Improving SAT Solver Efficiency using a
Cooperative Multicore Approach

Ricardo Marques Lis G. Silva Paulo Flores L. Miguel Silveira
ALGOS Group at INESC-ID Lisbon
Instituio Superior Ecnico - Technical University of Lisbon
email{rsm | gs, pff, | ms}@nesc-id. pt

INESC-ID Technical Report RT 28/2012
October 2012

Abstract—Many problems in Computer-Aided Design of Elec- solve problems faster. Several metrics can be used to fpanti
tronic Systems are addressed by converting them to a sequenck o the resulting improvements, including speedup and effigien
SAT problems solved with a state of the art SAT solver. Typical AR enticing feature of parallelization in search-basedfems

applications include problems in testing, timing, verification, . h i hi - .
routing, etc. Despite the enourmous progress achieved over!S that super-linear speedups are achievable if one is lucky

the last decade in the development of SAT solvers, there ist0 Search the right region of the search space. Often, one is
strong demand for higher algorithm efficiency to solve harder satisfied with the ability to demonstrate speedup by solving

and larger problems. The widespread availability of multi-core, problems faster and doing so in a robust manner over a large
shared memory parallel environments provides an opportunity range of problems. Combining such robustness with thevausi

for such improvements. In this paper we present our results ibility of | ins is clearl | th -
on improving the effectiveness of standard SAT solvers on such possibllity ot large gains IS clearly a goal worth pursuing.

architectures, through a portfolio approach. Multiple instances In this paper we prese@MCSAT, a portfolio-based multi-
of the same basic solver using different heuristic strategies for threaded, MultiCore SAT solver which exploits a different

search-space exploration and problem analysis share information approach to resource utilization. The general strategguma
and cooperate towards the solution of a given problem. Results ;, CMCSAT is not entirely novel and has in fact been pre-

from application of our methodology to known problems from
SAT competitions and EDA problems show relevant improve- ViOUSly proposed in other SAT solvers [8]. The idea is to

ments over the state of the art and yield the promise of further launch multiple instances of the same (or different) salver
advances in CAD of electronic systems. sometimes called a portfolio, with different parameter -con

figurations, which cooperate to a certain degree by sharing
relevant information when searching for a solution. For in-
Propositional Satisfiability (SAT) is the workhorse for iganstance for a routing problem, different options can be made
tasks in Computer-Aided Design of Electronic Systems. Tygby the various instances and relevant information reggrftin
cal applications include problems in hardware verificafith instance obstructions, can be shared. This approach nziesmi
timing analysis [2], optimal circuit design, FPGA routing][the dependence of current SAT solvers on specific parame-
combinational equivalence checking [4] and automatic tetslr configuration chosen to regulate their heuristic bedravi
pattern generation [5]. Each problem instance of a pagicuihamely the decision process on the choice of variables, on
domain is converted into a SAT instance, or sequence of Sihen and how to restart, on how to backtrack, etc. Instead
instances, and solved using a state-of-the-art SAT sovee. of attempting to guess the optimal parameter configuration
of the main reasons for the increased interest in SAT is the exploit multiple configurations in parallel and hope that
considerable efficiency improvements that SAT solvers hawee of them, with the help of the shared information, might
undergone in the past decade [6], [7]. This progress can fixed a solution faster. Each solver instance will attempt to
traced back to remarkable algorithmic improvements as wéithd a solution to the problem or prove that no solution
as significant progress in the ability of SAT solvers to ekploexists. To do so, it will use the information it gathers plus
the hidden structure of many practical problems. Howevahe information gathered and shared by others which are
this added capability is continuously challenged by enmgygi concurrently attempting to find the same solution.
applications which bring to the fold problems and systems The remainder of this paper is organized as follows. Sec-
of increasing size and complexity. As a consequence, matyn Il reviews core SAT solver techniques and parallei@at
problems remain very challenging and unsolved by even th&ategies. Section Il details the proposed multicore SAT
best solvers. approach. Section IV presents experimental results, diradu
The generalization of multicore processors as well as teemparisons with serial and other parallel implementation
availability of fairly standard clustering software prded ac- Finally, Section V presents a few concluding remarks.
cess for the common user to parallel computing environments
and has opened up new opportunities for improvement in many Il. BACKGROUND
areas. The main goal of parallel SAT solvers is to be able toThe SAT problem consists in determining if there exists an
assignment to the variables of a propositional logic foamul

This work was supported by the Portuguese Foundation fagn8ei and gych that the formula becomes satisfied. A problem to be
Technology (FCT) research project Parsat - Parallel Satigify Algorithms) P

and its Applications (PTDC/EIA-EIA/103532/2008) and by Fe@rough the handled by a SAT solver is usually specified in a conjunctive
PIDDAC Program funds. normal form (CNF) formula of propositional logic. A CNF

I. INTRODUCTION

formula is represented using Boolean variables that cam tdk be involved in the conflict. When a conflict is identified,
the values 0 false or 1 (true). Clauses are disjunction ofa diagnosis procedure is executed, which buildsoaflict
literals, which are either a variable or its complement, andclause encoding the origin of the conflict. That clause is
CNF formula is a conjunction of clauses. recorded (learnt), i.e. added to the problem. While the imme-
Basic SAT solvers are based on tHeavis-Putnam- diate purpose of learnt clauses is to drive non-chronoldgic
Loveland-LogemanDPLL) algorithm [9], which improves backtracking, they also enable future conflicts to show up
over the simple assign, test and backtrack algorithm by tkarlier, thus significantly improving performance. Howeve
using two simple rules at each search step: unit propagatdause recording slows down propagation, since more clause
and pure literal elimination. The unit propagation occutew must be analyzed and must therefore be carefully monitored.
a clause contains only a single unassigned literal (unitsela 3) Restarts:SAT algorithms can exhibit a large variability
In order to satisfy the unit clause, no choice is necessaty,the time required to solve any particular problem inséanc
since the value to assign the variable is the value necessarpften, the search can get stuck in a region of the search
make the literatrue. The pure literal elimination consists inspace. The introduction afestarts [11] was proposed as a
determining if a propositional variable occurs with onlyeonmethod of minimizing the effects of this problem. The restar
polarity in the formula. Such literals can always be asgignétrategy consists of defining a threshold value in the number
in a way that makes all clauses containing theme. Thus, of backtracks, and aborting a given run and starting a new run
these clauses no longer constrain the search and can beddelehenever that threshold value is reached. Randomizatin mus
During the search process a conflict can arise when batl$o be incorporated into the decision heuristics, to avioéd
Boolean values have been tried on a variable and the formgkme sequence of decisions to be taken on every run.
is not sa}tisfied. I_n_this situation the algorithm backtratks ¢ parallel Approaches
the previous decision level, where some variable has yet to

toggle its value. The idea to analyse the reason of the cbnfl{iﬂc Urssgceh ?:; gag:je_luciwgl;gg?cﬁ r;glrrznsrgﬁﬂitgh I\/Svhlr?rgormsgrge d
led to theconflict driven clause learningCDCL) algorithm bp P P P

[10]. Resolving the conflict implies the generation of nev‘P sequential SAT solvers. Moreover, parallel solvers &hou

clauses that are learned. These learned clauses are add%S be_ able to solve Iarge_r and more challenging problems
the original propositional formula and can lead to a no industrial problems) for which sequential SAT solvers aoe

chronologic backtrack, where large parts of the searchesp&?éﬁt;?ighnsd o? ézl'lgt!socﬂvlenrsac;enai%ngibvlize}ljmi?]. t\lxjv?)r?:giz ”(T)]r[i)elzes_'
are avoided since no solution can exist there. For this reas 9 '

the CDCL algorithm is very effective and is the basis of moétggffhreg'vaecgrscgmgggtgﬁ ds(a':-gsoclg‘;:& tI:t'(;:gl for:'Te;j{r:Z?
modern SAT solvers. pace Is divi putati unit (

core, a processor or computer) searches for a solution in the
A. Using SAT for CAD of Electronic Systems sub—s_et of searc_h s.pace..Often the workload balance between
SAT formulations of EDA-related problems usually consist e d|ffer¢nt units s difficult to ensure. In the _Iatter, Bac
omputational unit tries to solve the same SAT instance, but

T e e o SN el earch pths. T s acieve b asmon
' different algorithms to each unit and/or using the same al-

g??ner&ft%t? fuotr ﬁ\é?jgsg;% rtilgt'ogf’eng\gﬁ; th_?hlgglcrsoseblllg orithm but with a different set of configuration parameters
P P 9) b ?rtfolios). For this reason, this latter category is oftalled

constraints on the other hand encode the property or Sth rtfolio SAT-solution. In both categories the computatib

properties to be verified. units can work collaboratively by sharing information abou
B. SAT Solver Techniques learnt clauses to speed-up the search process. This implies
some sort of communication between the processing units
&hat may introduce overhead. Deciding which clauses toeshar
and when to share them, may have a significant impact on
the time a parallel SAT solver takes to find a solution. A

g and detailed list of parallel SAT solvers can be obtdine

m the parallel tracks of recent SAT competitions [12].

significant example is MNY SAT [8], a portfolio-based

In the following we provide a brief overview on the cor
techniques employed in modern SAT solvers.

1) Decision Heuristics:Decision heuristics play a key role
in the efficiency of SAT algorithms, since they determin
which areas of the search space get explored first. A w
chosen sequence of decisions may instantly yield a soluti

while a poorly chosen one may require the entire sear Itithread solver that won the parallel track of the SAT &ac
space to be explored _befor_e_a solutl_on_ is reached. MOd Bos [12]. Since then the portfolio solvers became poputar.
SAT solvers uselynamicdecision heuristics, where variabley,is go1ver, that was built on top of MiSAT, there are four
selection is not only based on the problem structure, bb‘ rallel instances with different restart, decision aratieng
alsq on the current search state. The most r_el_evant Qf S ristics. Additionally, each sequential instance shkrases,
decision heuristics is VSIDS [6], whereby decision vamabl i 5 given threshold size, to improve the overall system

are o_rdered b_a_sed on thea?rcnwty. Each var.|able h_as an performance. Cooperative SAT solvers, through searchespac
assocua_ted activity, which IS increased every time thaalés splitting, are one of the most used techniques to implement
occurs in a recorded' conflict clausg. arallel SAT solvers. Although, recently there has been an

2) Non-Chronological Backtracking and Clause RecOrGy reasing interest on the portfolio approaches, whichehav

ing: When a conflict is identified, backtracking needs tg h to h d perf gl [13
be performedChronologicalbacktracking simply undoes the een shown to have very good performance [8], [13].

previous decision, and associated implications, resurttieg IIl. MULTICORE SAT SOLVER - CMCSAT
search afterwards. On the other handn-chronologicaback- CMCSAT is a MultiCore SAT solver based on portfolios.
tracking [10], can undo several decisions, if they are deem€&he solver uses multiple threads (eight currently) thataep

TABLE | Ve ™~

PRIORITY ASSIGNMENT SCHEMES FOR EACH THREAD thread #0
[Thread #] Variable Priority Assignment Scheme] tastie source
0 All the variables have the same priority, therefore queue #1
this thread mimics the original VSIDS heuristic. |c1 |(-z | PR | s | ¢s | | | | |
1 The first half of the variables read from the file haye thread #1 >
higher priority than the second half. target lastRead -
5 The second half of the variables read from the file queue #2
have higher priority than the first half. |cl |c2 | P | ca | ¢s | | | | |
3 The priority is sequentially decreased as the variahles thread #2 v
are read from the file. target lastRead e
4 The priority is sequentially increased as the variables queue #3
are read from the file. |(.I |c2 | s | s | ¢ | | | | |
5 The priority is assigned randomly for each variahle thread #3 <
read from the file. target g lastRead J
The priority is sequentially increased as the variables .
6 are read from the file_, b_ut i_t has a random component Fig. 1. Data structures to share learnt clauses.
which can yield a priority increase of up-to 5x. eliminate the need for read and write locks. These strusture
. ;Peergggf][%r'ﬁ fﬁg#;ﬂtgﬂ%t'ﬂgfgﬁi ggn:hgo\ﬁggg';st are stored in shared memory, which is shared among all
which can yield a priority increase of up-to 10x. threads. We will consider that shared clauses are sent by a

sourcethread and received by target thread. As illustrated

the search space independently, following different padhe I Figure 1, each source thread owns a set of queues, one for
to the way each thread is configured. However, this is ng@ch target thread, where the clauses to be shared arethsert
just a purely competitive solver because the threads catmerVhile this flexible structure enables sharing different sk

by sharing the learnt clauses resulting from conflict aniglysWith different threads, we will restrict ourselves to shari

The underlying solver running on each thread is based 3}1—3 same clauses with every thread. Therefore, every thread
the MINISAT sequential SAT solver (version 2.2.0) [7]. ThdS & source thread and their target threads are all the others
solver was however modified to support clause sharing aR¥ €ach queue, thiastWrite pointer marks the last clause
the ability to implement different heuristic schemes. I tht0 be inserted. ThéastWrite pointer is only written by the
following we briefly describe a few strategies that wergource thread, but can be read by each target thread. On the

adopted in the implementation aMCSAT. other hand, théastReadpointer which marks the last clause
o o received by the target thread, is only manipulated by each
A. Decision Heuristics target thread. This data structure eliminates the need for a

Heuristics are used on SAT solvers for selecting the ndgicking mechanism, sincéastReadis only manipulated by
variable to be assigned, and the corresponding value, whename thread and even thoudgstWrite is read and written by
further propagation can be done. Although some randomnélfierent threads, the reading thread does not have to tead i
is incorporated into most heuristics, we would like to keep latest value. Clause sharing can occur after a conflict aisaly
tight control over the search space explored by each thread. IV. EVALUATION RESULTS
Therefore, we introduce the notion of variable priority.riva)
ables with higher priority are assigned before variableghwi In this section we present preliminary results from apmyin
lower priority. The well proven VSIDS heuristic is used as thCMCSAT to a slew of problems gathered from a recent SAT
main decision heuristic but the variable selection is aaised race [12]. We pay particular attention to those originateanf
by the priority assigned to each variable. circuit examples, which are shown in Table Il. These include

In order to ensure that each thread follows divergent searefpblems which are both known to be SAT or UNSAT. We
paths, we defined distinct priority assignment schemes, oité additional examples which for lack of space are ommitted
for each thread of theMCSAT solver. Table | describes thebut are accounted for on the averages shown in the last line
eight priority schemes that were used. Note that, for mogt Table Il. In order, the columns of the table provide infor-
industrial SAT instances we can take advantage of the fag@tion about the problems chosen followed by runtimes for
that the variables appear in the CNF file in a particular grdéylINISAT [7] andCMCSAT using clause sharing. Also shown

which is not random, but related to the problem structure. in the table are an indication of which thread(s)aficSAT
first found a solution for each of the problems. Next we

B. Lockless Clause Sharing show speedup computations to attest the potential gaingrof o
It is known that clauses learnt during the search processsmiver. First we compareMCSAT with clause sharing versus
a result of conflict analyses, are vital to speed-up the kearon-clause sharing. When clause sharing is turned off we are
process. In our approach it turns out that the informatiaeally testing the appropriateness of the strategies ifeTab
learnt from a conflict in one particular thread can be vemywhen clause sharing is on, we are measuring the advantages of
useful to other threads, in order to prevent the same confladioperation between threads. The advantages of clausaghar
to take place. Therefore, clause sharing between threadls w@em obvious: using information from other threads which
implemented incCMCSAT. We limit the size of the clausesare exploring problem structure elsewhere in the searctespa
to be shared, to avoid the overhead of copying large clauspsyvides relevant information and speeds up problem swiuti
which may contain very little relevant information. In [8he However the advantage of this approach is also offset by the
authors show that the best overall performance is achievabt of doing the sharing (both preparing clauses for sbarin
with a maximum size of 8 literals per clause. To reduce ttes well as using clauses originally from other threads). For
communication overhead introduced by clause sharing,tandthis reason in certain problems little speedup is obtaifexkt
overall impact in performance, we designed data structhas we compareCMCSAT with clause sharing versus the serial

TABLE Il
EVALUATION RESULTS

MINISAT | cMCSAT | WInning | SpeedupcMCSAT vs | MANY SAT | PLINGELING SpeedupcMCSAT vs
Instance ‘ SOI" #vars ‘ #Clause% (sec) (sec) ‘ Thread [no sh| MINISAT (sec) (sec) } MANY SAT [PLINGELING %
cmu-bmc-barrel6 U 2306 8931 1.32 0.46| 0,356 | 2.04 2.87 0.47 0.22 1.02 0.47
cmu-bme-longmultl3 | U 6565 20438 26.27 7.12| 0,14 3.06 3.69 7.38 12.78 1.04 1.79
cmu-bmc-longmultl5 | U 7807 24298 15.60 6.30| 0,1 2.08 2.48 5.23 10.84 0.83 1.72
ibm-2002-11r1-k45 S [156626] 633125 38.19 4.39] 0,16 8.70 8.70 21.14 22.47 4.82 5.12
ibm-2002-18r-k90 S | 175216 717086/ 102.30f 56.71| 1,6 1.80 1.80 82.33 7151 1.45 1.26
ibm-2002-20r-k75 S | 151202| 619733| 166.08| 128.10 0 1.30 1.30 107.25 52.55 0.84 0.41
ibm-2002-22r-k60 U | 208590, 845248 716.53| 554.06] 0,2 1.29 1.29 187.18 118.68 0.34 0.21
ibm-2002-22r-k75 S | 191166 793646/ 251.07 8.37| 1,6 20.38 30.00 112.03 87.37 13.38 10.44
ibm-2002-22r-k80 S |203961| 846921 159.03| 19.74 1 2.90 8.06 133.66 119.83 6.77 6.07
ibm-2002-23r-k90 S | 222291] 922916 680.85| 234.78 0 2.90 2.90 158.94 212.08 0.68 0.90
ibm-2002-24r3-k100 | U | 148043 545315 202.90| 104.05 0 1.44 1.95 95.15 74.52 0.91 0.72
ibm-2002-30r-k85 S | 181484 888663 850.73| 823.43 0 1.03 1.03 248.12 224.22 0.30 0.27
ibm-2004-111-k80 S | 262808 1023506 145.46] 90.96| 0,1 1.43 1.60 126.74 51.12 1.39 0.56
ibm-2004-23-k100 S |207606| 847320, 837.61| 62.91 3 11.08 13.31 177.85 89.17 2.83 1.42
ibm-2004-23-k80 S | 165606 672840 232.34| 16.31 3 14.25 14.25 87.87 147.61 5.39 9.05
ibm-2004-29-k25 U 17494 74526 98.99| 34.64 0 2.86 2.86 24.05 27.43 0.69 0.79
mizh-md5-47-3 S | 65604| 234719 265.53] 21.20(0,1 12.53 12.53 68.23 55.71 3.22 2.63
mizh-md5-47-4 S | 65604| 234811 87.00, 17.85| 0,1 2.23 4.87 334.92 61.24 18.76 3.43
mizh-md5-47-5 S | 65604| 235061 563.58] 53.09 2.44 10.62 56.83 34.39 1.07 0.65
mizh-md5-48-5 S | 66892 240181 312.49| 30.16 0 6.29 10.36 367.53 42.29 12.19 1.40
mizh-sha0-35-3 S | 48689| 173748 29.36 552 1.3 1.09 5.32 36.72 14.50 6.65 2.63
mizh-sha0-35-4 S | 48689| 173757 262.22| 17.55 1 3.89 14.94 47.27 21.75 2.69 1.24
mizh-sha0-36-1 S | 50073] 179811 353.95| 10.46| 1.3 8.51 33.84 339.40 42.22 32.45 4.04
mizh-sha0-36-4 S | 50073| 179989 217.09| 131.42 3 1.65 1.65 733.75 22.26 5.58 0.17
velev-engi-uns-1.0-4nd U 7000 67553 10.83 489 0,1 2.09 2.21 7.25 14.86 1.48 3.04
velev-fvp-sat-3.0-b18 | S | 35853| 1012240 27.05 3.03] 01 8.94 8.94 2.86 4.59 0.95 1.52
velev-npe-1.0-9dIx-b71 S | 889302| 14582952 190.91| 15.49 1 2.42 12.32 268.84 37.84 17.36 2.44
velev-vliw-sat-4.0-b4 | S |520721| 13348116 72.90 9.03| 0,1,6,7 | 5.32 8.07 30.98 72.51 3.43 8.03
velev-vliw-sat-4.0-b8 | S |521179| 13378616 101.53] 21.55| 0,1 1.49 471 42.41 60.81 1.97 2.82
velev-vliw-uns-2.0-iqgl| U 24604| 261472 435.23| 4177 24 6.14 10.42 789.34 17.52 18.90 0.42
velev-vliw-uns-2.0-ig2| U | 44095| 542252 TO| 416.14] 24 2.31 NA TO 303.33 NA 0.73
avg. table set (30 inst]) — [155385] 1790335 251.34] 211.23 - 4.82 8.19 158.43 69.19 5.81 2.53
avg. full set (78 inst.) ‘ — ‘ 168240‘ 1119370‘ 309.48‘ 128.87‘ — ‘ 3.24‘ 37.45‘ 182.56‘ 102.04‘ 9.47‘ 2.48
MINISAT. In general the speedups are interesting, with the REFERENCES

average speedup larger than 8 (excellent efficiency) for t
instances shown and an even larger speedup (over 37) for aﬂl
instances. This really shows how sensitive problem salutio
is to variable ordering and to which portion of the spacézl
is searched. Nex we show runtimes foraNly SAT [8] and

plingeling [14], solver using approaches similara®cSAT,

(3]

followed by the speedup comparisons. Again the results are
quite interesting with good average speedups reportedserhej4]
speedups clearly indicate that, as expected, there isasuladt
structure to be found on circuit descriptions and variabl
ordering. If this structural information can be obtained or
guessed from the circuit itself, then a better ordering off]
variables during SAT solution can lead to relevant gains in
problem solution. Overall, the results, seem very prorgisin(7]
and justify further investment in adding new approaches t?s]
obtain further speedups.

V. CONCLUSION

El

The widespread availability of multi-core, shared memonyo]
parallel environments provides an opportunity for boagtin
the effectiveness of SAT solution. In this paper we presentg i
a portfolio-based multi-core SAT solver to improve solatio
efficiency and capacity. Multiple instances of the samedaaﬂZ]
solver using different heuristic strategies for searchesp
exploration and problem analysis share information and ca3]
operate towards the solution of a given problem. Results fro
application of our methodology to known problems from SAT14)
competitions and EDA problems show relevant improvements
over the state of the art and yield the promise of further

advances.

M. N. Velev and R. E. Bryant, “Effective Use of Boolean Béifbility
Procedures in the Formal Verification of Superscalar and VIMNgro-
processors,” irProceedings of DAC2001, pp. 226—-231.

L. G. e Silva, J. P. M. Silva, L. M. Silveira, and K. A. Salat,
“Satisfiability Models and Algorithms for Circuit Delay Comtadion,”
ACM TODAESvol. 7, no. 1, pp. 137-158, 2002.

G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar, “A New FPGA
Detailed Routing Approach Via Search-Based Boolean Satbisify,”
IEEE TCAD vol. 21, no. 6, pp. 674-684, 2002.

J. P. M. Silva and T. Glass, “Combinational Equivalence€iing Using
Satisfiability and Recursive Learning,” iRfroceedings of DATE1999,
pp. 145-149.

H. Chen and J. Marques-Silva, “TG-Pro: A SAT-based ATPgGt&m,”
JSAT vol. 8, no. 1, pp. 83-88, January 2012.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.lMa
“Chaff: Engineering an Efficient SAT Solver,” iRroceedings of DAC
Las Vegas, Nevada, USA, June 2001, pp. 530-535.

N. Eén and N. 8rensson, “An Extensible SAT-solverTheory and
Applications of Satisfiability Testingol. 2919, pp. 502-518, 2004.

Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: A ParalleTS3olver,”
JSAT vol. 6, 2009.

M. Davis, G. Logemann, and D. Loveland, “A Machine Progrémn
Theorem-Proving,Communications of the ACMol. 5, no. 7, pp. 394—
397, July 1962.

J. P. M. Silva and K. A. Sakallah, “GRASP: A New Search édighm
for Satisfiability,” inProceedings of ICCADPSan Jose, California, United
States, 1996, pp. 220-227.

H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman, “Bxyic
Restart Policies,” irfProceedings of AAAIEdmonton, Alberta, Canada,
2002, pp. 674-681.

C. Sinz and et al, “SAT Race 2008," http://baldur.ikiaude/sat-race-
2008/index.html, 2008, accessed on May 2012.

K. Ohmura and K. Ueda, “c-sat: A Parallel SAT Solver fousters,” in
Theory and Applications of Satisfiability Testirger. LNCS, O. Kull-
mann, Ed. Springer Berlin / Heidelberg, 2009, vol. 5584, #1-537.
A. Biere, “Lingeling, Plingeling, PicoSAT and PrecobAat SAT Race
2010,” FMV Reports Series, Institute for Formal Models andifiéa-
tion, Johannes Kepler University, Altenbergerstr. 69,01Dihz, Austria,
Tech. Rep. 10/1, August 2010.

