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Abstract—In image data compression, integer cosine trans-
forms (ICTs) have been preferred to discrete cosine transforms
(DCTs) due to their similar transform efficiency and lower imple-
mentation cost. However, there exist many alternative ICTs with
different performance measures and implementation costs. In this
work, we explore all possible ICTs, compute their performance
measures, and find their implementation costs in terms of the
number of adders/subtractors, where a state-of-art technique is
used to realize ICTs under a shift-adds architecture. We also
investigate the tradeoff between performance and implementation
cost, present the pareto-optimal points of this tradeoff, and
introduce promising ICTs that were not considered before.

I. INTRODUCTION

DCTs are widely used in image data compression due
to their high efficiency. However, the elements of a DCT
matrix are real numbers, leading to floating-point addition
and multiplication operations that increase the complexity of a
DCT design significantly. Although the floating-point numbers
can be quantized to integers, for an order-16 (16 × 16) DCT,
its elements have to be defined in at least 8 bits in order
to guarantee that the image reconstruction errors are negli-
gible [1]. Hence, the Walsh-Hadamard transform (WHT) [2]
and C-matrix transform (CMT) [3], whose matrices consist
of integer constants, have been used to reduce the hardware
complexity of an image compression circuit. However, they
were found to have significantly poor transform efficiency
when compared to DCTs [4], [5]. Thus, the ICTs, that require
integer operations as WHT and CMT, and that have similar
properties to DCTs, were introduced in [4]–[6]. It was shown
in [4] that there are 8×8 ICTs which have better performance
measures than those of the 8 × 8 DCT. It was also indicated
in [5] that the order-16 ICTs, which are represented with 6
bits, have a performance comparable to the order-16 DCT and
yield a much simpler implementation. ICTs have also found
applications in video coding [7].

The performance of ICTs in image data compression is
clearly defined in terms of the transform efficiency (TE),
maximum reducible bits (MRB), basis restriction error (BRE),
and mean square errors (MSE) in images [4]. However, the
implementation cost of an ICT is generally given in terms
of the maximum bitwidth of integer constants in the ICT
matrix, assuming that smaller integers lead to less complex
designs [4], [5]. But, this metric does not provide an accurate
information on the hardware complexity of an ICT design,
and also, there exist many possible ICTs with the same
bitwidth of constants. Hence, in this work, we consider the
multiplierless realization of ICTs, where a recently proposed
state-of-art algorithm [8] is used to find the fewest number

of adders/subtractors required to realize linear transforms. We
explore the tradeoff between implementation cost in terms of
the number of adders/subtractors used in the design of ICTs
and performance in terms of TE and MRB. Furthermore, we
introduce the pareto-optimal points related to the implementa-
tion cost-performance tradeoff and present a list of promising
order-8 and -16 ICTs which were also synthesized at gate-
level. It is shown that the availability of many ICTs leads to
alternative circuits with different values of transformation per-
formance and of gate-level area, delay, and power dissipation,
and enables a designer to choose the one that fits best in a
target application.

II. ORDER-8 AND -16 ICTS

A. Generation of Order-8 and -16 ICTs
The n × n DCT matrix D is an orthonormal matrix, i.e.,

DDT = I , where I is the identity matrix, and its entries dij
with 0 ≤ j ≤ n− 1 are determined as follows:

dij =

{ √
1/n i = 0

(
√
2/n) · cos(π(j + 0.5)i/n) 1 ≤ i ≤ n− 1

(1)

Fast algorithms for computing DCTs are given in [9], [10].
The n × n ICT matrix C is an orthogonal matrix, i.e.,

CCT = K, where K is a diagonal matrix, and has the
following properties [6]:

1) Integer property: Its entries cij , with 0 ≤ i, j ≤ n−1,
are integers.

2) Orthogonality property: Rows (or columns) of C are
orthogonal.

3) Relationship with DCT:
a) sgn(dij) = sgn(cij) for 0 ≤ i, j ≤ n− 1.
b) If dij = drs, cij = crs for 0 ≤ i, j, r, s ≤ n− 1

While the integer property eliminates the floating-point
multiplication and addition operations, the orthogonality prop-
erty ensures that the inverse of the ICT matrix has the same
transform structure as the ICT. The relationships with DCT
guarantee that the DCT structure is maintained in ICTs.
Figure 1 presents the general forms of order-8 and -16 ICTs
obtained based on the third property. The order-8 and -16
ICTs will respectively be denoted as ICT(a, b, c, d, e, f ) and
ICT(g, h, i, j, k,m, n, o, p, r, s, t, u) in this paper.

For the order-8 ICT matrix C8 of Fig. 1, the following
equality must be satisfied to ensure the orthogonality:

ab = ac+ bd+ cd (2)

where a ≥ b ≥ c ≥ d and e ≥ f are the boundary conditions
to keep a similar structure to the DCT [4], [6]. The elements e



C8 =



1 1 1 1 1 1 1 1
a b c d -d -c -b -a
e f -f -e -e -f f e
b -d -a -c c a d -b
1 -1 -1 1 1 -1 -1 1
c -a d b -b -d a -c
f -e e -f -f e -e f
d -c b -a a -b c -d


C16 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g h i j k m n o -o -n -m -k -j -i -h -g
p q r s -s -r -q -p -p -q -r -s s r q p
h k o -m -i -g -j -n n j g i m -o -k -h
t u -u -t -t -u u t t u -u -t -t -u u t
i o -j -h -n k g m -m -g -k n h j -o -i
q -s -p -r r p s -q -q s p r -r -p -s q
j -m -h o g n -i -k k i -n -g -o h m -j
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
k -i -n g -o -h m j -j -m h o -g n i -k
r -p s q -q -s p -r -r p -s -q q s -p r
m -g k n -h j o -i i -o -j h -n -k g -m
u -t t -u -u t -t u u -t t -u -u t -t u
n -j g -i m o -k -h h k -o -m i -g j -n
s -r q -p p -q r -s -s r -q p -p q -r s
o -n m -k j -i h -g g -h i -j k -m n -o


Fig. 1. General forms of 8× 8 and 16× 16 ICTs.

and f of C8 are not present in its orthogonality condition and
are respectively set to 3 and 1 due to higher TE values [4].

For the order-16 ICT matrix C16 of Fig. 1, the equalities,
that must be satisfied for the orthogonality, are as follows:

gh+ hk + io = jm+ ik + gm+ jn+ no (3)
gi+ ho+ km+ gn+mo = ij + hj + kn (4)
gj + gk + jo+mn = hm+ hi+ in+ ko (5)

pq = pr + qs+ rs (6)

where g > h > i > j > k > m > n > o, p > q > r > s, and
t > u are the boundary conditions [5]. Note that Eqn. 3-5 are
related to the elements from g to o and Eqn. 6 includes only
the elements p, q, r, and s. Similar to the order-8 ICTs, the
elements t and u of C16 do not enter into the orthogonality
conditions and are assigned to 3 and 1, respectively [5].

Table I presents the number of all valid order-8 and -16
ICTs when the maximum bitwidth of integer constants (bw)
ranges from 4 to 8 and the elements of e and f of C8 and the
elements t and u of C16 are set to 3 and 1, respectively. As
bw increases, the number of valid ICTs increases dramatically.

TABLE I. NUMBER OF ALL VALID ORDER-8 AND -16 ICTS.

bw #C8 #C16

4 35 0
5 182 0
6 968 1,792
7 4,839 88,654
8 23,523 1,294,216

B. Performance Measures
In transform coding of images, TE is defined as the ability

of a transform to decorrelate an input vector [5]. Let n×1 input
vector x contains elements of samples from a one dimensional,
zero mean, unit variance first order Markov process with
correlation coefficient ρ. The elements of the n×n covariance
matrix ϕ are determined as ρ|i−j| with 0 ≤ i, j ≤ n − 1. Let
the n×n transform matrix be C and the transformed vector be
y, y = Cx. Then, E{yyT } = CE{xxT }CT = CϕCT = B
and TE is computed as follows:

TE =

∑n−1
i=0 |bii|∑n−1

i=0

∑n−1
j=0 |bij |

(7)

where bij are the entries of the n× n matrix B.
Also, MRB [5], that is used to quantify the compression

ability of a transform, is computed as follows:

MRB = − 1

2n

n−1∑
i=0

log2bii (8)

III. MULTIPLIERLESS DESIGN OF LINEAR TRANSFORMS

Since the elements of an ICT matrix are determined
beforehand and the realization of a multiplier in hardware
is expensive in terms of area, delay, and power dissipation,
the linear transforms, resulting from the multiplication of the
constant matrix by a variable vector, can be implemented using
only addition, subtraction, and shift operations. A straightfor-
ward approach for the multiplierless realization of constant
multiplications, generally known as the digit-based recoding
(DBR) method [11], is to define the constants in binary and
for each 1 in the binary representation of the constant, to shift
the variable and add up the shifted variables. As a simple
example, consider the multiplication of a constant matrix by
an input variable vector given in Fig. 2(a). The decomposed
forms of linear transforms are given as follows:

y0 = 3x0 + 11x1 = (11)binx0 + (1011)binx1

= x0 + x0 ≪ 1 + x1 + x1 ≪ 1 + x1 ≪ 3

y1 = 5x0 + 13x1 = (101)binx0 + (1101)binx1

= x0 + x0 ≪ 2 + x1 + x1 ≪ 2 + x1 ≪ 3

where a total of 8 operations are required (Fig. 2b).
However, the DBR technique does not exploit the sharing

of partial products that can potentially reduce the number
of operations. The prominent algorithms [8], [12] aim to
maximize the sharing of partial products. The hybrid algo-
rithm [8] combines an efficient common subexpression elimi-
nation (CSE) heuristic and the graph-based (GB) difference
method. It iteratively finds alternative realizations of linear
transforms using the GB difference method and applies a
CSE heuristic to further reduce the complexity by sharing the
common subexpressions. Hence, in the hybrid algorithm, the
main drawback of a CSE algorithm, i.e., its limitation to a
number representation, is partially eliminated by using a GB
algorithm and the main drawback of a GB algorithm, i.e.,
its time-consuming search process, is partially decreased by
using a CSE heuristic. Moreover, it is equipped with some
hardware optimization techniques that take into account the
type of the operation (addition or subtraction) and the size of
input operands. Although it obtains good solutions in terms of
the number of operations, leading to low-complexity designs
at gate-level, its solutions can be realized with a large number
of operations in series (generally known as the number of
adder-steps), yielding designs with a large delay. To overcome
this disadvantage, its modified version, that can find a solution
with the fewest number of operations under a delay constraint,
was also introduced in [8]. It was shown that they can
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Fig. 2. (a) Direct realization of linear transforms y0 = 3x0 + 11x1 and
y1 = 5x0 + 13x1; Their shift-adds implementations: (b) without partial
product sharing; (c) with partial product sharing.

find significantly better solutions at both high-level and gate-
level than previously proposed algorithms. Returning to our
example in Fig. 2(a), the hybrid algorithm obtains a solution
with 4 operations and 3 adder-steps by finding the common
subexpressions x0+x1 and x0+9x1 when constants are defined
under binary and there is no delay constraint (Fig. 2c).

In [7], a 16 × 16 ICT was designed using two 8 × 8
integer transforms, where constant multiplications can be re-
alized using a single adder/subtracter. However, the sharing of
partial products and gate-level area optimization as used in the
algorithm of [8] were not considered in [7].

IV. EXPERIMENTAL RESULTS

We developed an exhaustive search method, that determines
the elements of all valid order-8 and -16 ICT matrices, satis-
fying the conditions given in Section II when the maximum
bitwidth of constants (bw) was set to 6. This is simply due to
a large number of possible ICTs when bw is greater than 6 as
shown in Table I and there exist 6-bit ICTs with performance
values comparable to DCTs. After a valid ICT matrix was
obtained, we computed its TE and MRB values as given in
Eqn. 7-8 when ρ was 0.95 as used in [4], [5], [7], which
indicates that the input data is very highly correlated. We found
the implementation cost of an ICT using the hybrid algorithm
of [8] when constants were defined under the canonical signed
digit representation [11]. Furthermore, among all valid ICTs,
we chose the promising ones for further analysis. In this
selection, we favored the ones with the maximum TE and
MRB values and with the minimum number of operations.
When there exist more than one ICT with the best value
on one metric, their values on other metrics are considered.
These promising ICTs were also implemented under a delay
constraint set to the minimum adder-steps of ICTs, as described
in [8], if this minimum value was less than that of the solution
found by the hybrid algorithm [8] without a delay constraint.
These ICTs were described in VHDL and synthesized using
Synopsys Design Compiler with UMCLogic 180nm Generic
II library when the bitwidths of variables in the input vector
were 16. Their VHDL codes and additional information on
the implementation cost-performance tradeoff are available at
http://algos.inesc-id.pt/∼levent/icts.html.

Over all valid 968 order-8 ICTs, the minimum values of
TE, MRB, and the number of operations were determined as
0.8372, 1.2812, and 30, respectively. The maximum values
of these metrics were found as 0.9417, 1.4642, and 50,
respectively. Table II presents the parameters of the selected
order-8 ICTs, where ICT81 has the only maximum TE value,
ICT82 has the maximum MRB value when the number of

TABLE II. PARAMETERS OF SELECTED ORDER-8 ICTS.

Index ICT(a, b, c, d, 3, 1)
ICT81 45, 39, 26, 9
ICT82 35, 30, 20, 7
ICT83 12, 10, 6, 3
ICT84 10, 9, 6, 2

TABLE III. SUMMARY OF HIGH-LEVEL AND GATE-LEVEL RESULTS OF
ORDER-8 DCT, SELECTED ICTS, CMT, AND WHT.

Linear High-level Gate-level
Transform TE MRB op as area delay power

DCT 0.9399 1.4660 54 6 27.5 6.7 84.4
54 5 28.2 6.8 92.0

ICT81 0.9417 1.4642 49 7 24.2 6.8 72.9
49 5 24.6 6.7 74.5

ICT82 0.9414 1.4642 42 6 20.3 6.3 58.3
42 5 20.8 6.4 60.7

ICT83 0.9298 1.4588 30 4 14.4 5.4 40.6

ICT84 0.9409 1.4640 38 5 17.8 5.6 49.2
38 4 18.1 5.6 50.4

CMT 0.9185 1.4447 44 7 22.4 6.2 74.3
44 5 22.4 6.2 73.5

WHT 0.8531 1.3198 24 3 11.2 4.2 26.4

operations is minimum and TE is maximum, and ICT83 has
the fewest number of operations with the maximum TE value.
ICT84 was also chosen due to its good tradeoff between TE,
MRB, and the number of operations.

The high-level results on order-8 DCT, selected ICTs,
CMT, and WHT, are given in Table III, where op and as
denote the number of operations and the number of adder-
steps, respectively. The italic results were obtained by the
hybrid algorithm [8] under a delay constraint that was set to the
minimum adder-steps of ICTs. Their gate-level results are also
presented in this table, where area, delay, and power stand for
the area in mm2, the critical path delay in ns, and the power
dissipation estimation in mW , respectively. Note that the TE
and MRB values of DCT were computed based on its floating-
point elements and its op, as, and gate-level results were found
after its elements were converted to 8-bit fixed-point values to
respect the quantization requirements [1].

First, consider the results of linear transforms obtained
based on the solutions of the algorithm [8] without a delay
constraint. It is observed that although ICT81 and ICT82
have similar TE and MRB values, the difference of the number
of operations between these ICTs is 7, which yields a 16.9%
area reduction at gate-level. Also, the area reduction between
the designs of ICT81 and ICT83 is obtained as 40.7% at
a cost of a slight decrease in the performance of ICT83.
Moreover, it is clearly shown that the reduction on the number
of operations in ICTs has also a significant impact on delay
and power dissipation of the ICT design due to the reduction of
area at gate-level. In addition to ICT81, ICT82, and ICT83,
that present the pareto-optimal points in TE, MRB, and the
number of operations, respectively, ICT84 has promising
performance values close to those of ICT81 and ICT82
with significant reductions at gate-level results and has better
performance values than those of ICT83 with a slight increase
at gate-level complexity. This observation implies that using an
exhaustive search method, which incorporates an algorithm for
the multiplierless realization of ICTs, a designer can find an
ICT design that best fits in an application, taking into account
the performance and implementation cost of an ICT. On the
other hand, the order-8 DCT has a TE value worse than that
of ICT81 and ICT82 and the best MRB value among all



TABLE IV. PARAMETERS OF SELECTED ORDER-16 ICTS.

Index ICT(g, h, i, j, k,m, n, o, p, q, r, s, 3, 1)
ICT161 62, 61, 49, 47, 37, 31, 21, 5, 60, 51, 34, 12
ICT162 42, 38, 37, 32, 22, 19, 10, 4, 60, 51, 34, 12
ICT163 42, 38, 37, 32, 22, 19, 10, 4, 12, 10, 6, 3
ICT164 42, 38, 37, 32, 22, 19, 10, 4, 15, 12, 8, 3

TABLE V. SUMMARY OF HIGH-LEVEL AND GATE-LEVEL RESULTS OF
ORDER-16 DCT, SELECTED ICTS, AND WHT.

Linear High-level Gate-level
Transform TE MRB op as area delay power

DCT 0.8845 1.5705 178 11 92.4 8.7 358.3
178 6 94.4 8.1 368.7

ICT161 0.8656 1.5619 157 9 80.3 8.7 289.5
157 6 81.3 8.2 303.8

ICT162 0.8642 1.5623 145 9 74.0 8.3 263.9
145 6 75.5 7.9 274.4

ICT163 0.8586 1.5595 133 9 67.6 8.3 237.0
133 6 68.4 7.9 241.4

ICT164 0.8640 1.5618 139 9 70.9 8.3 249.3
139 6 71.7 7.9 253.6

WHT 0.7065 1.3610 64 4 30.6 4.9 94.2

linear transforms. However, its design has the worst gate-level
area and power dissipation results due to a large number of
operations. The CMT has worse performance results than the
selected ICTs and its design occupies larger area than those
of ICTs, except ICT81. While the WHT design has the least
gate-level complexity, it has the poorest performance.

Second, when the number of adder-steps is reduced in these
linear transforms, the number of operations is not changed with
respect to those of solutions found without a delay constraint.
In this case, the area of designs is increased, except on CMT,
but their delay is not changed significantly due to a small
decrease in the number of adder-steps.

Over all valid 1792 order-16 ICTs, the minimum values
of TE, MRB, and the number of operations were 0.7873,
1.4666, and 133, respectively and the maximum values of these
metrics were 0.8656, 1.5623, and 165, respectively. Compared
to the order-8 ICTs, the ranges between the maximum and
minimum values in TE, MRB, and the number of operations
increase in the order-16 ICTs. Table IV presents the selected
ICTs based on their TE, MRB, and the number of operations.
Note that ICT161 has the maximum TE value with the
minimum number of operations, ICT162 has the maximum
MRB value when the number of operations is minimum and
TE is maximum, and ICT163 has the fewest number of
operations with the maximum TE and MRB values. ICT164
was chosen due to its good tradeoff between these metrics.

Table V presents the high-level and gate-level results of
the selected order-16 ICTs given in Table IV and of the
order-16 DCT and WHT. Again, the op, as, and gate-level
results of DCT were obtained after its floating-point elements
were converted to 8-bit integers [1].

As can be observed from Table V, ICT163, which requires
the minimum number of operations and has TE and MRB
values close to their maximum values, has the least design
complexity among the ICTs. Note that the area reduction
between the designs of ICT161 and ICT163 obtained by the
hybrid algorithm without the delay constraint is 15.8% and this
value between ICT162 and ICT163 is 8.6%. Also, ICT164
presents performance values similar to those of ICT161 and
ICT162 and has better results at gate-level than these ICTs.
In turn, the order-16 DCT shows the best performance, but its

design occupies the largest area. The WHT has the worst TE
and MRB values that are far away from those of the selected
ICTs. However, its design has the least hardware complexity.

Furthermore, observe from Table V that the reduction of
the number of adder-steps increases the gate-level area slightly,
but reduces the delay significantly, where the maximum delay
reduction is obtained as 6.8% on DCT, which is due to a large
decrease in the number of adder-steps.

V. CONCLUSIONS

This paper explored the implementation cost-performance
tradeoff in the multiplierless design of ICTs for image data
compression. The implementation cost of an ICT design was
defined in terms of the number of adders/subtractors and was
determined by a recently proposed state-of-art algorithm. It
also introduced promising order-8 and -16 ICTs with high
performance measures and less gate-level complexity that
were not considered before. It was observed that there are
many possible ICTs with similar performances, but requiring
different number of operations and gate-level area.
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