
cmcSAT - A Cooperative MultiCore SAT Solver
Ricardo Marques Lúıs G. Silva Paulo Flores L. Miguel Silveira

ALGOS Group at INESC-ID Lisbon
Instituio Superior T́ecnico - Technical University of Lisbon

email:{rsm,lgs,pff,lms}@inesc-id.pt

INESC-ID Technical Report RT 20/2012
July 2012

Abstract—In this paper we present our results on exploiting
multi-core shared memory architectures to improve the effec-
tiveness of standard SAT solvers. Many problems in Electronic
Design Automation (EDA) as well as many other fields can be
converted to a SAT problem or a sequence of SAT problems and
solved with a state of the art SAT solver. In EDA typical applica-
tions include problems in testing, timing, verification, routing, etc.
Despite the enourmous progress achieved over the last decade in
the development of SAT solvers, there is strong demand for higher
algorithm efficiency to solve harder and larger problems. The
widespread availability of multi-core, shared memory parallel
environments provides an opportunity for such improvements
and in this paper we present a cooperative approach to improving
SAT solver efficiency and capacity. Multiple instances of the
same basic solver using different heuristic strategies for search-
space exploration and problem analysis share information and
cooperate towards the solution of a given problem. Results from
application of our methodology to known problems from SAT
competitions and EDA problems show relevant improvements
over the state of the art and yield the promise of further advances.

I. I NTRODUCTION

Over the last decade interest over propositional satisfiability
(SAT) and SAT solvers has increased manifold. The proposi-
tional Satisfiability or SAT problem has long been one of the
most studied problems in computer science since it was the
first problem proven to be NP-complete. Nowadays, due to
the enourmous advances in computational SAT solvers, the
satisfiability problem evidences great practical importance in
a wide range of disciplines. Many problems in many fields of
science can be formulated as a set of SAT instances which are
then amenable to analysis by state of the art SAT solvers. In
Electronic Design Automation (EDA) examples include prob-
lems in hardware verification, timing analysis, optimal circuit
design, FPGA routing, combinatorial equivalence checking
and automatic test and pattern generation.

One of the main reasons for this increased interest in
SAT is the considerable efficiency improvement that SAT
solvers have undergone in the past decade. Nowadays many
real-life, industrial problems with hundreds of thousandsof
variables and millions of clauses are routinely solved within
a few minutes by off the shelf, state of the art, SAT solvers.
This impressive progress can be traced back to remarkable
algorithmic improvements as well as significant progress in
the ability of SAT solvers to exploit the hidden structures of

This work was supported by the Portuguese Foundation for Science and
Technology (FCT) research project Parsat - Parallel Satisfiability Algorithms
and its Applications (PTDC/EIA-EIA/103532/2008) and by FCT through the
PIDDAC Program funds.

many practical problems. However, this increased capability
is continuously challenged by emerging applications which
bring to the fold instances of increasing size and complexity.
As a consequence, in spite of the remarkable gains we have
seen in the area, many problems remain very challenging
and unsolved by even the best solvers. Perhaps the main
cause for this situation is that the large, steady algorithmic
improvements that were made available in the last decade
with the introduction of powerful techniques such as non-
chronological backtracking, restarts, improvements in decision
heuristics, etc, seem to have slowed down. Improvements to
SAT solvers nowadays appear to be more incremental, some-
times problem-related. Faced with this situation, researchers
have started to look elsewhere for ways to continue improving
the efficiency of SAT solvers and the widespread availability of
parallel computing platforms provided renewed opportunities
to achieve this goal. The generalization of multicore processors
as well as the availability of fairly standard clustering software
provided access for the common user to parallel computing
environments. In this context, many parallel SAT solvers have
been proposed and SAT competitions now routinely include
a parallel track. The main goal of parallel SAT solvers is to
improve solver efficiency, which can be viewed in absolute
terms (how many problems are solved and in what time), but is
generally measured in terms of efficiency or speedup obtained
given the resources used. The basic obstacles to improved
efficiency are generally the same ones as encountered by
other parallel implementations, namely load balancing and
robustness, i.e. the ability to sustain similar efficiency over a
large range of problems. An enticing feature of parallelization
is that in search-based problems, super-linear speedups are
achievable if one is smart or lucky enough to search the right
region of the search space. Unfortunately such smarts/luckare
hard to ensure. Many different parallelization strategieshave
been attempted and the field is fairly crowded. An approach
that has seen many followers is where for instance the search
space is broken into non-overlapping regions which are then
searched in parallel. A similar approach can be applied to
the actual problem definition and tentative solutions can be
sought in sub-problems consisting of partial descriptionsof the
problem (which must later be made consistent with the remain-
ing problem constraints). In both cases, the parallel searches
being conducted are complementary to each other and the
searches are generally non-overlapping. In all such approaches,
the main difficulty is related to ensuring a balanced workload
between processors which is very hard to achieve. To minimize



potential unbalancing strategies such as workload stealing, or
breaking the problem into non-overlapping searches with a
finer granularity and distributing queued searches to available
processors have been proposed. Unfortunately, it is in general
hard to pick the most relevant set of variables for the initial
breakup of the search space.

In this paper we presentCMCSAT, a cooperative multi-
threaded, MultiCore SAT solver which exploits a different
approach to resource utilization. The general strategy pursued
in CMCSAT is not novel and has in fact been previously
proposed in other SAT solvers [1]. The idea is to launch
multiple instances of the same (or different) solvers, some-
times called a portfolio, with different parameter configu-
rations, which cooperate in the search for a solution by
sharing relevant information. This approach has the advantage
that it minimizes the dependence of current SAT solvers on
the specific parameter configuration chosen to regulate their
heuristic behavior, namely the decision process on the choice
of variables, on when and how to restart, on how to backtrack,
etc. Instead of attempting to guess the parameter configuration
that better leads to the problem solution, we exploit multiple
configurations in parallel, enforce some level of cooperation
between them and hope that one of them, with the help of
the shared information, might find a solution faster. The set
of parameter configurations chosen should be such that they
represent complementary ideas and strategies. Each solver
instance will attempt to find a solution to the problem or
prove that no solution exists (problem is unsatisfiable). Todo
so, it will use the information it gathers plus the information
gathered by others which are concurrently attempting to find
the same solution. As we will see, a clever set of multiple
parameter settings may lead to speedups and the sharing leads
to further improvements.

The remainder of our paper is as follows. In SectionII
we present some background on the basic techniques in
which current SAT solvers are based. We also summarize
several representative parallel approaches previously presented
and try to surmise their advantages and disadvantages. Then
in Section III we discuss our approach in some detail. In
SectionIV some preliminary results are presented, including
comparisons with both serial as well as alternative parallel
implementation. Finally, in SectionV, conclusions are drawn
regarding the proposed ideas.

II. BACKGROUND

The SAT problem consists in determining if there exists an
assignment to the variables of a propositional logic formula
such that the formula becomes satisfied. A problem to be
handled by a SAT solver is usually specified in a conjunctive
normal form (CNF) formula of propositional logic. A CNF
formula is represented using Boolean variables that can take
the values 0 (false) or 1 (true). Clauses are disjunction of
literals, which are either a variable or its complement, anda
CNF formula is a conjunction of clauses.

Basic SAT solvers are based on theDavis-Putnam-
Loveland-Logemann(DPLL) algorithm [2]. The DPLL algo-
rithm improves over the simple assign, test and backtrack al-

gorithm by the using two simple rules at each search step: unit
propagation and pure literal elimination. The unit propagation
occurs when a clause contains only a single unassigned literal
(unit clause). In order to satisfy the unit clause, no choiceis
necessary, since the value to assign the variable is the value
necessary to make the literaltrue. The pure literal elimination
consists in determining if a propositional variable occurswith
only one polarity in the formula. Such literals can always be
assigned in a way that makes all clauses containing themtrue.
Thus, these clauses do not constrain the search anymore and
can be deleted

During the search process a conflict can arise when both
Boolean values have been tried on a variable and the formula
is not satisfied. In this situation the algorithm backtracks
to the previous decision level, where some variable has yet
to toggle its value. The idea to analyse the reason of the
conflict led to theconflict driven clause learning(CDCL)
algorithm [3]. Resolving the conflict implies the generation of
new clauses that are learned. These learned clauses are added
to the original propositional formula and can lead to a non-
chronologic backtrack, where large parts of the search space
are avoides since no solution can exist there. For this reason
the CDCL algorithm is very effective and is the basis of most
modern SAT solvers.

A. SAT Solver Techniques

In the following we provide a brief overview on the core
techniques employed in modern SAT solvers.

1) Decision Heuristics:Decision heuristics play a key role
in the efficiency of SAT algorithms, since they determine
which areas of the search space get explored in first place. A
well chosen sequence of decisions may yield a solution almost
immediately, while a poorly chosen one may require the entire
search space to be explored before a solution is reached. Older
SAT solvers would employstatic decision heuristics, where
variable selection was only based on the problem structure.
Modern SAT solvers usedynamicdecision heuristics, where
variable selection is not only based on the problem structure,
but also on the current search state. The most relevant of
such decision heuristics is VSIDS (Variable State Independent
Decaying Sum) , introduced by CHAFF [4], whereby decision
variables are ordered based on theiractivity. Each variable
has an associated activity, which is increased every time that
variable occurs in a recorded conflict clause. The purpose
of VSIDS, and similar activity-based heuristics, is to avoid
scattering the search, by directing it to the most constrained
parts of the formula. These techniques are particularly effective
when dealing with large problems.

2) Non-Chronological Backtracking and Clause Recording:
When a conflict is identified, backtracking needs to be per-
formed.Chronologicalbacktracking simply undoes the previ-
ous decision, and associated implications, resuming the search
afterwards. On the other hand,non-chronologicalbacktrack-
ing, introduced by GRASP [3], can undo several decision, if
they are deemed to be involved in the conflict. When a conflict
is identified, a diagnosis procedure is executed, which builds a
conflict clauseencoding the origin of the conflict. That clause



is recorded (learnt), i.e. added to the problem. Backtracking
is then performed, possibly undoing several decisions, until
the newly-added conflict clause becomes unit (with only one
free literal). While the immediate purpose of learnt clauses
is to drive non-chronological backtracking, they also enable
future conflicts to show up earlier, thus significantly improving
performance. However, clause recording slows down propaga-
tion, since more clauses must be analyzed. Therefore, modern
SAT solvers periodically remove a number of learnt clauses,
deemed irrelevant by some heuristic.

3) Watched Literals:Since any SAT algorithm relies ex-
tensively on accessing and manipulating large amounts of
information, its data structures are of paramount importance
for its overall performance. The single most effective im-
provement on the data structures of SAT algorithms was the
introduction ofwatched literals, as proposed by CHAFF [4].
During propagation, only unit clauses (with only one free
literal) can be used to imply new variable assignments. For
each clause, two free literals are selected to be watched. When
a watched literal becomes false, the corresponding clause is
analyzed to check whether it has become unit or if a new
free literal should be watched instead of the previous one.
When no other literal can be chosen to be watched this means
that the clause is unit and that the remaining free literal is
the other watched literal. This technique provides an efficient
method to assess whether a clause has become unit or not,
and to determine its free literal. One interesting advantage
of this techniques is that it is not necessary to change the
watched literals associated with each clause when backtrack
is performed.

4) Restarts:SAT algorithms can exhibit a large variability
in the time required to solve any particular problem instance.
Indeed, huge performance differences can be observed when
using different decision heuristics. This behavior was studied
by [5] and observed that the runtime distributions for backtrack
search SAT algorithms are characterized by heavy tails. Heavy
tail behavior implies that, most often, the search can get stuck
in a particular regions of the search space. Therefore, the
introduction of restarts [5], [6] was proposed as a method
of avoiding trashing during backtrack search. The restart
strategy consists of defining a threshold value in the number
of backtracks, and aborting a given run and starting a new
run whenever the number of backtracks reaches that threshold
value. In order to preserve the completeness of the algorithm,
the backtrack threshold value must be increased after every
restart, thus enabling the entire search space to be explored,
after a certain number of restarts. Restarts and activity-based
decision heuristics are complementary, since the first one
moves the search to a new region of the search space, while
the second one enables the search to be focused in that new
region.

B. Parallel Approaches

Currently, parallel computing environments are an afford-
able reality which has forced a significant shift in the pro-
gramming paradigm. This situation led many programmers
to develop concurrent applications that are tuned for specific

parallel environments/architectures, such as: computer clus-
ters, multi-core processors, graphics processing units (GPUs),
etc. The development of parallel SAT solvers, using parallel
computing environments, are a promising approach to speed-
up the search for a solution when compared to sequential SAT
solvers. Moreover, parallel solvers should also be able to solve
larger and more challenging problems (industrial problems) for
which sequential SAT solvers are not able to find a solution
in a reasonable time.

According to the parallelization technique used we can di-
vide most parallel implementations of SAT solvers in two cate-
gories: cooperative SAT-solvers or competitive SAT-solvers. In
the former, the search space is divide and each computational
unit (either a core, a processor or computer) search for a solu-
tion in their sub-set of search space. In general this often leads
to master-slave scheme where the workload balance between
of the different computation units are difficult to achieve.In
the latter, each computation unit try to solve the same SAT
instance, but using alternative search paths. This is achieved
by assigning different algorithms to each computation unit
and/or using the same algorithm but with a different set
of configuration parameters (portfolios). For this reason,this
latter category is often called the portfolio SAT-solvers.In both
categories the computation units can work collaborativelyby
sharing information about learnt clauses to speed-up the search
process. This implies some sort of communication between the
processing units that may introduce some overhead. Deciding
which clauses to share and when to share them, may have a
significant impact on the time that a parallel SAT solver takes
to find a solution. Among all the parallel SAT solvers that have
been developed over the past decade we present here some of
the most noticeable approaches. A more complete overview
related to parallel SAT solvers can be found in [7], [8] or [9].

ThePMSat [10] solver is based onMiniSAT [11], which a
sequential SAT solver that implements most of the techniques
used on advanced solvers. ThePMSat solver run on a cluster
of computers (grid) using MPI (Message Passing Interface) for
communication and it is based on the master-slave approach
with a fixed number of slaves. The search space is divided by
the master using several partition heuristics. Each slave search
for a solution in subset of space and share the selected learned
clauses when reporting the solution to the master. The load
balancing is implicility implemented by providing sufficiently
tasks for the slaves.

The c-sat [12] SAT solver is also a parallelization of
MiniSAT that uses MPI. The master-slave architecture pro-
vides a master responsible by clause sharing and by dynamic
partitioning of the search space. The slaves perform the search
on a subset of the search space using different heuristics and
random number seed. Therefore, this solver, which runs on
a network of computers, combines the search space splitting
with a portfolio of algorithms for each subspace.

The PaMiraXT [13] solver is another parallel SAT solver
that follows the master-slave model and can run on any cluster
of computers. Each slave is based on theMiraXT [14] solver,
which is a thread-based solver. TheMiraXT uses a divide-
and-conquer approach where all threads share a unique clause



Fig. 1. Depiction of the main architecture of thecmcSAT solver.

database that includes learned clauses.
The ManySAT [1] is a portfolio-based multithread solver

that won the parallel track of the SAT-race 2008 [15]. Since
then the portfolio solvers become popular. In this solver, that
was built on top ofMiniSAT, there are four parallel instances
with different restart, decision and learning heuristics.Addi-
tionally, each sequential instance share clauses, with a given
threshold size, to improve the overall system performance.

The SAT4J// [8] solver is a kind of hybrid solver that
mixes the competitive search and the cooperative, search, but
without clause sharing. The solver, implemented in Java, starts
with a portfolio approach (weak portfolio) where an heuristic
based on the VSIDS determine the variables with the highest
activities Then, the solver splits the search space based on
those variable and when the search reaches a certain limit is
switches back to a portfolio approach (full portfolio).

Cooperative SAT solvers, through the search space splitting,
are one of the most used techniques to implement parallel
SAT solvers. Although, recently the has been an increasing
interest on the portfolio approaches, which seem to have better
performance [1], [12].

III. M ULTICORE SAT SOLVER - CMCSAT

ThecmcSAT solver is a Cooperative MultiCore SAT solver
based on portfolios. The solver has eight threads that explore
the search space independently, following different paths, due
to the way each thread is configured. However, this is not
just a purely competitive solver because the threads cooperate
by sharing the learnt clauses resulting from conflict analysis.
Figure1 presents the main architecture of thecmcSAT solver.
The underlying solver running on each thread is based on the
MiniSAT sequential SAT solver (version 2.2.0). The solver
was however modified to support clause sharing and the ability
to implement different heuristic schemes. In the following
sections we briefly describe a few strategies that were adopted
in the implementation ofcmcSAT.

A. Heuristics

Heuristics are used on SAT solvers for selecting the next
variable to be assigned, and the corresponding value, when no
further propagation can be done. Although some randomness
is incorporated into most heuristics, we would like to keep a
tight control over the search space explored by each thread.
Therefore, we introduce the notion of variable priority. Vari-
ables with higher priority are assigned before variables with
lower priority. The well proven VSIDS heuristic is used as the
main decision heuristic but the variable selection is constrained
by the priority assigned to each variable.

TABLE I
PRIORITY ASSIGNMENT SCHEMES FOR EACH THREAD.

Thread Variable priority assignment

0 All the variables have the same priority, therefore
this thread mimics the original VSIDS heuristic.

1 The first half of the variables read form the file have
higher priority then the second half.

2 The second half of the variables read form the file
have higher priority then the first half.

3 The priority is sequential decreased as the variables
are read from the file.

4 The priority is sequential increased as the variables
are read from the file.

5 The priority is assigned randomly for each variable
read from the file.

6 The priority is sequential increased as the variables
are read from the file but its priority can be increase
randomly up-to 5 times.

7 The priority is sequential increased as the variables
are read from the file but its priority can be increase
randomly up-to 10 times.

In order to ensure that each thread follows divergent search
paths, we defined distinct priority assignment schemes, one
for each thread of thecmcSAT solver. TableI describes the
eight priority schemes that were used. Note that, for most
industrial SAT instances we can take advantage of the fact
that the variables appear in the CNF file in a particular order,
which is not random, but related to the problem structure.

B. Clause Sharing

It is well known that during the search process the clauses
learnt by each thread (conflict clauses), as a result of conflict
analyses, are vital to speed-up its own search process. How-
ever, it turns out that the information learnt from a conflict
in one particular thread can be very useful to other threads,
in order to prevent the same conflict to take place. Therefore,
clause sharing between threads was implemented incmcSAT.
We limit the size of the clauses to be shared, to avoid the
overhead of copying large clauses, which may contain very
little relevant information. In [1], the authors show that the
best overall performance is achieved with a maximum size of
8 literals per clause.

To reduce the communication overhead introduced by clause
sharing, and its overall impact in performance, we have
designed data structures that eliminate the need for read and
write locks. These structures are stored in shared memory,
which is shared among all threads. We will consider that
shared clauses are sent by asource thread and received by
a target thread. As illustrated in Figure2, each source thread
owns a set of queues, one for each target thread, where the
clauses to be shared are inserted. While this flexible structure
enables sharing different clauses with different threads,we
will restrict ourselves to sharing the same clauses with every
thread. Therefore, every thread is a source thread and their
target threads are all the others. On each queue, thelastWrite
pointer marks the last clause to be inserted. ThelastWrite
pointer is only written by the source thread, but can be read
by each target thread. On the other hand, thelastReadpointer
which marks the last clause received by the target thread, is
only manipulated by each target thread. This data structure
eliminates the need for a locking mechanism, sincelastRead



thread #0

...c2c1 c3

queue #1

c5c4

...c2c1 c3

queue #2

c5c4

...c2c1 c3

queue #3

c5c4

thread #2

thread #1

thread #3

lastRead

lastRead

lastRead

lastWrite

lastWrite

lastWrite

source

target

target

target

Fig. 2. Data structures to share learnt clauses.

is only manipulated by one thread and even thoughlastWriteis
read and written by different threads, the reading thread does
not have to read its latest value. Clause sharing can occur after
a conflict analysis. If the conflict clause has less than 8 literals,
then is it also shared.

IV. EVALUATION RESULTS

In this section we present preliminary results from applying
CMCSAT to a slew of problems gathered from a recent
SAT race. These problems have multiple origins and their
complexity varies considerably. In TableII we show the
characteristics of some of the SAT instances we used to test
CMCSAT. These include problems which are both known to
be SAT or UNSAT, as well as a couple of problems whose
satisfiability is unknown.

In Table III we show experimental results for these bench-
marks. The columns in the table provide runtime information
for application of MiniSAT [11], ManySAT [1], as well as
CMCSAT with and without clause sharing. Also shown in the
table are an indication of which thread(s) first found a solution
for each of the problems, whenever a solution was found.
When sharing of learnt clauses is turned off, the comparison
reduces to determining which of the strategies depicted in
Table I is more appropriate to a given problem or set of
problems. In this case, it turns out that the standard MiniSAT
performs quite well but many other strategies do equally well,
including random picking of variables. When sharing is turned
on, the scenario changes considerably and picking chuncks of
variables from the top or bottom of the order seems to do quite
well on many occasions.

Finally, the table also shows four columns of speedup
computations (the last four) which allow us to attest the
potential gains of our solver. Here we compareCMCSAT with
clause sharing against ManySAT, which is a fair comparison
between two cooperative portfolio solvers which both share
learnt clauses. The results are quite interesting with an average
speedup of over 15. We should caution however that this is
just a small subset of instances. We run the same experiments
on a larger subset and the average speedup was closer to 9 to
10, still a very interesting result forMCMSAT considering that
ManySAT was the SAT race winner as recently as 2008. The
other three columns illustrate respectively, the advantages of

TABLE II
BENCHMARK CHARACTERISTICS

Instance Result #Vars #Clauses
aloul-chnl11-13 UNSAT 286 1742
anbul-dated-5-15-u UNSAT 151952 684567
anbul-part-10-13-s ??? 234673 1052492
babic-dspam-vc1080 UNSAT 118298 327017
babic-dspam-vc949 UNSAT 112728 356938
babic-dspam-vc973 UNSAT 274451 902703
cmu-bmc-longmult13 UNSAT 6565 20438
cmu-bmc-longmult15 UNSAT 7807 24298
een-pico-prop05-75 UNSAT 76639 245312
goldb-heqc-alu4mul UNSAT 4736 30465
goldb-heqc-dalumul UNSAT 9426 59991
ibm-2002-04r-k80 SAT 104450 449746
ibm-2002-11r1-k45 SAT 156626 633125
ibm-2002-22r-k75 SAT 191166 793646
ibm-2004-23-k100 SAT 207606 847320
ibm-2004-23-k80 SAT 165606 672840
ibm-2004-29-k25 UNSAT 17494 74526
ibm-2004-29-k55 SAT 37714 165426
jarvi-eq-atree-9 UNSAT 892 3006
marijn-philips UNSAT 3641 4456
mizh-md5-47-3 SAT 65604 234719
mizh-md5-47-4 SAT 65604 234811
mizh-md5-47-5 SAT 65604 235061
mizh-sha0-35-3 SAT 48689 173748
mizh-sha0-35-4 SAT 48689 173757
mizh-sha0-36-1 SAT 50073 179811
narain-vpn-clauses-8 SAT 1461772 5687553
palac-sn7-ipc5-h16 SAT 114548 398984
simon-s02b-r4b1k1.2 SAT 2424 14812
simon-s03-w08-15 UNSAT 132555 469456
velev-npe-1.0-9dlx-b71 SAT 889302 14582952
velev-vliw-sat-4.0-b4 SAT 520721 13348116
velev-vliw-sat-4.0-b8 SAT 521179 13378616
velev-vliw-uns-2.0-iq1 UNSAT 24604 261472
velev-vliw-uns-2.0-iq2 UNSAT 44095 542252
velev-vliw-uns-2.0-uq5 ??? 151669 2465730

clause sharing, as well as the speedups over standard MiniSAT
both when clause sharing is turned on and off. The advantages
of clause sharing seem obvious: as expected, using information
from other threads which are exploring problem structure
elsewhere in the search space, leads to some speedup. However
the advantage of this approach is also offset by the cost of
doing clause sharing (both preparing clauses for sharing, as
well as using clauses originally from other threads. For this
reason in a reasonable number of problems no speedup is
obtained. The comparisons to MiniSAT serve two purposes.
When clause sharing is turned off we are, as previously
mentioned, really testing the appropriateness of the strategies
in Table I. When clause sharing is on, we are measuring
the advantages of cooperation between threads. Either way,
the speedups are interesting, with the average speedup over
MiniSAT when clauses are shared being quite large (over 100
for the subset of instance shown but a more reasonable but also
eye popping 35 or so. Overall, the results, seem very promising
and justify further investment in adding new approaches to
obtain further speedups.

V. CONCLUSION

The widespread availability of multi-core, shared memory
parallel environments provides an opportunity for boosting the
effectiveness of SAT solution. In this paper we presented a co-
operative multi-core SAT solver to improve solution efficiency
and capacity. Multiple instances of the same basic solver using



TABLE III
EVALUATION RESULTS

T Winner Tparallel Tparallel Winner Speedup Speedup Speedup Speedup
Instance Result MiniSAT Thread no share share Thread ManySAT share vs share vs no share vs share vs

no share w/ share ManySAT no share MiniSAT MiniSAT

aloul-chnl11-13 UNSAT 3600.00 4 14.02 14.01 4 2426.34 173.19 1.00 256.78 256.96
anbul-dated-5-15-u UNSAT 3600.00 0 439.00 185.51 0 79.37 0.43 2.37 8.20 19.41
anbul-part-10-13-s ??? 3600.00 — 3600.00 3600.00 — 3600.00 1.00 1.00 1.00 1.00
babic-dspam-vc1080 UNSAT 647.34 3 0.33 0.33 3 46.26 140.18 1.00 1961.64 1961.64
babic-dspam-vc949 UNSAT 58.86 3 0.33 0.33 3 47.37 143.55 1.00 178.36 178.36
babic-dspam-vc973 UNSAT 10.95 3 0.75 0.75 3 2.17 2.89 1.00 14.60 14.60
cmu-bmc-longmult13 UNSAT 26.27 1.5 21.81 7.12 ”0;1;4” 7.38 1.04 3.06 1.20 3.69
cmu-bmc-longmult15 UNSAT 15.60 1 13.13 6.30 0.1 5.23 0.83 2.08 1.19 2.48
een-pico-prop05-75 UNSAT 105.88 0 105.88 65.98 0 36.23 0.55 1.60 1.00 1.60
goldb-heqc-alu4mul UNSAT 118.69 0 118.69 41.98 0.2 29.92 0.71 2.83 1.00 2.83
goldb-heqc-dalumul UNSAT 3600.00 — 3600.00 875.00 1 244.23 0.28 4.11 1.00 4.11
ibm-2002-04r-k80 SAT 29.89 0 29.89 11.25 ”0;1;2” 20.03 1.78 2.66 1.00 2.66
ibm-2002-11r1-k45 SAT 38.19 0 38.19 4.39 ”0;1;6” 21.14 4.82 8.70 1.00 8.70
ibm-2002-22r-k75 SAT 251.07 1 170.56 8.37 1.6 112.03 13.38 20.38 1.47 30.00
ibm-2004-23-k100 SAT 83761.00 3 697.06 62.91 3 177.85 2.83 11.08 120.16 1331.44
ibm-2004-23-k80 SAT 232.34 0 232.34 16.31 3 87.87 5.39 14.25 1.00 14.25
ibm-2004-29-k25 UNSAT 98.99 0 98.99 34.64 0 24.05 0.69 2.86 1.00 2.86
ibm-2004-29-k55 SAT 279.83 7 28.67 17.74 0.1 25.19 1.42 1.62 9.76 15.77
jarvi-eq-atree-9 UNSAT 106.08 4 59.17 22.36 1.2 22.90 1.02 2.65 1.79 4.74
marijn-philips UNSAT 2496.31 3 940.08 101.56 1.2 550.11 5.42 9.26 2.66 24.58
mizh-md5-47-3 SAT 265.53 0 265.53 21.20 0.1 68.23 3.22 12.53 1.00 12.53
mizh-md5-47-4 SAT 87.00 1 39.87 17.85 0.1 334.92 18.76 2.23 2.18 4.87
mizh-md5-47-5 SAT 563.58 5 129.37 53.09 1 56.83 1.07 2.44 4.36 10.62
mizh-sha0-35-3 SAT 29.36 1 6.00 5.52 1.3 36.72 6.65 1.09 4.89 5.32
mizh-sha0-35-4 SAT 262.22 5 68.24 17.55 1 47.27 2.69 3.89 3.84 14.94
mizh-sha0-36-1 SAT 353.95 5 88.99 10.46 1.3 339.40 32.45 8.51 3.98 33.84
narain-vpn-clauses-8 SAT 3600.00 - 3600.00 373.91 0 629.53 1.68 9.63 1.00 9.63
palac-sn7-ipc5-h16 SAT 938.23 5 845.45 81.70 7 178.43 2.18 10.35 1.11 11.48
simon-s02b-r4b1k1.2 SAT 96.80 5 74.32 5.73 0 11.37 1.98 12.97 1.30 16.89
simon-s03-w08-15 UNSAT 121.27 0 121.27 33.04 1.2 22.26 0.67 3.67 1.00 3.67
velev-npe-1.0-9dlx-b71 SAT 190.91 7 37.49 15.49 1 268.84 17.36 2.42 5.09 12.32
velev-vliw-sat-4.0-b4 SAT 72.90 1 48.03 9.03 ”0;1;6;7” 30.98 3.43 5.32 1.52 8.07
velev-vliw-sat-4.0-b8 SAT 101.53 1 32.05 21.55 0.1 42.41 1.97 1.49 3.17 4.71
velev-vliw-uns-2.0-iq1 UNSAT 435.23 2 256.55 41.77 2.4 789.34 18.90 6.14 1.70 10.42
velev-vliw-uns-2.0-iq2 UNSAT 3600.00 2 959.62 416.14 2.4 3600.00 8.65 2.31 3.75 8.65
velev-vliw-uns-2.0-uq5 ??? 3600.00 — 3600.00 3600.00 — 3600.00 1.00 1.00 1.00 1.00

different heuristic strategies for search-space exploration and
problem analysis share information and cooperate towards the
solution of a given problem. Results from application of our
methodology to known problems from SAT competitions and
EDA problems show relevant improvements over the state of
the art and yield the promise of further advances.

REFERENCES

[1] Y. Hamadi and L. Sais, “ManySAT: a parallel SAT solver,”Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), vol. 6, 2009.

[2] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,”Communications of the ACM, vol. 5, no. 7, pp. 394–
397, July 1962.

[3] J. a. P. M. Silva and K. A. Sakallah, “Grasp: A new search algorithm
for satisfiability,” in Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), San Jose, California,
United States, 1996, pp. 220–227.

[4] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik, “Chaff: Engineering an efficient sat solver,” inProceedings of
IEEE/ACM Design Automation Conference (DAC), Las Vegas, Nevada,
USA, June 2001, pp. 530–535.

[5] C. P. Gomes, B. Selman, and H. Kautz, “Boosting combinatorial
search through randomization,” inProceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI), Madison, Wisconsin, USA,
1998, pp. 431–437.

[6] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman, “Dynamic
restart policies,” inProceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI), Edmonton, Alberta, Canada, 2002, pp.
674–681.

[7] D. Singer,Parallel Combinatorial Optimization. John Wiley & Sons,
Inc, 2006, ch. Parallel Resolution of the Satisfiability Problem: A Survey.

[8] R. Martins, V. Manquinho, and I. Lynce, “Improving searchspace
splitting for parallel sat solving,” inIEEE International Conference on
Tools with Artificial Intelligence (ICTAI), Oct., 27–29, 2010, pp. 336–
343.

[9] S. Holldolber, N. Manthey, V. H. Nguyen, J. Stecklina, and P. Steinke,
“A short overview on modern parallel sat-solvers,” inInternational
Conference on Advanced Computer Science and Information System
(ICACSIS), Dec., 17–18, 2011, pp. 201–206.

[10] L. Gil, P. Flores, and L. M. Silveira, “PMSat: a parallelversion of
MiniSAT,” Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), vol. 6, pp. 71–98, 2008.

[11] N. Eén and N. S̈orensson, “An Extensible SAT-solver,”Theory and
Applications of Satisfiability Testing, vol. 2919, pp. 502–518, 2004.

[12] K. Ohmura and K. Ueda, “c-sat: A parallel SAT solver for clusters,”
in Theory and Applications of Satisfiability Testing, ser. Lecture Notes
in Computer Science, O. Kullmann, Ed. Springer Berlin / Heidelberg,
2009, vol. 5584, pp. 524–537.

[13] B. B. T. Schubert, M. Lewis, “Pamiraxt: Parallel sat solving with threads
and message passing,”Journal on Satisfiability, Boolean Modeling and
Computation, vol. 6, pp. 203–222, 2009.

[14] T. Schubert, M. Lewis, and B. Becker, “Pamira - a parallelsat solver
with knowledge sharing,” inProceedings of International Workshop on
Microprocessor Test and Verification. IEEE Computer Society, 2005,
pp. 29–36.

[15] C. Sinz and et al, “Sat-race 2008,” http://baldur.iti.uka.de/sat-race-
2008/index.html, 2008, accessed on May 2012.


	Introduction
	Background
	SAT Solver Techniques
	Decision Heuristics
	Non-Chronological Backtracking and Clause Recording
	Watched Literals
	Restarts

	Parallel Approaches

	Multicore SAT Solver - cmcSAT
	Heuristics
	Clause Sharing

	Evaluation Results
	Conclusion
	References

