT with clause sharing versus the serial



TABLE II
EVALUATION RESULTS

Instance Sol. #Vars #Clauses
M INI SAT CMCSAT Winning SpeedupCMCSAT vs MANY SAT PLINGELING SpeedupCMCSAT vs

(sec) (sec) Thread no sh M INI SAT (sec) (sec) MANY SAT PLINGELING

cmu-bmc-barrel6 U 2306 8931 1.32 0.46 0,3,5,6 2.04 2.87 0.47 0.22 1.02 0.47
cmu-bmc-longmult13 U 6565 20438 26.27 7.12 0,1,4 3.06 3.69 7.38 12.78 1.04 1.79
cmu-bmc-longmult15 U 7807 24298 15.60 6.30 0,1 2.08 2.48 5.23 10.84 0.83 1.72
ibm-2002-11r1-k45 S 156626 633125 38.19 4.39 0,1,6 8.70 8.70 21.14 22.47 4.82 5.12
ibm-2002-18r-k90 S 175216 717086 102.30 56.71 1,6 1.80 1.80 82.33 71.51 1.45 1.26
ibm-2002-20r-k75 S 151202 619733 166.08 128.10 0 1.30 1.30 107.25 52.55 0.84 0.41
ibm-2002-22r-k60 U 208590 845248 716.53 554.06 0,2 1.29 1.29 187.18 118.68 0.34 0.21
ibm-2002-22r-k75 S 191166 793646 251.07 8.37 1,6 20.38 30.00 112.03 87.37 13.38 10.44
ibm-2002-22r-k80 S 203961 846921 159.03 19.74 1 2.90 8.06 133.66 119.83 6.77 6.07
ibm-2002-23r-k90 S 222291 922916 680.85 234.78 0 2.90 2.90 158.94 212.08 0.68 0.90
ibm-2002-24r3-k100 U 148043 545315 202.90 104.05 0 1.44 1.95 95.15 74.52 0.91 0.72
ibm-2002-30r-k85 S 181484 888663 850.73 823.43 0 1.03 1.03 248.12 224.22 0.30 0.27
ibm-2004-1 11-k80 S 262808 1023506 145.46 90.96 0,1 1.43 1.60 126.74 51.12 1.39 0.56
ibm-2004-23-k100 S 207606 847320 837.61 62.91 3 11.08 13.31 177.85 89.17 2.83 1.42
ibm-2004-23-k80 S 165606 672840 232.34 16.31 3 14.25 14.25 87.87 147.61 5.39 9.05
ibm-2004-29-k25 U 17494 74526 98.99 34.64 0 2.86 2.86 24.05 27.43 0.69 0.79
mizh-md5-47-3 S 65604 234719 265.53 21.20 0,1 12.53 12.53 68.23 55.71 3.22 2.63
mizh-md5-47-4 S 65604 234811 87.00 17.85 0,1 2.23 4.87 334.92 61.24 18.76 3.43
mizh-md5-47-5 S 65604 235061 563.58 53.09 1 2.44 10.62 56.83 34.39 1.07 0.65
mizh-md5-48-5 S 66892 240181 312.49 30.16 0 6.29 10.36 367.53 42.29 12.19 1.40
mizh-sha0-35-3 S 48689 173748 29.36 5.52 1,3 1.09 5.32 36.72 14.50 6.65 2.63
mizh-sha0-35-4 S 48689 173757 262.22 17.55 1 3.89 14.94 47.27 21.75 2.69 1.24
mizh-sha0-36-1 S 50073 179811 353.95 10.46 1,3 8.51 33.84 339.40 42.22 32.45 4.04
mizh-sha0-36-4 S 50073 179989 217.09 131.42 3 1.65 1.65 733.75 22.26 5.58 0.17
velev-engi-uns-1.0-4nd U 7000 67553 10.83 4.89 0,1 2.09 2.21 7.25 14.86 1.48 3.04
velev-fvp-sat-3.0-b18 S 35853 1012240 27.05 3.03 0,1 8.94 8.94 2.86 4.59 0.95 1.52
velev-npe-1.0-9dlx-b71 S 889302 14582952 190.91 15.49 1 2.42 12.32 268.84 37.84 17.36 2.44
velev-vliw-sat-4.0-b4 S 520721 13348116 72.90 9.03 0,1,6,7 5.32 8.07 30.98 72.51 3.43 8.03
velev-vliw-sat-4.0-b8 S 521179 13378616 101.53 21.55 0,1 1.49 4.71 42.41 60.81 1.97 2.82
velev-vliw-uns-2.0-iq1 U 24604 261472 435.23 41.77 2,4 6.14 10.42 789.34 17.52 18.90 0.42
velev-vliw-uns-2.0-iq2 U 44095 542252 TO 416.14 2,4 2.31 NA TO 303.33 NA 0.73
avg. table set (30 inst.) – 155385 1790335 251.34 211.23 – 4.82 8.19 158.43 69.19 5.81 2.53
avg. full set (78 inst.) – 168240 1119370 309.48 128.87 – 3.24 37.45 182.56 102.04 9.47 2.48

M INI SAT. In general the speedups are interesting, with the
average speedup larger than 8 (excellent efficiency) for the
instances shown and an even larger speedup (over 37) for all
instances. This really shows how sensitive problem solution
is to variable ordering and to which portion of the space
is searched. Nex we show runtimes for MANY SAT [8] and
plingeling [14], solver using approaches similar toCMCSAT,
followed by the speedup comparisons. Again the results are
quite interesting with good average speedups reported. These
speedups clearly indicate that, as expected, there is substantial
structure to be found on circuit descriptions and variable
ordering. If this structural information can be obtained or
guessed from the circuit itself, then a better ordering of
variables during SAT solution can lead to relevant gains in
problem solution. Overall, the results, seem very promising
and justify further investment in adding new approaches to
obtain further speedups.

V. CONCLUSION

The widespread availability of multi-core, shared memory
parallel environments provides an opportunity for boosting
the effectiveness of SAT solution. In this paper we presented
a portfolio-based multi-core SAT solver to improve solution
efficiency and capacity. Multiple instances of the same basic
solver using different heuristic strategies for search-space
exploration and problem analysis share information and co-
operate towards the solution of a given problem. Results from
application of our methodology to known problems from SAT
competitions and EDA problems show relevant improvements
over the state of the art and yield the promise of further
advances.

REFERENCES

[1] M. N. Velev and R. E. Bryant, “Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIWMicro-
processors,” inProceedings of DAC, 2001, pp. 226–231.

[2] L. G. e Silva, J. P. M. Silva, L. M. Silveira, and K. A. Sakallah,
“Satisfiability Models and Algorithms for Circuit Delay Computation,”
ACM TODAES, vol. 7, no. 1, pp. 137–158, 2002.

[3] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar, “A New FPGA
Detailed Routing Approach Via Search-Based Boolean Satisfiability,”
IEEE TCAD, vol. 21, no. 6, pp. 674–684, 2002.

[4] J. P. M. Silva and T. Glass, “Combinational Equivalence Checking Using
Satisfiability and Recursive Learning,” inProceedings of DATE, 1999,
pp. 145–149.

[5] H. Chen and J. Marques-Silva, “TG-Pro: A SAT-based ATPG System,”
JSAT, vol. 8, no. 1, pp. 83–88, January 2012.

[6] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” inProceedings of DAC,
Las Vegas, Nevada, USA, June 2001, pp. 530–535.

[7] N. Eén and N. S̈orensson, “An Extensible SAT-solver,”Theory and
Applications of Satisfiability Testing, vol. 2919, pp. 502–518, 2004.

[8] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: A Parallel SAT Solver,”
JSAT, vol. 6, 2009.

[9] M. Davis, G. Logemann, and D. Loveland, “A Machine Programfor
Theorem-Proving,”Communications of the ACM, vol. 5, no. 7, pp. 394–
397, July 1962.

[10] J. P. M. Silva and K. A. Sakallah, “GRASP: A New Search Algorithm
for Satisfiability,” inProceedings of ICCAD, San Jose, California, United
States, 1996, pp. 220–227.

[11] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman, “Dynamic
Restart Policies,” inProceedings of AAAI, Edmonton, Alberta, Canada,
2002, pp. 674–681.

[12] C. Sinz and et al, “SAT Race 2008,” http://baldur.iti.uka.de/sat-race-
2008/index.html, 2008, accessed on May 2012.

[13] K. Ohmura and K. Ueda, “c-sat: A Parallel SAT Solver for Clusters,” in
Theory and Applications of Satisfiability Testing, ser. LNCS, O. Kull-
mann, Ed. Springer Berlin / Heidelberg, 2009, vol. 5584, pp. 524–537.

[14] A. Biere, “Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010,” FMV Reports Series, Institute for Formal Models and Verifica-
tion, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria,
Tech. Rep. 10/1, August 2010.


