
Parallelization of SAT Algorithms on GPUs

Carlos Costa
carlos.silva.costa@ist.utl.pt

Instituto Superior Técnico

Abstract. The Boolean Satisfability Problem is one of the most im-
portant problems in computer science with applications spannig many
areas of research. Despite this importance and the extensive study and
improvements that have been made, no efficient solution to the problem
has been found to the date.
During the last years, nVidia introduced CUDA, a platform which lets
developers take advantage of the great computing power of the GPUs,
that was once unavailable to use.
In this work, we propose a methodology of using GPUs to accelerate the
resolution of the SAT problem. Since the problem does not map well the
GPU paradigm, we will explain our approach, which uses both the GPU
and the CPU to solve the parts that suit them the best.
We also propose developing a novel SAT solver, capable of solving current
benchmark problems, as well as most industry problems.

Keywords: Satisfability, GPU, CUDA, parallelization

1 Introduction

The Boolean Satisfiability (SAT) problem was the first NP-Complete problem to
be identified [1], and it is still one of the most important problems in computer
science. The reason that makes it so important has to do with three factors: i)
they are easy to understand and have inumerous applications in real life, such
as software testing with model checkers, theorem proving [2] and Electronic
Design Automation; ii) all NP-Complete Problems, can be reduced into other
NP-Complete problems, and if reduced repeatedly, they will eventualy reduce
to the SAT problem [3], and iii) despite the extensive study and effort put into
developing efficient solvers, as problems grow in size, they will always become
undecidable, as the time it will take to solve them, will grow exponentially.

Since the first attempt at solving SAT problems with the DPLL algorithm
[4], SAT solvers have improved a lot, as important contributions have been made
since then which contributed to having Sat solvers that outperform the initial
DPLL algorithm by three orders of magnitude [5], and now allow problems to
have tens of thousands of variables, instead of just a few.

However, modern SAT solvers are hitting a wall in terms of performance, and
new techniques only make small running time improvements. Moreover, solvers
are also becoming less robust as they are becoming increasingly sensitive to the
parameters used in their heuristics.

2

At the same time, processors started to become parallel, and, as their process-
ing power continues to increase, their per core speed came to an halt. These were
the reasons that made it clear that Solvers had to keep up with the hardware
and become parallel aswell.

To make solving parallel there are two main approaches. Some solvers split
the search space into parts in which they run the algorithm, while others have
several algorithms racing against each other in the same search space, sharing
what they learn during that search.

Meanwhile, improvements in the area of Graphical Processing Units (GPUs)
made them available to do everyday computing, not only graphic processing
as they used to. GPUs have hundreds of cores and a computing power that
outperforms that of the Central Processing Unit (CPU) by orders of magnitude.
Still, they are not used in state of the art parallel SAT solvers.

GPUs have some drawbacks as their architectures is made to execute the same
instruction in different threads (SIMT), and so, for highly irregular problems,
GPUs cannot perform at the maximum of their capabilities.

We are going to propose a way of using the GPU as a way of aiding the CPU
achieve better results at solving SAT instances. To do so, we are going to propose
a way to regularize the SAT problem, and we will use the CPU to tackle the
parts of the problem that cause that irregularity instead of having them made
on the GPU.

To demonstrate our results we will run standard benchmarks against our
project and compare results with some state of the art solvers. As SAT solvers
are in the center of some model checkers we propose to use our solver in an open
source model checker to compare results in a real life application.

In section 2 we will propose the project goals and in section 3 we will explain
the architecture of the GPU as opposed to the CPU. In section 4 we will discuss
some work that is relevant to our project and in the last three sections we will
present our proposed solution, a way to evaluate it and our conclusions.

2 Goals

Our main goal is to explore ways to parallelize the execution of SAT solvers with
special focus on the use of GPUs.

The major goals of this project are:

• The proposed solution has a performance comparable with other SAT solvers
• The solution is configurable (number of GPUs, number of GPU cores,...)
• The system provides statistics and metrics to evaluate performance
• The system is easily combined with existing projects via some interface

3 Background

In this section we will introduce the main concepts used throughout this work.
Firstly, we will explain what is the SAT problem. Secondly, we will describe one

3

of the first algorithms used to try and solve it, the DPLL algorithm. We will,
finally, talk about the workings of the GPUs, their memory model and explain
in what they differ in relation to the CPUs.

3.1 The Boolean Satisfiability Problem

The Boolean Satisfiability Problem refers to the problem of, given a boolean
expression, determining if there exists an assignement, true or false, to all boolean
variables that make the entire expression to be true.

As every boolean formula can be transformed into it, usually the formulas are
expressed in Conjunctive Normal Form (CNF), which is a conjunction of clauses
where each clause is a disjunction of literals. These are easier to understand,
parse and process than regular forms, and allow for some simplifications to be
made [6].

There are some problems associated with SAT, like 3-SAT, or the more
generic k-SAT problem, where all the formulas have the same size. Our Solver
will accept any problem, as long as it is in CNF form.

3.2 Incomplete Solvers

A subset of the SAT Solvers, designated by incomplete solvers employ greedy
and random approaches to find a solution, and unlike complete solvers, do not
explore the entire search space. Since they are incomplete they can only prove
satisfiability.

Since we want to know if the problem is Satisfiable or Unsatisfiable, we are
only going to study complete solvers.

3.3 DPLL Algorithm

Most complete solvers are based on the DPLL algorithm.
The DPLL algorithm [4] was proposed in 1962 by Martin Davis, Hilary Put-

nam, George Logemann and Donald W. Loveland and was a refinement of the
Davis-Putnam algorithm that preceded it. The algorithm tries to iteratively
perform four operations to try to combine all the variables into an satisfiable
solution, the said operations are unit propagation, pure literal elimination, free
literal search and backtrack.

The unit propagation procedure, tries to generate implications by analyzing
unit clauses. To do so, it searches for clauses that are unit, i.e. non-satisfied
clauses in which all, but one literal, is assigned, meaning that the last unassigned
literal must evaluate to true, thus avoiding a conflict.

Conflicts can appear in two ways, if all the variables in a clause are assigned
and yet the clause is unsatisfied, or, if during the propagation phase, different
values are assigned to the same variable.

The pure literal elimination searches for variables that only have one polarity
in the formula, positive or negative, and so by assigning the value that makes the

4

literals associated with the variable true, one can remove the clauses containing
them from the problem.

DPLL(S) ≡
while (1)

decideNextBranch()
while (1)

status = propagate();
if (status == CONFLICT)

then
lvl = backtrack(btlevel);
if (lvl == 0) then returnUNSATISFIABLE fi

else if (status == SATISFIABLE) then returnSATISFIABLE fi;
else break;

In the algorithm, the decision for the next variable works the following way:
the program searches for the first unassigned variable and sets it to true; then, if
conflicts occur and the search backtracks back to it, the value is flipped to false.
If the backtrack procedure gets to the variable again, the variable is unassigned
and the search backtracks to the previous level.

The backtrack phase, in addition to the work described earlier, needs to undo
other things, such as the variables assigned in the unit propagation procedure and
also needs to replace the clauses eliminated in the pure literal elimination phase.
If the backtrack procedure backtracks to a level below the first assignement, it
means that no assignement exists to the problem and it is deemed unsatisfiable.

The other ways the algorithm may end are by satisfying all clauses, meaning
the problem is satisfiable, or by time limit, or program termination, in which no
conclusions can be made and the problem is undecidable.

3.4 CUDA

CUDA is a programming framework for machines with GPUs, composed of a
programming language, a compiler and a runtime environement. It enables the
GPU, whose processing power gap is growing larger each year when comparing
with the CPUs (Fig. 1), to do generic-propose computation on preferencially
data parallel, intensive processing problems, where before one could only do
graphic processing.

When programming with CUDA, the CPU is optimized for fast single thread
execution, so it is good for complex control logic and out of order execution,
it has a large cache, to hide RAM accesses, and the cores are optimized to
take advantage of those caches. The GPU is optimized for high multi-thread
troughput however, they are not good at handling conditional execution flow
splits, and their caches are small, so the way to hide memory access times is to
work with a lot of threads.

5

Fig. 1. The increasing processing power of the GPUs in comparison with CPUs

The hardware architecture (Fig. 2) of CUDA enabled GPUs shows why this
happens: the GPU devotes most of its transistors to data processing as opposing
to the CPU, which devotes them to data and instruction caching.

3.4.1 CUDA programming model

The CUDA programming model is called Single Instruction Multiple Threads
(SIMT) and it has some advantages and some drawbacks when compared to
Simultaneous Multi Threading (SMT), the programming model of multi-core
CPUs. The advantages are that it has that a much higher number of threads
that can be ran at the same time, enabling a cheap high-troughput, high-latency
design. This allows the creation of cheap thread registers, and so each thread
may have up to 63 registers.

CUDA’s memory accesses are very expensive. So it relies on having enough
threads running, because thread switching in CUDA is really fast and when a
thread is reading from memory, CUDA switches to a thread that hopefully is
ready to work.

This is also true for the CPU, where threads can be used to hide some memory
latency. The difference is that in the GPU thread switching is very cheap and
so, one can and should, have thousands of threads running at the same time.

These threads are organized in one or two dimensional thread blocks, meaning
each CUDA program can have thousands of blocks with thousands of threads.

6

Fig. 2. The difference in architecture between the CPU and the GPU

The blocks, are then organized in Grids, which can also be organized in one or
two dimensions. Inside a block, threads are organized into warps, the size of a
warp is hardware specific and all the threads in a warp are executed at the same
time. This means that if one thread is stalled reading from memory, the other
threads in the warp, are also stalled waiting for it.

3.4.2 CUDA memory model

As said before, in the GPU, memory accesses have a high cost, and to hide this
cost, a lot of threads should be used. Despite its slowness, there are four memory
levels in CUDA with different peculiarities and access times.

Each block has several registers, accessible only by one thread, and so the
number of registers per thread depends on the number of threads per block. The
registers are very fast, and so increasing the number of threads per block reduces
the number of registers available, being the variables stored in local memory,
which is as slow as global memory, possibly hurting the overall performance.

There is one type of memory accessible, and shared, by all threads in a block,
shared memory. In terms of speed it is as fast as registers but, unlike registers,
shared memory has a major drawback, has it is is splat in 16 banks, and different
banks can be accessed in parallel. However, if the same bank is being accessed
by different threads, the access to that bank is serialized, making the warp of
threads wait until all the accesses to that bank are made.

The other memory level, is global memory. Allocated items, go into global
memory, and it is the slowest type of memory available. However, if the accesses
of a warp are made to consecutive positions of it, they all happen at the same
time, this is called coalesced access to memory. The opposite also happens, if the
accesses are random, several accesses need to be made to the memory to fetch
all the necessary information.

7

4 Related Work

4.1 Overview

There are several approaches to SAT solving. Here we discuss the main ap-
proaches and the most recent work using each approach.

4.2 Complete DPLL-Based solvers

As said before, the DPLL was one of the first algorithms proposed to solve the
SAT problem. Solvers based on the DPLL algorithm are still the fastest solvers
available.

Since its presentation, the DPLL algorithm has been continuosly improved
and the most modern solvers perform several orders of magnitude better than
the standard DPLL.

The DPLL algorithm backtracks chronologically, which means that, no ef-
fort to understand the cause of the conflict is made. GRASP intruduces non-
chronological backtracking, where the solver analyzes the conflict and is capable
of backtracking more than one level.

The DPLL algorithm analyzes the whole clause in order to search for unit
clauses. In Chaff and SATO novel approaches were devised to optimize this
step.

The DPLL algorithm chooses the first non-assigned variable and sets it to
true. Some heuristics choose variables in a different order, and such heuristics,
lead to much better results in terms of running time.

In the remainder of this section we will describe several techniques imple-
mented in modern DPLL-based SAT Solvers that led to the state of the art
solvers we know today.

4.2.1 Conflict Driven SAT Solvers

When running, SAT solvers frequently generate conflicting attributions, and
the same conflict may happen several times. To prevent the same conflict from
happening recurrently, modern SAT solvers, find the cause of the conflict and
learn it so they can avoid it for the rest of the solving process.

There are several approaches to learning, but all of them start with an impli-
cation graph. An implication graph is the graph generated with the implications
that follow an assignment, during the unit propagation phase.

This implication graph is defined as follows:

1. each vertex in the grahp corresponds to a variable assignement
2. the predecessors of a vertex in the grahp are the antecedent assignements,

corresponding to the variables in the unit clause that led to the implication.
The directed edges from the variables in the unit clause are labeled with
the name of the clause, vertices with no predecessors correspond to decision
assignements.

8

3. Conflict vertices are added to the grahp to indicate conflicts. The predeces-
sors of that vertex correspond to the assignements that forced the clause to
become unsatisfied.

4. The decision level of an implied variable is the same as the maximum level
of its antecedent variables.

With this implication graph, there are several ways to generate a conflict
clause. In GRASP [7], the variables present in the graph that were not impli-
cated in the current decision level are gathered and the conflict clause is created
by inverting the current assignement of those variables.

These clauses are what enables solvers to don’t redo mistakes, and that’s the
first step towards achieving non-chronological backtracking.

Even though clause learning provides major improvements, there are some
drawbacks. First, the amount of spaces the clause database uses becomes in-
creasingly higher, and the time it takes to process those clauses increases aswell.
However there are techniques to limit the size of the clause database. Some SAT
solvers learn clauses to a predefined limit and some use more sophisticated tech-
niques. For instance, BerkMin [8] removes clauses according to an heuristic, and
also according to their satisfiability.

4.2.2 Non-chronological backtracking

As said before, non-chronological backtracking and clause learning are connected,
as the former relies on the later, and conflict-clauses can be used to backtrack
several levels by simple analysis [9].

Once a conflict clause is created, it is analyzed and the search will backtrack
to the highest level exhibited by the variables in the clause. The rationale behind
this is that, until the first conflicting assignement is undone, the mistake will
continue to happen. That happens, because some conflicts happen not because
of assignements in the current level but because of prior assignements, this is
the kind of problem that is solved with this type of analysis.

Fig. 3. With Non-chronological Backtrack the search can backtrack several levels at a
time

9

This means that, by discarding all the branches that once needed to be
explored and backjumping several levels(Fig.3), the amount of search is reduced
and consequently the solving time reduces aswell.

Non-chronological backtracking is not the only scheme to backjump more
than one level. For instance, Bayardo et al. [11] applied CSP look-back techniques
to SAT solving, and was also able to significantly reduce search times, when
compared to chronological backtracking solvers.

4.2.3 Unit Propagation

Pruning the search space can reduce the execution time of SAT solvers, but as
solvers spend about 80% of their execution time doing unit propagation [5], some
previous work fine tuned this procedure to its maximum.

The first attempt to optimize the propagation phase was made in SATO
[12]. It introduced head-tail lists, which consists of two pointers to the first and
last unassigned literals. When a variable pointed by a pointer gets negated, the
pointer moves to the next unassigned variable, with the head pointer always
moving towards the tail and vice versa. When the two pointers get to the same
variable, that variable is an implication and needs to be propagated. If, on the
other hand, no good place is found to place the two pointers, a conflict exists,
and the solver needs to backtrack. During backtrack the pointers are moved to
a previous position.

In Chaff [5] another approach was taken. It also has two pointers, but they
behave differently. They point to either an unassigned or satisfied literal. If the
pointed literal gets negated, that pointer moves to an unassigned or satisfied
literal, different from the literal pointed by the other pointer. When only one
unassigned literal is found, that variable is set in order to satisfy the clause, and
propagated. In this approach the pointers can be anywhere in the clause, thus
no backtracking is necessary.

In Fig. 4 [13] an example of the evolution of both algorithms troughout time
can be seen.

10

Fig. 4. The increasing processing power of the GPUs in comparison with CPUs

11

4.2.4 Variable Selection Heuristics

There are many decision heuristics and Marques-Silva [14] and Hooker [15]
did an extensive study in the importance and impact of several of them. We are
going to explain Variable State Independent Decaying Sum (VSIDS), one of the
most used heuristics in modern solvers.

VSIDS Heuristic was introduced in Chaff [5] that works as follows:

1. Each variable in each polarity has an associated counter initialized to 0
2. When a clause is added to the database, the counter associated with each

literal in the clause is incremented
3. The (unassigned) variable and polarity with the highest counter is chosen at

each decision
4. Periodically, all the counters are divided by a constant

This strategy, by giving more importance to variables involved in recent con-
flicts, has a clear goal of trying to satisfy the most recently generated conflict
clauses, because according to the authors, these are what drives the search pro-
cess on difficult problems.

In his paper, Marques-Silva [14] relativized branch heuristics importance to
SAT solvers and added that search pruning techniques like non-chronological
backtracking and clause learning have a much more significant impact when the
objective is to reduce running time and the amount of search.

4.2.5 Restarting the search

While solving SAT problems, as the search is processed in a depth first manner,
early wrong decisions are very expensive [16].
Initially, decision heuristics cannot make good decisions because they are not
well informed. In modern SAT solvers, knowledge is accumulated during conflict
analysis with, previously explained, conflict-clause generation, and heuristics like
VSIDS, that are updated with the addition of conflict clauses.

By restarting the search from time to time, solvers prevent the search from
being stuck in a small region of the search space [5]. Also, to ensure completeness
the restart interval is increased everytime so that eventually the whole search
tree is traversed.

As the solver as gathered information from previous runs, it allows the heuris-
tics to do better decisions and it allows the new search to focus on parts previ-
ously identified as important, mostly because when the search is restarted it has
all the previously identified conflict-clauses so it will avoid previously generated
errors, and by doing so, it will explore other paths.

4.3 Parallel DPLL based solvers

The effectiveness of the techniques described in the previous section made it
difficult to improve the overall runtime of state of the art SAT Solvers by or-
ders of magnitude. Only minor improvement were possible and with the use of

12

heuristics, SAT Solvers became highly stochastic, as they were very sensible to
their parameters [17]. To continue to increase in performance, solvers had to be-
come parallel to keep up with the hardware trend, where multi-core processors
continue to increase in speed, but single core performance is staled.

Several approaches to parallel SAT solving have been proposed and we will
proceed to explain the ones considered more relevant.

4.3.1 Divide-and-Conquer

Divide-and-Conquer is the typical method to parallelize the search. A set of
constraints is used to split the decision tree and then the algorithm is ran on
each part of the decision tree with a different thread or core. However there
are problems with standard divide-and-conquer since the search is irregular and
given so, mechanisms of work balancing are needed to make the search scale.
An examples of a divide-and-conquer solver is Psato [18], by Zhang et al. that
relies only on dividing the search space and load-balancing,

4.3.2 Clause sharing

Another technique to enhance parallel SAT solving is clause sharing. By sharing
the conflict clauses generated on each core, each core is able to help the others
to further prune their search space, resulting in reduced runtimes [19].

The main problem with clause sharing is the large number of clauses that
can be generated. A solution to this problem is to only export clauses that are
smaller than a pre-defined size. This way, many of the generated clauses are not
shared and the overhead is reduced. This has other, very significant, advantage.
The smaller the clause, the bigger is the cut on the search space. For instance,
if a conflict clause has k variables, the cut is of 2(n−k) tuples, where n is the
number of variables [20].

4.3.3 Portfolio Solvers

The above mentioned ways of parallelizing SAT solving, share one problem with
serial solvers. They are not very robust, as they heavily rely on heuristics and
their parameters. To address this lack of robustness, portfolio solvers make sev-
eral DPLL-based solvers compete, and cooperate with each other, to be the first
to solve a given instance. These solvers rather than splitting the search space,
are all running in the same search space with different, decision and restart,
heuristics sharing only the conflict clauses they generate.

The state of the art portfolio solver is ManySAT [21]. It runs four DPLL
instances, with four different restart policies: one solver increases the time be-
tween restarts geometrically, other increases it arithmetically and finally the last
two policies are a luby sequence and a dynamic restart scheme. As for clause
sharing, the scheme follows, the core that restarts dynamically sends clauses to
two other cores, that only receives clauses, and the other core does not share

13

clauses. Moreover, for better results, manysat also controls both the quantity,
so learned clauses size does not grow without control, and quality of the shared
clauses, by filtering the learned clauses by relevance [20].

4.3.4 Parallel Unit Propagation

As Unit propagation is where most of the run time is spent during the search
process, efforts were made to parallelize it. In RISS [22], the author parallelizes
the propagation process, speeding up the solving process. However, the speed is
only marginally improved, mainly because of synchronization overhead, however
it does not scale for more than two cores.

4.4 SAT Solving on the GPU

There are a few published works on using GPUs in SAT solving. The approaches
vary a lot, going from simple matrix multiplication schemes, to DPLL based
algorithms, to using incomplete approaches to optimize the variable decision
heuristic.

In MESP, Gulati et al. [23] propose using SurveySAT, which is based in
an incomplete method, survey propagation [24], on the GPU, and at the same
time they are running a complete solver, based on MiniSAT [25] on the CPU.
Basically they enhance the VSIDS selection heuristic, which, as explained before,
is based in variable activity, with the output of the survey propagation algorithm
that is running on the GPU. This approach can be viewed as a portfolio solver
composed of two solvers, only in this solver one is DPLL based and the other is
a Survey Propagation Solver.

A similar approach is taken by Beckers et al. [26] by combining TWSAT [27]
another incomplete solver, with MiniSat, using the first to provide the decision
heuristic, instead of using the more common VSIDS heuristic, that ships with
MiniSat.

Fujii et al [28], proposed to use the GPU as an accelerator for the unit
propagation procedure of 3-SAT problems, mimicking a previous work by Davis
et al. where Davis et al. [29] used a FPGA to accelerate the BCP procedure,
instead of using GPUs.

Meyer [30], proposed a parallel 3-SAT solver on the GPU that featured a
pipeline of kernels that process the problem, the work discards most common
techniques and relies only on massive thread parallelism to solve problems. The
work was focused in determining the scalability and applicability of GPUs to sat
solving rather than trying to devise the next high end SAT solver.

5 Proposed Approach

This section provides an overview on our proposed approach. In order to solve
SAT problems using the GPU, we propose a system consisting of three compo-
nents(fig. 5):

14

1. A converter between the representation used on the CPU and the one used
on the GPU

2. A SAT Solver
3. A Clause Learning and Problem Regeneration module

Fig. 5. Proposed system’s architecture

5.1 System Overview

Because the problem does not fit the GPU paradigm completely, the system uses
the CPU and the GPU cooperatively and each component processes the part of
the problem that suits it the best.

The GPU will do the heavier, more systematic, work while the CPU will do
the lighter and less structured work.

This idea comes from the fact that since all the threads in a stream multipro-
cessor (SM) of the GPU are executing the same instruction (vector processing),
if they are performing work that is less systematic, computing power is going to
be wasted, as some threads will be waiting for others.

We thought that moving only the Unit Propagation, that is completely sys-
tematic, to the GPU wasn’t going to bring the kind of performance we wanted,
because as it is true that Propagation takes most of the time of the solving pro-
cess, each Propagation takes so little time that most of the times we would lose
time because of the overhead that is starting a GPU kernel.

This made us consider into taking more of the solving to the GPU, but always
taking into account that if we take too much the GPU will not perform at its
best.

5.2 Representation Converter

In our approach we need to constantly exchange information between the GPU
and the CPU. Because they have different internal representations for the prob-
lem, this information needs to be transformed before it can be of use.

15

The structure used in the CPU to represent the problem being solved, does
not fit well into the GPU model, because in the GPU memory accesses are much
more expensive than in the CPU, and moving the CPU representation directly
to the GPU may negatively impact the GPU Solver performance. As explained
before, in the GPU, if memory accesses are coalesced, they can be converted
into one access rather than many. The main reason for this convertion is to
allow each side to work with the representation that suits it the best, meaning
that the representation may have to be slightly converted, or it may have to be
changed altogether.

The representation we will use in the GPU will have no dynamic structures.
Initially, once the problem gets to the GPU it will remain unchanged until a
restart happens, and a new problem is converted and loaded onto it.

5.3 SAT Solver

The SAT solver will run on the GPU, it will feature GPU optimized versions of
the unit propagation, backtrack and variable selection procedures and will also
feature a conflict analysis step that will allow for non-chronological backtracking.
However, due to the representation chosen for the problem, the solver will not
learn clauses on the go. That will be the job destined to the last module.

5.4 Clause Learning and Problem Regeneration module

When the Solver analyzes a conflict to decide the level it will have to backtrack
to, it sends the data used in the analysis to the CPU and it is the CPU job to
make an in depth analysis of the conflict and to generate a conflict clause that
may, or may not, be added to the problem. When the CPU retrieves the data
sent from the GPU, the representation converter is used, to convert it back again
to the CPU representation.

This separation of roles was considered because the algorithm is not regular
enough to fit the GPU, and by removing some irregularity from the algorithm
and by handling it on the CPU, we can combine the best of the both worlds and
have an algorithm that is runnig at full power on the GPU while, at the same
time, it is using the CPU to do some relevant work.

Another reason to consider this separation is that if the quantity of conflicts
that the GPU can produce is high, having the CPU to solely take care of this
job, makes it usefull.

The resulting problem generated on the CPU will be sent to the GPU ev-
erytime a restart happens, when the Solver restarts, the old problem is removed
from the GPU and replaced with the new one, with the newly learned clauses.

5.5 Work already conducted

To understand where the GPU could be of use in solving SAT problems, we
developed several solvers that used different approaches or representations. We
will now explain some of the experiments we performed so far.

16

5.5.1 Brute Force with JIT Compilation

The first experiment we did was to take advantage of the Just-In-Time compi-
lation facilities that are provided by CUDA, in which one can generate kernels
at runtime.

We read the problems, converted them into code, compiled them and inserted
them into the graphics card. This solution is not of much use because even tough
the JIT compilation result is fast, it fails to solve even small problems, because
it had to try every combination possible, and those grow exponentialy with the
problem size.

5.5.2 Brute Force with Problem Matrix

The second experiment was made to try and use the matrix multiplication facil-
ities provided by the CUDA framework. This experiment had several problems.
Firstly, it greatly limited the problem because the matrix representation, as it
takes O(variables× clauses) of space. Secondly, the matrix that was represent-
ing the problem was almost always sparse. That lead to bad running times, as
most of the work wasn’t usefull at all, this approach besides these two problems,
also shares the main problem of the JIT experiment.

5.5.3 Brute Force with Compressed Problem Matrix

This experiment was performed to try and eliminate the problems with the
previous approach: the memory limitation and the useless work. This way, we
compressed the matrix and this lead to better running times and space consumed.
However, like the previous experiments, trying every assignement option is only
doable for small problems.

5.5.4 DPLL algorithm on the GPU with simplified
Divide-and-Conquer

In the last experiment performed, we coded the DPLL algorithm in the GPU
and let all the solving take place on it. We had a simplified divide-and-conquer
where we gave each block an initial assignement and let it work from there.
There is also some rudimentary work balancing, as we spawn more blocks than
those the GPU can handle, and these leftover blocks are only executed when one
other block completes its job, making sure that every processor of the GPU is
kept busy. The running times are not great, as it does chronological backtracking
and does not learn, but the kind of performance ehxibited in terms of conflicts
generated and decision tree coverage, led us to conclude that, with some work,
this could be part of a possible solution.

17

5.6 Remaining work

– Months 1 - 4 (January to May)
• Optimize the current implementation of our DPLL based solver
• Analyze the learning procedures of modern SAT solvers
• Implement the two-way representation converter
• Implement a variable selection heuristic
• Implement chronological backtrack on the GPU
• Create the communication facilities between the CPU and the GPU
• Implement the problem swapping and the restarts
• Run common benchmarks
• Run industry problems

– Month 5 (June)
• Write the master’s thesis document according to the work undertaken

and results obtained.

5.7 Evaluating the work

To evaluate our proposed approach we will consider the following points:

• The scalability of our approach regarding the quantity of blocks, and GPUs
used.

• The results of the common benchmarks used to evaluate solvers.
• The performance of our solver in real world SAT problems.

6 Conclusions

In this work we propose to investigate novel techniques for enabling a more
effective use of GPUs in the acceleration of SAT solving. There are still only a
few SAT solvers that use GPUs, and their role is quite limited. We envision, as
the main outcome of this work, a better balance between the role of the GPU
and the CPU in the solver, which will hopefully enable large performance gains.
We will evaluate this work using both common benchmarks and real world SAT
instances.

References

1. SA Cook. The Complexity of Theorem-Proving Procedures. Proceedings of the
third annual ACM symposium on . . . , 1971.

2. K McMillan. Applying SAT methods in unbounded symbolic model checking.
Computer Aided Verification, 2002.

3. RM Karp. Reducibility among combinatorial problems. 50 Years of Integer Pro-
gramming 1958-2008, 2010.

4. Martin Davis. A Machine Program for theorem-proving. Communications of the
. . . , 1962.

18

5. MW Moskewicz, CF Madigan, and Y Zhao. Chaff: Engineering an efficient SAT
solver. Proceedings of the 38th . . . , 2001.

6. N Eén and A Biere. Effective Preprocessing in SAT through Variable and Clause
Elimination. Theory and Applications of Satisfiability Testing, 2005.

7. J.P. Marques-Silva and K.a. Sakallah. GRASP: a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

8. E Goldberg and Y Novikov. BerkMin: A fast and robust SAT-solver. Discrete
Applied Mathematics, 2007.

9. J Marques. GRASP—A New Search Algorithm for Satisfiability. in Proceedings
of the International Conference on . . . , 1996.

10. RJ Bayardo and RC Schrag. Using CSP look-back techniques to solve real-world
SAT instances. Proceedings of the National Conference on . . . , pages 203–208,
1997.

11. Hantao Zhang. SATO: An efficient prepositional prover. Automated
DeductionCADE-14, 2(x), 1997.

12. Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability
solvers. Computer Aided Verification, 2002.

13. J Marques-Silva. The impact of branching heuristics in propositional satisfiability
algorithms. Progress in Artificial Intelligence, pages 62–74, 1999.

14. JN Hooker and V Vinay. Branching Rules for Satisfability. Journal of Automated
Reasoning, 1995.

15. CP Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search through
randomization. . . . of the National Conference on Artificial . . . , (July), 1998.

16. Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT 1.5: solver descrip-
tion. baldur.iti.uka.de, pages 3–4, 2008.

17. H Zhang, MP Bonacina, and J Hsiang. PSATO: a Distributed Propositional Prover
and Its Application to Quasigroup Problems. Journal of Symbolic Computation,
1996.

18. Ruben Martins, Vasco Manquinho, and Ines Lynce. Improving Search Space Split-
ting for Parallel SAT Solving. 2010 22nd IEEE International Conference on Tools
with Artificial Intelligence, pages 336–343, October 2010.

19. Youssef Hamadi, S Jabbour, and L Sais. Control-based clause sharing in parallel
SAT solving. Proceedings of the 21st international jont . . . , 2009.

20. Youssef Hamadi, S Jabbour, and L Sais. ManySAT: a parallel SAT solver. Journal
on Satisfiability, Boolean . . . , 6:245–262, 2009.

21. Norbert Manthey. A More Efficient Parallel Unit Propagation. wv.inf.tu-
dresden.de.

22. Kanupriya Gulati and Sunil P. Khatri. Boolean satisfiability on a graphics pro-
cessor. Proceedings of the 20th symposium on Great lakes symposium on VLSI -
GLSVLSI ’10, page 123, 2010.

23. A Braunstein. Survey propagation: An algorithm for satisfiability. Random Struc-
tures & . . . , 2005.

24. N Eén and N Sörensson. An Extensible SAT-solver. Theory and Applications of
Satisfiability Testing, 2004.

25. Sander Beckers and Gorik De Samblanx. Parallel SAT-sovling with OpenCL. Pro-
ceedings of the . . . , 2011.

26. B Mazure, L Sais, and E Gregoire. TWSAT: A new local search algorithm for
SAT-performance and analysis. Proceedings of the 14th National Conference on
. . . , pages 1–12, 1997.

27. Hironori Fujii and Noriyuki Fujimoto. GPU Acceleration of BCP Procedure for
SAT Algorithms. elrond.informatik.tu-freiberg.de.

19

28. J Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang. Designing an efficient hard-
ware implication accelerator for SAT solving. . . . Applications of Satisfiability Test-
ingSAT . . . , pages 48–62, 2008.

29. Quirin Meyer, Fabian Schönfeld, Marc Stamminger, and Rolf Wanka. 3-SAT on
CUDA : Towards a Massively Parallel SAT Solver. 2010.

	Parallelization of SAT Algorithms on GPUs
	Introduction
	Goals
	Background
	The Boolean Satisfiability Problem
	Incomplete Solvers
	DPLL Algorithm
	CUDA
	CUDA programming model
	CUDA memory model

	Related Work
	Overview
	Complete DPLL-Based solvers
	Conflict Driven SAT Solvers
	Non-chronological backtracking
	Unit Propagation
	Variable Selection Heuristics
	Restarting the search

	Parallel DPLL based solvers
	Divide-and-Conquer
	Clause sharing
	Portfolio Solvers
	Parallel Unit Propagation

	SAT Solving on the GPU

	Proposed Approach
	System Overview
	Representation Converter
	SAT Solver
	Clause Learning and Problem Regeneration module
	Work already conducted
	Brute Force with JIT Compilation
	Brute Force with Problem Matrix
	Brute Force with Compressed Problem Matrix
	DPLL algorithm on the GPU with simplified Divide-and-Conquer

	Remaining work
	Evaluating the work

	Conclusions

