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Abstract—In this paper we present our results on exploiting many practical problems. However, this increased capgbili
multi-core shared memory architectures to improve the effec- js continuously challenged by emerging applications which
tiveness of standard SAT solvers. Many problems in Electronic bring to the fold instances of increasing size and compjexit

Design Automation (EDA) as well as many other fields can be A . ite of th kabl ) h
converted to a SAT problem or a sequence of SAT problems and S a consequence, In spiteé of iné remarkable gains we have

solved with a state of the art SAT solver. In EDA typical applica- S€€n in the area, many problems remain very challenging
tions include problems in testing, timing, verification, routing, etc. and unsolved by even the best solvers. Perhaps the main

Despite the enourmous progress achigved over the last dec.ade incause for this situation is that the large, steady algoiithm
the development of SAT solvers, there is strong demand for higher improvements that were made available in the last decade

algorithm efficiency to solve harder and larger problems. The ith the introducti f ful techni h
widespread availability of multi-core, shared memory parallel wi € Infroduction or powertul techniques such as non-

environments provides an opportunity for such improvements Chror‘0_|09ica| backtracking, restarts, improvements icigien
and in this paper we present a cooperative approach to improving heuristics, etc, seem to have slowed down. Improvements to

SAT solver efficiency and capacity. Multiple instances of the SAT solvers nowadays appear to be more incremental, some-
same basic solver using different heuristic strategies for search- times problem-related. Faced with this situation, redesns

space exploration and probllem analysis share information and have started to look elsewhere for wavs to continue imoovin
cooperate towards the solution of a given problem. Results from Y P

application of our methodology to known problems from SAT the efficiency of SAT solvers and the widespread availahft
competitions and EDA problems show relevant improvements parallel computing platforms provided renewed opportasit
over the state of the art and yield the promise of further advance. tg achieve this goal. The generalization of multicore pssoes
as well as the availability of fairly standard clusterindtaare
provided access for the common user to parallel computing
Over the last decade interest over propositional satisifyabi environments. In this context, many parallel SAT solvergeha
(SAT) and SAT solvers has increased manifold. The proposieen proposed and SAT competitions now routinely include
tional Satisfiability or SAT problem has long been one of tha parallel track. The main goal of parallel SAT solvers is to
most studied problems in computer science since it was tingprove solver efficiency, which can be viewed in absolute
first problem proven to be NP-complete. Nowadays, due terms (how many problems are solved and in what time), but is
the enourmous advances in computational SAT solvers, thenerally measured in terms of efficiency or speedup oldaine
satisfiability problem evidences great practical impar&im given the resources used. The basic obstacles to improved
a wide range of disciplines. Many problems in many fields affficiency are generally the same ones as encountered by
science can be formulated as a set of SAT instances which atkeer parallel implementations, namely load balancing and
then amenable to analysis by state of the art SAT solvers.rbibustness, i.e. the ability to sustain similar efficienegroa
Electronic Design Automation (EDA) examples include proldarge range of problems. An enticing feature of parall¢iara
lems in hardware verification, timing analysis, optimakuait is that in search-based problems, super-linear speedaps ar
design, FPGA routing, combinatorial equivalence checkiraghievable if one is smart or lucky enough to search the right
and automatic test and pattern generation. region of the search space. Unfortunately such smartstek
One of the main reasons for this increased interest liard to ensure. Many different parallelization stratediase
SAT is the considerable efficiency improvement that SAbeen attempted and the field is fairly crowded. An approach
solvers have undergone in the past decade. Nowadays m#mt has seen many followers is where for instance the search
real-life, industrial problems with hundreds of thousamds space is broken into non-overlapping regions which are then
variables and millions of clauses are routinely solved iwithsearched in parallel. A similar approach can be applied to
a few minutes by off the shelf, state of the art, SAT solverthe actual problem definition and tentative solutions can be
This impressive progress can be traced back to remarkabtright in sub-problems consisting of partial descriptioithe
algorithmic improvements as well as significant progress problem (which must later be made consistent with the remain
the ability of SAT solvers to exploit the hidden structurds dng problem constraints). In both cases, the parallel sesrc
being conducted are complementary to each other and the
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PIDDAC Program funds. between processors which is very hard to achieve. To migimiz
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potential unbalancing strategies such as workload stgatin gorithm by the using two simple rules at each search step: uni
breaking the problem into non-overlapping searches withpaopagation and pure literal elimination. The unit progaga
finer granularity and distributing queued searches to abbkil occurs when a clause contains only a single unassignedlliter
processors have been proposed. Unfortunately, it is inrgengunit clause). In order to satisfy the unit clause, no chaéce
hard to pick the most relevant set of variables for the ihitiamecessary, since the value to assign the variable is the valu
breakup of the search space. necessary to make the literiabie. The pure literal elimination
In this paper we presentMCSAT, a cooperative multi- consists in determining if a propositional variable ocowith
threaded, MultiCore SAT solver which exploits a differenbnly one polarity in the formula. Such literals can always be
approach to resource utilization. The general strateggymat assigned in a way that makes all clauses containing teen
in cMCSAT is not novel and has in fact been previouslyhus, these clauses do not constrain the search anymore and
proposed in other SAT solvers [1]. The idea is to launctan be deleted
multiple instances of the same (or different) solvers, some During the search process a conflict can arise when both
times called a portfolio, with different parameter configuBoolean values have been tried on a variable and the formula
rations, which cooperate in the search for a solution by not satisfied. In this situation the algorithm backtracks
sharing relevant information. This approach has the adgant to the previous decision level, where some variable has yet
that it minimizes the dependence of current SAT solvers ¢ toggle its value. The idea to analyse the reason of the
the specific parameter configuration chosen to regulate thebnflict led to theconflict driven clause learnindCDCL)
heuristic behavior, namely the decision process on thecehoalgorithm [3]. Resolving the conflict implies the generatiaf
of variables, on when and how to restart, on how to backtragiew clauses that are learned. These learned clauses ack adde
etc. Instead of attempting to guess the parameter configaratto the original propositional formula and can lead to a non-
that better leads to the problem solution, we exploit mldtipchronologic backtrack, where large parts of the searchespac
configurations in parallel, enforce some level of cooperati are avoides since no solution can exist there. For this reaso
between them and hope that one of them, with the help thie CDCL algorithm is very effective and is the basis of most
the shared information, might find a solution faster. The setodern SAT solvers.
of parameter configurations chosen should be such that they
represent complementary ideas and strategies. Each sofferSAT Solver Techniques
instance will attempt to find a solution to the problem or In the following we provide a brief overview on the core
prove that no solution exists (problem is unsatisfiable)d®o techniques employed in modern SAT solvers.
so, it will use the information it gathers plus the inforneati 1) Decision Heuristics:Decision heuristics play a key role
gathered by others which are concurrently attempting to fingl the efficiency of SAT algorithms, since they determine
the same solution. As we will see, a clever set of multipihich areas of the search space get explored in first place. A
parameter settings may lead to speedups and the sharirgy legéll chosen sequence of decisions may yield a solution @lmos
to further improvements. immediately, while a poorly chosen one may require the entir
The remainder of our paper is as follows. In Sectibn search space to be explored before a solution is reacheer Old
we present some background on the basic techniquesSAT solvers would employstatic decision heuristics, where
which current SAT solvers are based. We also summariggriable selection was only based on the problem structure.
several representative parallel approaches previousepted Modern SAT solvers usdynamicdecision heuristics, where
and try to surmise their advantages and disadvantages. Thefiable selection is not only based on the problem stragtur
in Sectionlll we discuss our approach in some detail. Iput also on the current search state. The most relevant of
SectionlV some preliminary results are presented, includinglich decision heuristics is VSIDS (Variable State Indepand
comparisons with both serial as well as alternative pdrallbecaying Sum) , introduced byH3FF [4], whereby decision
implementation. Finally, in SectioW, conclusions are drawn variables are ordered based on thadtivity. Each variable
regarding the proposed ideas. has an associated activity, which is increased every tirag th
variable occurs in a recorded conflict clause. The purpose
of VSIDS, and similar activity-based heuristics, is to avoi
The SAT problem consists in determining if there exists astattering the search, by directing it to the most consthin
assignment to the variables of a propositional logic foanuparts of the formula. These techniques are particularbcsffe
such that the formula becomes satisfied. A problem to kéhen dealing with large problems.
handled by a SAT solver is usually specified in a conjunctive 2) Non-Chronological Backtracking and Clause Recording:
normal form (CNF) formula of propositional logic. A CNFWhen a conflict is identified, backtracking needs to be per-
formula is represented using Boolean variables that cam tdkrmed. Chronologicalbacktracking simply undoes the previ-
the values O félsg or 1 (rue). Clauses are disjunction of ous decision, and associated implications, resuming theise
literals, which are either a variable or its complement, andafterwards. On the other handon-chronologicalbacktrack-
CNF formula is a conjunction of clauses. ing, introduced by ®AsP [3], can undo several decision, if
Basic SAT solvers are based on tHeavis-Putnam- they are deemed to be involved in the conflict. When a conflict
Loveland-LogemaniDPLL) algorithm [2]. The DPLL algo- is identified, a diagnosis procedure is executed, whictdbual
rithm improves over the simple assign, test and backtrack abnflict clauseencoding the origin of the conflict. That clause
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is recorded (learnt), i.e. added to the problem. Backtragkiparallel environments/architectures, such as: computes- ¢
is then performed, possibly undoing several decisionsi] urters, multi-core processors, graphics processing unifdJg3,
the newly-added conflict clause becomes unit (with only oretc. The development of parallel SAT solvers, using pdralle
free literal). While the immediate purpose of learnt clause®mputing environments, are a promising approach to speed-
is to drive non-chronological backtracking, they also dé@abup the search for a solution when compared to sequential SAT
future conflicts to show up earlier, thus significantly imgry  solvers. Moreover, parallel solvers should also be ablelies
performance. However, clause recording slows down propad@rger and more challenging problems (industrial probleims
tion, since more clauses must be analyzed. Therefore, modehich sequential SAT solvers are not able to find a solution
SAT solvers periodically remove a number of learnt clauses, a reasonable time.
deemed irrelevant by some heuristic. According to the parallelization technique used we can di-
3) Watched Literals:Since any SAT algorithm relies ex-vide most parallel implementations of SAT solvers in twoeeat
tensively on accessing and manipulating large amounts giries: cooperative SAT-solvers or competitive SAT-stdvén
information, its data structures are of paramount impaganthe former, the search space is divide and each computhtiona
for its overall performance. The single most effective imunit (either a core, a processor or computer) search forwa sol
provement on the data structures of SAT algorithms was thtien in their sub-set of search space. In general this o&add
introduction ofwatched literals as proposed by €AFF [4]. to master-slave scheme where the workload balance between
During propagation, only unit clauses (with only one freef the different computation units are difficult to achieve.
literal) can be used to imply new variable assignments. Fre latter, each computation unit try to solve the same SAT
each clause, two free literals are selected to be watchednWinestance, but using alternative search paths. This is asthie
a watched literal becomes false, the corresponding claiseby assigning different algorithms to each computation unit
analyzed to check whether it has become unit or if a neand/or using the same algorithm but with a different set
free literal should be watched instead of the previous ongf. configuration parameters (portfolios). For this reasbis
When no other literal can be chosen to be watched this medaiser category is often called the portfolio SAT-solvdrsboth
that the clause is unit and that the remaining free literal tategories the computation units can work collaboratisly
the other watched literal. This technique provides an effici sharing information about learnt clauses to speed-up trelse
method to assess whether a clause has become unit or poicess. This implies some sort of communication between th
and to determine its free literal. One interesting advamtagrocessing units that may introduce some overhead. Degidin
of this techniques is that it is not necessary to change tivich clauses to share and when to share them, may have a
watched literals associated with each clause when bag&ktraignificant impact on the time that a parallel SAT solver take
is performed. to find a solution. Among all the parallel SAT solvers thatdav
4) Restarts:SAT algorithms can exhibit a large variabilitybeen developed over the past decade we present here some of
in the time required to solve any particular problem inséancthe most noticeable approaches. A more complete overview
Indeed, huge performance differences can be observed whelated to parallel SAT solvers can be found in [7], [8] or.[9]
using different decision heuristics. This behavior wasligtd ThePMsat [10] solver is based oM ni SAT [11], which a
by [5] and observed that the runtime distributions for beaxtt  sequential SAT solver that implements most of the techrsique
search SAT algorithms are characterized by heavy tailsviHeaised on advanced solvers. TRBBat solver run on a cluster
tail behavior implies that, most often, the search can getkst of computers (grid) using MPI (Message Passing Interfame) f
in a particular regions of the search space. Therefore, tbemmunication and it is based on the master-slave approach
introduction of restarts [5], [6] was proposed as a methodwith a fixed number of slaves. The search space is divided by
of avoiding trashing during backtrack search. The restale master using several partition heuristics. Each slesech
strategy consists of defining a threshold value in the numbfer a solution in subset of space and share the selectecelbarn
of backtracks, and aborting a given run and starting a nalauses when reporting the solution to the master. The load
run whenever the number of backtracks reaches that thieshmhlancing is implicility implemented by providing sufficity
value. In order to preserve the completeness of the algoyithtasks for the slaves.
the backtrack threshold value must be increased after everyThe c-sat [12] SAT solver is also a parallelization of
restart, thus enabling the entire search space to be egplond ni SAT that uses MPI. The master-slave architecture pro-
after a certain number of restarts. Restarts and actid@setl vides a master responsible by clause sharing and by dynamic
decision heuristics are complementary, since the first opartitioning of the search space. The slaves perform thelsea
moves the search to a new region of the search space, whitea subset of the search space using different heuristits an
the second one enables the search to be focused in that n@mdom number seed. Therefore, this solver, which runs on

region. a network of computers, combines the search space splitting
with a portfolio of algorithms for each subspace.
B. Parallel Approaches The PaM r aXT [13] solver is another parallel SAT solver

Currently, parallel computing environments are an affordhat follows the master-slave model and can run on any ¢luste
able reality which has forced a significant shift in the prosf computers. Each slave is based onlthe aXT [14] solver,
gramming paradigm. This situation led many programmevghich is a thread-based solver. TMer aXT uses a divide-
to develop concurrent applications that are tuned for $igeciand-conquer approach where all threads share a uniquesclaus



TABLE |

- - PRIORITY ASSIGNMENT SCHEMES FOR EACH THREAD
Conflict Conflict Conflict
[ Clauses ] [ Clauses } Clauses I [ Thread [ Variable priority assignment ]
Thread 0 [Th”__a i1 ] Thread P ] 0 All the variables have the same priority, therefdre
[ I ) this thread mimics the original VSIDS heuristic.
1 The first half of the variables read form the file haye
$ ¢ higher priority then the second half.
Learnt Clause Database 2 The second half of the variables read form the file
have higher priority then the first half.
3 The priority is sequential decreased as the variables
Fig. 1. Depiction of the main architecture of thet SAT solver. are read from the file. i
4 The priority is sequential increased as the variables
database that includes learned clauses. are read from the file. :
. . . 5 The priority is assigned randomly for each variahle
The ManySAT [1] is a portfolio-based multithread solver read from the file.
that won the parallel track of the SAT-race 2008 [15]. Since 6 The priority is sequential increased as the variables
then the portfolio solvers become popular. In this soleat t are drga‘?yffg_‘téhg tfi'r'ﬁel;“t its priority can be incregse
was bL.JiIt on top oM ni SAT: there are fogr paralle_l ir.‘Star_‘C(ES 7 The priority is sequential increased as the variables
with different restart, decision and learning heuristiasdi- are read from the file but its priority can be increase
tionally, each sequential instance share clauses, withvengi randomly up-to 10 times.

threshold size, to improve the overall system performance. .
P y b In order to ensure that each thread follows divergent search

The SAT4J// [8] solver is a kind of hybrid solver that aths, we defined distinct priority assignment schemes, one

mixes the competitive search and the cooperative, seauth, .
without clause sharing. The solver, implemented in Jaeatsst or each thread of themc SAT solver. Tablel describes the
eight priority schemes that were used. Note that, for most

with a portfolio approach (weak portfolio) where an heueist gustrial SAT instances we can take advantage of the fact

based on the VSIDS determine the variables with the high(% ¢ the variables aopear in the CNE file in a particular orde
activities Then, the solver splits the search space based gt the var S appear | nel particular grder
ich is not random, but related to the problem structure.

those variable and when the search reaches a certain limit'
switches ba_ck to a portfolio approach (full portfolio). _B. Clause Sharing

Cooperative SAT solvers, through the search space splittin
are one of the most used techniques to implement paralleft is well known that during the search process the clauses
SAT solvers. Although, recently the has been an increasifﬁg"‘mt by each thread (conflict clauses), as a result of cbnfli
interest on the portfolio approaches, which seem to haterbegnalyses, are vital to speed-up its own search process. How-

performance [1], [12]. ever, it turns out that the information learnt from a conflict
in one particular thread can be very useful to other threads,
[Il. M ULTICORE SAT SOLVER - CMCSAT in order to prevent the same conflict to take place. Thergfore

The cnt SAT solver is a Cooperative MultiCore SAT solverclause sharing between threads was implementesirSAT.
based on portfolios. The solver has eight threads that expldVe limit the size of the clauses to be shared, to avoid the
the search space independently, following different padne overhead of copying large clauses, which may contain very
to the way each thread is configured. However, this is nitle relevant information. In [1], the authors show thaet
just a purely competitive solver because the threads Catmerbest overall performance is achieved with a maximum size of
by sharing the learnt clauses resulting from conflict arislys8 literals per clause.

Figurel presents the main architecture of et SAT solver. To reduce the communication overhead introduced by clause
The underlying solver running on each thread is based on #fearing, and its overall impact in performance, we have
M ni SAT sequential SAT solver (version 2.2.0). The solvedlesigned data structures that eliminate the need for redd an
was however modified to support clause sharing and theyabilitrite locks. These structures are stored in shared memory,
to implement different heuristic schemes. In the followinghich is shared among all threads. We will consider that
sections we briefly describe a few strategies that were adopshared clauses are sent bysaurcethread and received by
in the implementation o€ nt SAT. atargetthread. As illustrated in Figurg, each source thread

o owns a set of queues, one for each target thread, where the
A. Heuristics clauses to be shared are inserted. While this flexible streictu

Heuristics are used on SAT solvers for selecting the neshables sharing different clauses with different threaus,
variable to be assigned, and the corresponding value, whenwill restrict ourselves to sharing the same clauses withryeve
further propagation can be done. Although some randomnéissead. Therefore, every thread is a source thread and their
is incorporated into most heuristics, we would like to keep target threads are all the others. On each queudagt@/rite
tight control over the search space explored by each threpdinter marks the last clause to be inserted. TdsWrite
Therefore, we introduce the notion of variable priority.riva pointer is only written by the source thread, but can be read
ables with higher priority are assigned before variableth wiby each target thread. On the other hand,l#stReadpointer
lower priority. The well proven VSIDS heuristic is used as thwhich marks the last clause received by the target thread, is
main decision heuristic but the variable selection is aaséd only manipulated by each target thread. This data structure
by the priority assigned to each variable. eliminates the need for a locking mechanism, silastRead



TABLE Il

Ve AN BENCHMARK CHARACTERISTICS
thread #0 [ Instance | Result | #Vars [ #Clauses |
lastrite aloul-chnl11-13 UNSAT 286 1742
queue #1 ¥ anbul-dated-5-15-u UNSAT | 151952 684567
[a]e]alals] T T 1] anbul-part-10-13-s ?27? 234673 | 1052492
thread #1 o babic-dspam-vc1080 | UNSAT | 118298 327017
target e it babic-dspam-vc949 UNSAT | 112728 | 356938
queue #2 ' babic-dspam-vc973 | UNSAT | 274451 | 902703
|c1 | P | o | . | e | | | | | cmu-bmce-longmultl3 | UNSAT 6565 20438
thread #2 v cmu-bmce-longmultl5 | UNSAT 7807 24298
target lastRead . een-pico-prop05-75 UNSAT 76639 245312
queue 3 "”’i@e—— goldb-heqgc-alu4mul | UNSAT | 4736 30465
goldb-hegc-dalumul UNSAT 9426 59991
Lo]e] |‘ L] L[] ibm-2002-04r-k80 SAT 104450 | 449746
thread #3 C e ad p ibm-2002-11r1-k45 SAT 156626 | 633125
ibm-2002-22r-k75 SAT 191166 | 793646
ibm-2004-23-k100 SAT 207606 | 847320
Fig. 2. Data structures to share learnt clauses. ibm-2004-23-k80 SAT 165606 672840
ibm-2004-29-k25 UNSAT | 17494 74526
ibm-2004-29-k55 SAT 37714 | 165426
- - . jarvi-eg-atree-9 UNSAT 892 3006
is only manlpulated by_ one thread and even thopgthltels mariin-philips UNSAT | 3641 4456
read and written by different threads, the reading threags do mizh-md5-47-3 SAT 65604 | 234719
not have to read its latest value. Clause sharing can octarr af m!ZE-mgg-g-g gg ggggi ggggéi
. . . mizn-mdo-4/7-
a con_fl|gt analysis. If the conflict clause has less than &lise mizh-sha0-35-3 SAT 48689 | 173748
then is it also shared. mizh-sha0-35-4 SAT 48689 | 173757
mizh-sha0-36-1 SAT 50073 | 179811
V. EVALUATION RESULTS narain-vpn-clauses-8 SAT | 1461772| 5687553
. . . . palac-sn7-ipc5-h16 SAT 114548 398984
In this section we present preliminary results from apmyin Simon-s02b-rdb1k1.2 SAT 2424 14812

CMCSAT to a slew of problems gathered from a recent simon-s03-w08-15 UNSAT | 132555 | 469456
SAT race. These problems have multiple origins and their | velev-npe-1.0-9dix-b71}  SAT | 889302 | 14582952
complexity varies considerably. In Tablé we show the zg:gw:m:zg{:i:g:gg gg gg(ﬂ% igg;‘géig
characteristics of some of the SAT instances we used to test | velev-vliw-uns-2.0-iql | UNSAT | 24604 | 261472
CMCSAT. These include problems which are both known to | velev-viw-uns-2.0-iq2 | UNSAT | 44095 | 542252
be SAT or UNSAT, as well as a couple of problems whose L Velevviw-uns2.0-ugs] 222 | 151669 | 2465730
satisfiability is unknown.

In Tablelll we show experimental results for these benclelause sharing, as well as the speedups over standard MiniSA
marks. The columns in the table provide runtime informatiopoth when clause sharing is turned on and off. The advantages
for application of MiniSAT [11], ManySAT [1], as well as of clause sharing seem obvious: as expected, using infammat
CMCSAT with and without clause sharing. Also shown in thérom other threads which are exploring problem structure
table are an indication of which thread(s) first found a solut elsewhere in the search space, leads to some speedup. Howeve
for each of the problems, whenever a solution was founthe advantage of this approach is also offset by the cost of
When sharing of learnt clauses is turned off, the comparisdning clause sharing (both preparing clauses for sharisg, a
reduces to determining which of the strategies depicted Wwell as using clauses originally from other threads. Fos thi
Table | is more appropriate to a given problem or set gfeason in a reasonable number of problems no speedup is
problems. In this case, it turns out that the standard MifiSAbtained. The comparisons to MiniSAT serve two purposes.
performs quite well but many other strategies do equally,weWWhen clause sharing is turned off we are, as previously
including random picking of variables. When sharing is tadrnementioned, really testing the appropriateness of theegjied
on, the scenario changes considerably and picking churfcksro Table I. When clause sharing is on, we are measuring
variables from the top or bottom of the order seems to do quitee advantages of cooperation between threads. Either way,
well on many occasions. the speedups are interesting, with the average speedup over

Finally, the table also shows four columns of speedudiniSAT when clauses are shared being quite large (over 100
computations (the last four) which allow us to attest thir the subset of instance shown but a more reasonable lout als
potential gains of our solver. Here we companeCcSAT with eye popping 35 or so. Overall, the results, seem very progisi
clause sharing against ManySAT, which is a fair comparis@nd justify further investment in adding new approaches to
between two cooperative portfolio solvers which both shadbtain further speedups.
learnt clauses. The results are quite interesting with encaxe
speedup of over 15. We should caution however that this is
just a small subset of instances. We run the same experiment¥he widespread availability of multi-core, shared memory
on a larger subset and the average speedup was closer to at@llel environments provides an opportunity for boastime
10, still a very interesting result fancMSAT considering that effectiveness of SAT solution. In this paper we presented-a c
ManySAT was the SAT race winner as recently as 2008. Tlperative multi-core SAT solver to improve solution effiudy
other three columns illustrate respectively, the advargagf and capacity. Multiple instances of the same basic sohiegus

V. CONCLUSION



TABLE Il

EVALUATION RESULTS

T Winner | Tparallel | Tparallel | Winner Speedup | Speedup| Speedup | Speedup
Instance Result | MiniSAT Thread | no share share Thread | ManySAT | share vs | share vs| no share vs| share vs
no share w/ share ManySAT | no share| MiniSAT MiniSAT
aloul-chnl11-13 UNSAT [ 3600.00 4 14.02 14.01 4 2426.34 173.19 1.00 256.78 256.96
anbul-dated-5-15-u UNSAT | 3600.00 0 439.00 185.51 0 79.37 0.43 2.37 8.20 19.41
anbul-part-10-13-s ?7?7? 3600.00 — 3600.00 | 3600.00 — 3600.00 1.00 1.00 1.00 1.00
babic-dspam-vc1080 | UNSAT 647.34 3 0.33 0.33 3 46.26 140.18 1.00 1961.64 1961.64
babic-dspam-vc949 UNSAT 58.86 3 0.33 0.33 3 47.37 143.55 1.00 178.36 178.36
babic-dspam-vc973 UNSAT 10.95 3 0.75 0.75 3 2.17 2.89 1.00 14.60 14.60
cmu-bme-longmultl3 | UNSAT 26.27 15 21.81 7.12 "0;1;4” 7.38 1.04 3.06 1.20 3.69
cmu-bmc-longmultl5 | UNSAT 15.60 1 13.13 6.30 0.1 5.23 0.83 2.08 1.19 2.48
een-pico-prop05-75 UNSAT 105.88 0 105.88 65.98 0 36.23 0.55 1.60 1.00 1.60
goldb-heqgc-alu4mul UNSAT 118.69 0 118.69 41.98 0.2 29.92 0.71 2.83 1.00 2.83
goldb-hegc-dalumul UNSAT | 3600.00 — 3600.00 | 875.00 1 244.23 0.28 4.11 1.00 4.11
ibm-2002-04r-k80 SAT 29.89 0 29.89 11.25 "0;1;2" 20.03 1.78 2.66 1.00 2.66
ibm-2002-11r1-k45 SAT 38.19 0 38.19 4.39 "0;1;6” 21.14 4.82 8.70 1.00 8.70
ibm-2002-22r-k75 SAT 251.07 1 170.56 8.37 1.6 112.03 13.38 20.38 1.47 30.00
ibm-2004-23-k100 SAT 83761.00 3 697.06 62.91 3 177.85 2.83 11.08 120.16 1331.44
ibm-2004-23-k80 SAT 232.34 0 232.34 16.31 3 87.87 5.39 14.25 1.00 14.25
ibm-2004-29-k25 UNSAT 98.99 0 98.99 34.64 0 24.05 0.69 2.86 1.00 2.86
ibm-2004-29-k55 SAT 279.83 7 28.67 17.74 0.1 25.19 1.42 1.62 9.76 15.77
jarvi-eg-atree-9 UNSAT 106.08 4 59.17 22.36 1.2 22.90 1.02 2.65 1.79 4.74
marijn-philips UNSAT | 2496.31 3 940.08 101.56 12 550.11 5.42 9.26 2.66 24.58
mizh-md5-47-3 SAT 265.53 0 265.53 21.20 0.1 68.23 3.22 12.53 1.00 12.53
mizh-md5-47-4 SAT 87.00 1 39.87 17.85 0.1 334.92 18.76 2.23 2.18 4.87
mizh-md5-47-5 SAT 563.58 5 129.37 53.09 1 56.83 1.07 2.44 4.36 10.62
mizh-sha0-35-3 SAT 29.36 1 6.00 5.52 1.3 36.72 6.65 1.09 4.89 5.32
mizh-sha0-35-4 SAT 262.22 5 68.24 17.55 1 47.27 2.69 3.89 3.84 14.94
mizh-sha0-36-1 SAT 353.95 5 88.99 10.46 13 339.40 32.45 8.51 3.98 33.84
narain-vpn-clauses-8 SAT 3600.00 - 3600.00 | 373.91 0 629.53 1.68 9.63 1.00 9.63
palac-sn7-ipc5-h16 SAT 938.23 5 845.45 81.70 7 178.43 2.18 10.35 1.11 11.48
simon-s02b-r4b1k1.2 SAT 96.80 5 74.32 5.73 0 11.37 1.98 12.97 1.30 16.89
simon-s03-w08-15 UNSAT 121.27 0 121.27 33.04 1.2 22.26 0.67 3.67 1.00 3.67
velev-npe-1.0-9dIx-b71  SAT 190.91 7 37.49 15.49 1 268.84 17.36 2.42 5.09 12.32
velev-vliw-sat-4.0-b4 SAT 72.90 1 48.03 9.03 "0;1,6;7" 30.98 3.43 5.32 1.52 8.07
velev-vliw-sat-4.0-b8 SAT 101.53 1 32.05 21.55 0.1 42.41 1.97 1.49 3.17 4.71
velev-vliw-uns-2.0-iql | UNSAT 435.23 2 256.55 41.77 2.4 789.34 18.90 6.14 1.70 10.42
velev-vliw-uns-2.0-ig2 | UNSAT | 3600.00 2 959.62 416.14 24 3600.00 8.65 2.31 3.75 8.65
velev-vliw-uns-2.0-ug5 ?7?7? 3600.00 — 3600.00 | 3600.00 — 3600.00 1.00 1.00 1.00 1.00

different heuristic strategies for search-space explwraand [7]
problem analysis share information and cooperate towdels t
solution of a given problem. Results from application of ourlg]
methodology to known problems from SAT competitions and

EDA problems show relevant improvements over the state

the art and yield the promise of further advances.
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